Important methodological publications on the SHARC surface hopping approach:
- M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González
SHARC – ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings
J. Chem. Theory Comput. 7, 1253-1258, (2011). - S. Mai, P. Marquetand, L. González
A General Method to Describe Intersystem Crossing in Trajectory Surface Hopping
Int. J. Quantum Chem., 115, 1215-1231 (2015). - S. Mai, P. Marquetand, L. González
Nonadiabatic Dynamics: The SHARC Approach
WIREs Comput. Mol. Sci., 8, e1370 (2018). - F. Plasser, S. Gómez, M. Menger, S. Mai, L. González
Highly efficient surface hopping dynamics using a linear vibronic coupling model
Phys. Chem. Chem. Phys., 21, 57-69 (2019).
Other relevant methodological publications:
- F. Plasser, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. González
Efficient and Flexible Computation of Many-Electron Wavefunction Overlaps
J. Chem. Theory Comput., 12, 1207-1219, (2016). - M. Fumanal, F. Plasser, S. Mai, C. Daniel, E. Gindensperger
Interstate vibronic coupling constants between electronic excited states for complex molecules
J. Chem. Phys., 148, 124119, (2018). - D. Avagliano, M. Bonfanti, M. Garavelli, L. González
QM/MM Nonadiabatic Dynamics: The SHARC/COBRAMM Approach
J. Chem. Theory Comput., 17, 4639-4647, (2021). - S. Polonius, O. Zhuravel, B. Bachmair, S. Mai
LVC/MM: A Hybrid Linear Vibronic Coupling/Molecular Mechanics Model with Distributed Multipole-Based Electrostatic Embedding for Highly Efficient Surface Hopping Dynamics in Solution
J. Chem. Theory Comput., 19, 7171–7186 (2023). - D. Farkhutdinova, S. Polonius, P. Karrer, S. Mai, L. González
Parametrization of Linear Vibronic Coupling Models for Degenerate Electronic States
J. Phys. Chem. A, 129, 2655–2666 (2025). - T. Piteša, S. Polonius, L. González, S. Mai
Excitonic Configuration Interaction: Going Beyond the Frenkel Exciton Model
J. Chem. Theory Comput., 20, 5609–5634 (2024). - S. Mausenberger, S. Polonius, S. Mai, L. González
Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations
https://doi.org/10.26434/chemrxiv-2025-vj85v (2025).
Important publications on the method contributions by the Truhlar group (University of Minnesota):
- M. S. Topaler, T. C. Allison, D. W. Schwenke, and D. G. Truhlar
What is the Best Semiclassical Method for Photochemical Dynamics in Systems with Conical Intersections?
J. Chem. Phys., 109, 3321-3345 (1998). - A. W. Jasper, and D. G. Truhlar
Fewest-Switches with Time Uncertainty: A Modified Trajectory Surface-Hopping Algorithm with Better Accuracy for Classically Forbidden Electronic Transitions
J. Chem. Phys., 116, 5424-5431 (2001). - C. Zhu, S. Nangia, A. W. Jasper, and D. G. Truhlar
Coherent Switching with Decay of Mixing: An Improved Treatment of Electronic Coherence for Non-Born-Oppenheimer Trajectories
J. Chem. Phys., 121, 7658-7670 (2004). - Y. Shu, L. Zhang, S. Mai, S. Sun, L. González, and D. G. Truhlar
Implementation of Coherent Switching with Decay of Mixing in the SHARC program
J. Chem. Theory Comput., 16, 3464-3475 (2020). - Y. Shu, L. Zhang, S. Sun, and D. G. Truhlar
Time-Derivative Couplings in Electronically Nonadiabatic Dynamics Based on a Self-Consistent Potential
J. Chem. Theory Comput., 16, 4098-4106 (2020). - Y. Shu, L. Zhang, Z. Varga, K. A. Parker, S. Kanchanakungwankul, S. Sun, and D. G. Truhlar
Conservation of Angular Momentum in Direct Nonadiabatic Dynamics
J. Phys. Chem. Lett., 11, 1135-1140 (2020). - Y. Shu, L. Zhang, X. Chen, S. Sun, Y. Huang, and D. G. Truhlar
Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping
J. Chem. Theory Comput., 18, 1320-1328 (2022). - X. Zhao, Y. Shu, L. Zhang, X. Xu, and D. G. Truhlar
Direct Nonadiabatic Dynamics of Ammonia with Curvature-Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An Illustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops
J. Chem. Theory Comput., 23, 1672-1685 (2023). - Y. Shu, L. Zhang, D. Wu, X. Chen, S. Sun, and D. G. Truhlar
New Gradient Correction Scheme for Electronically Nonadiabatic Dynamics Involving Multiple Spin States
J. Chem. Theory Comput., 19, 2419–2429 (2023).
A list of publications presenting research where the SHARC code has been employed can be downloaded as a bibtex file and as a PDF list.