A

SHARC 4.0:
Surface Hopping Including
Arbitrary Couplings

Manual

AG Gonzélez
Institute of Theoretical Chemistry
University of Vienna, Austria

universitat
wien

Vienna, May 21, 2025

https://theochem.univie.ac.at/
http://sharc-md.org
mailto:sharc@univie.ac.at
https://github.com/sharc-md/sharc
https://github.com/sharc-md/sharc/issues

Contents

1 Introduction

1.1 Capabilities
1.1.1 New features in SHARC Version 4.0 i e
1.2 References
13 AUthOrs o
1.3.1 Eternal list of contributors L
1.3.2 List of contributors to SHARC 4 e
1.4 Suggestionsand Bug Reports
1.5 NotationinthisManual e
1.6 Termsof Use oo e
2 Installation
21 HowToObtain e
22 Installation
221 LAbrarieso .o e e e e
222 WFOVERLAP Program
223 TestSuite e
2.24 Additional Programs L e e
2.25 Quantum Chemistry Programs e
3 Execution
3.1 Running asingle trajectory
3.1.1 Inputfiles L L
3.1.2 Running the dynamicscode L
3.1.3 Outputfiles L e
3.2 Typical workflow for an ensemble of trajectories L.
3.2.1 Initial condition generation
3.2.2 Setting up the dynamics simulations L L o
3.2.3 Running the dynamics simulations L L L L L
3.24 Analysis of the dynamicsresults L L L
3.3 Programs and Scripts of the SHARC Suite L L
3.3.1 Setup and Preparation
3.3.2 Trajectory Running and Management
333 Analysis e
334 Others e
335 Interfaces e
3.4 The SHARC dynamics drivers
3.4.1 Original driver: sharc.X e e
3.42 PySHARCdriver: driver.py i it e e
4 Input files
41 Maininputfile
41.1 Generalremarks
412 Inputkeywords
41.3 Detailed Description of the Keywords
414 Example L e
42 Geometryfile e
43 Velocity file L
44 Coefficientfile L e
45 Laserfile e

11
13
14
16
17
17
17
17
17
18

25
25
25
26
28
28
30
30

31
31
31
32
33
34
34
35
35
35
37
37
37
38
38
38
41
41
41

43
43
43
43
52
62
63
64
64
64

SHARC Manual Contents | Contents

46 Atommaskfile. 65
47 RATTLEfile e 65
48 Frozenatomsfile. L e 65
49 Dropletatomsfile L 65
4.10 Thermostat settings file L e 66
5 Output files 67
51 Logfile:output.log. L e 67
5.2 Listing file: output.lis L 67
5.3 Datafile: output.dat e 68
5.3.1 Specification of thedatafile L 68

5.4 Data file in NetCDF format: : output.dat.nc, 69
5.5 Separate nuclear data file in NetCDF format: output_NUC.dat.nc 70
5.6 XYZfile:output.xyz 70
6 Interfaces 71
6.0.1 Overview over Interfaces 72

6.0.2 Assoiated File Names and Example Directory 74

6.0.3 Generic keywords in resource files of many interfaces, 75

6.1 Do-Nothing Interface e 77
6.2 QMoutInterface L 77
6.3 Analytical PESsInterface L 78
6.3.1 Parametrization L. e 78

6.3.2 Template file: ANALYTICAL.templatet 78

6.3.3 Template file: ANALYTICAL.F@SOUICES . . . o o . o vt v vttt ettt e e e e 80

634 Duringsetup 80

6.4 LVClInterface 81
6.41 Inputfiles 81

6.42 Resourcefile. L 82

6.4.3 During setup e e e e 83

6.4.4 Template File Setup: setup_LVCparam. py, create_LVCparam.py, modify_LVC_template.py .. 83

6.5 SPaiNN Interface e 85
6.5.1 Template file: SPAINN.template i 85

6.5.2 Resource file: SPAINN.reSOUIrCES o v vt vttt et e e e e e 85

6.5.3 Duringsetup e e 85

6.6 SCHNARC Interface 0 e e e e 86
6.6.1 Template file: SCHNARC.template 86

6.6.2 Template file: SCHNARC.template i 86

6.6.3 Duringsetup 86

6.7 OpenMM Interface e 87
6.7.1 Template file 87

6.7.2 Resourcefile. e 87

6.7.3 Duringsetup 87

6.8 GaussiaN Interface L L e 88
6.8.1 Template file: GAUSSIAN.template 88

6.8.2 Resource file: GAUSSIAN.FESOUICES o o . v vt vttt et et e e e e 88

6.8.3 Duringsetup e 89

6.8.4 Extracting normal modes: GAUSSIAN_freq.py v v v i i i .. 89

6.9 Orcalnterface e 91
6.9.1 Template file: ORCA.template e 91

6.9.2 Resource file: ORCA.reSOUrCES vttt e e 91

6.9.3 During setup e e e e e 92

6.9.4 Extracting normal modes: ORCA_hess_freq.py, 92

6.10 NWCHEM Interface e 93
6.10.1 Template file: NWCHEM.template 93
6.10.2 Resource file: NWCHEM. resourcesot v it i it et e e 93
6.10.3 During setup e e e e e e e e e e e 94

SHARC Manual Contents | Contents

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

Turbomole Interface L e 95
6.11.1 Template file: TURBOMOLE.template 95
6.11.2 Resource file: TURBOMOLE.reSOUICES« v o v vttt ettt e e e e e e e 96
6.11.3 During setup 96
OpPENMoLcaAs Interface L 97
6.12.1 Template file: MOLCAS.template i i 97
6.12.2 Resource file: MOLCAS.reSOUrCES o v ittt et e e 97
6.12.3 During setup L 99
6.12.4 Template file generator: molcas_input.py L 99
MNDO Interface e e 101
6.13.1 Template file: MNDO.template e 101
6.13.2 Resource file: MNDO.resources it 101
6.13.3 During setup e 102
MOPAC-PIInterface o e 103
6.14.1 Template file: MOPACPI.template i 103
6.14.2 Resource file: MOPACPI.F@SOUICES o v v v vttt e et e e e e e 104
6.14.3 Reparametrized Hamiltonians, definition of microstates and additional potentials: ext_param . 104
6.14.4 QM/MM force fieldfiles 105
6.14.5 QM/MM connection table file: MOPACPI_tnk.Xyz 105
6.14.6 QM/MM force field file: e.g. oplsaa.prm L 105
6.14.7 QM/MM additional force field definition file: MOPACPI_tnk.key 105
6.14.8 Duringsetup L e e 105
LEGACY Interface o e 106
6.15.1 Template file: LEGACY.template 106
6.15.2 Resource file: LEGACY.F@SOUINCES v v v v i ettt e e e e e 106
6.15.3 During setup 106
AMS-ADF Interface L L 107
6.16.1 Template file: AMS_ADF.template 107
6.16.2 Resource file: AMS_ADF.FeSOUIrCES vttt et et e e 107
6.16.3 During setup L 109
6.16.4 Frequencies converter: AMS_ADF_freq.py 110
COLUMBUS Interface o e e e e 111
6.17.1 Template input 111
6.17.2 Resource file: COLUMBUS.F@SOUICES o . o vt vttt et et e e e e 112
6.17.3 Template setup L e 112
6.17.4 During setup 113
BaGeL Interface L 114
6.18.1 Template file: BAGEL.template i i 114
6.18.2 Resource file: BAGEL.F@SOUFCES« o . v v vttt i e e et e e e e 115
6.18.3 During setup 115
MOLPRO Interface 0 o e e e 117
6.19.1 Template file: MOLPRO.template 117
6.19.2 Resource file: MOLPRO.r@SOUINCES o v v vt it e et e e e 118
6.19.3 Error checking 118
6.19.4 Thingstokeepinmind. L 119
6.19.5 During setup 119
6.19.6 Molpro input generator: molpro_input.py Lo 120
PySCFInterface 122
6.20.1 Template file: PYSCF.template it 122
6.20.2 Resource file: PYSCF.resources oo v ittt et e e 122
6.20.3 During setup 122
ASE Database Interface e 125
6.21.1 Template file: ASE_DB.template 125
6.21.2 Duringsetup L e e 125
Umbrella Sampling Interface e 126
6.22.1 Template file: UMBRELLA.templateo v vt v 126
6.22.2 Restraintsfile L 126

SHARC Manual Contents | Contents

7

6.22.3 Resource file: UMBRELLA.F@SOUICES e v v v v v et et et et e e e e e e 127
6.22.4 During setup e 127
6.23 Numerical Differentiation Interface 128
6.23.1 Template file: NUMDIFF.template i 128
6.23.2 Resource file: NUMDIFF.resources v i v, 129
6.23.3 Duringsetup e e 129
6.24 QM/MM Interface e e 131
6.24.1 Template file: QMMM.template 131
6.24.2 Resource file: QMMM.resourceso it e 131
6.24.3 Connectivity and QM/MM type file: QMMM.table 132
6.24.4 During setup L e e e 132
6.25 ECIInterface o e 133
6.25.1 Theory and implementation L L L L 133
6.25.2 QMdirectory of EClinterface 135
6.25.3 Template file: ECI.template e 135
6.25.4 Resources file: ECI.resources e 139
6.25.5 Standard output of SHARC_ECLpy i i it 140
6.25.6 During setup 144
6.26 Adaptive Sampling Interface 145
6.26.1 Template file: ADAPTIVE.template, 145
6.26.2 Resources file: ADAPTIVE.F@SOUIrCES v v v ittt et ettt e e e e 146
6.26.3 Duringsetup L e 146
6.27 Fallback Interface e 147
6.27.1 Template file: FALLBACK.template 147
6.27.2 Duringsetup 147
6.28 File-based Interface Specifications 149
6.28.1 QM.in Specification 149
6.28.2 QM.out Specification L 149
6.28.3 Further Specifications L 153
6.28.4 Save Directory Specification L L L 154
6.29 The WFOVERLAP Program i ittt e e e e e 155
6.29.1 Installation e 155
6.29.2 Workflow e 156
6.29.3 Calling the program o 156
6.29.4 Inputdata 158
6.29.5 Output L 159
Auxilliary Scripts 161
7.1 Wigner Distribution Sampling: wigner.py e 161
711 Usage o o e e e e e 161
7.1.2 Normalmode types e 162
7.1.3 Non-defaultmasses 162
7.1.4 Sampling at finite temperatureso e 162
715 Output . . . L 163
7.2 Vibrational State Selected Sampling: wigner_state_selected.py 163
721 Usage e e e e 163
7.22 Major options e e 163
7.23 Template. L e 165
7.24 Normalmodetypes o i e 165
7.25 Non-default masses e 165
726 0utputo e e e e e e e 165
7.3 Initial condition for collision dynamics: bimolecular—_collision.py 166
731 USaBe . . o o e e e e e e e e 166
7.3.2 0 USaBe e e 166
7.4 AMBER Trajectory Sampling: amber_to_initconds.py. 167
741 Usage e e e e 167
7.4.2 TIMe Step o i e e e e e e e e 167

SHARC Manual Contents | Contents

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

743 Atom Types and Masses o v it e 168
744 Output e 168
SHARC Trajectory Sampling: sharctraj_to_initconds.py 168
751 Usage e 168
7.5.2 Random Picking of Time Step L 168
753 OULPUL . o o ot ot e e 169
Creating an XYZ file from an Amber restart file: restartnc_to_xyz.py 169
7.6.1 Usage e e e 169
7.62 Input 170
7.6.3 Output e e e e e e e e 170
Creating an XYZ file from a SHARC trajectory: sharctraj_to_xyz.py 170
771 USABe . . v o e e e e e 170
7.7.2 Input . .o 170
773 0utputo e 171
Setup of Initial Calculations: setup_init.py 171
7.8.1 Usage e e 171
782 INPUL . . o o 171
7.83 Interface-specificinput 172
784 InputforRunScripts 172
7.85 Output 173
Excitation Selection: excite.py o o i e e e 173
791 Usage . . . o oo e 174
7.9.2 Input e 174
7.9.3 0utput 175
7.9.4 Specification of the initconds.excited file format L 0oL, 175
Calculation of Absorption Spectra: spectrum.py 177
7.10.1 Input . ..o e e 177
7.10.2 Output e e e e e e e 178
7.10.3 Error Analysis. 178
Laser field generation: laser.X o it e e 178
7111 Usage o o o e e e e e e e 178
7112 Input . . . o e e 179
Preparing QM/MM calculations: setup_from_prmtop.py 179
7121 USage . . . o o e e e e e e 180
7022 Input 180
7123 0utputo e e 180
Setup of Trajectories: setup_traj.py 180
TA31 INPUL . . o o 180
7.13.2 Interface-specificinput L 184
7.13.3 Running and output control L 184
7.13.4 Runscriptsetup. 185
7.13.5 Output e e e e e e e e 185
File transfer: retrieve.sh 186
Resetting trajectories: clean—traj.sh 186
7.15.1 USage o e e e e e e e 186
Ensemble Diagnostics Tool: diagnostics.py L 186
7.16.1 Usage e e e e e e 187
7.16.2 Input e e 187
Data Extractor: data_extractor.x e 187
7171 USaBe . . o o o e e e e e e e e e 189
7072 Outputo 189
Data Extractor for NetCDF: data_extractor_NetCDF.x 191
7181 USAe . . o v o e e e e e e e 192
TA8.2 OULPUL . o . o oot e e 192
Data Converter for NetCDF: data_converter.x 192
7.19.1 Usage o i e e e e 192
7.19.2 Output L 192

SHARC Manual Contents | Contents

7.20

7.21

7.22
7.23

7.24

7.25

7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

Data Converter from NetCDF to ASCII: data_converter_to_ASCII.X 192
7.20.1 UsSage e e e e 192
7.202 Output e 192
Data Converter from NetCDF nuclear files to XYZ: data_extractor_NUC_xyz.py 193
7211 USAe . . o o i e e e e e e e e 193
7212 OULPUL . o o v o vt oo e e e e e 193
Plotting the Extracted Data: make_gnuscript.py L 193
Internal Coordinates Analysis: geo.py o L 194
7.23.1 Input . . . 194
7232 OPHOMS .« o v o v v oo e e e e e 194
Normal Mode Analysis: geo_NM.py L o e 195
7241 Inpubt e e 195
7.24.2 Output Format 196
Calculation of Ensemble Populations: populations.py 196
7.25.1 Usage e e e 196
7252 OULPUL © o o v o v v e e e e e e e e e 198
Calculation of Numbers of Hops: transition.py 199
7.26.1 USae e e e e e 199
Fitting population data to kinetic models: make_fit.py 199
7.27.1 Usage e e e e e e 200
7.27.2 Input e e 200
7.27.3 Output e e e e e e e e e 201
Obtaining Special Geometries: CrosSING.PY ¢ o v vt it 202
7.28.1 Usage e e 202
7.28.2 Output L 202
Essential Dynamics Analysis: trajana_essdyn.py 202
7.29.1 USae o i e e 203
7.29.2 Inpubt e e 203
7.29.3 Output L e 203
General Data Analysis: data_collector.py it 204
7.30.1 Usage e e e e e e 204
7.30.2 Input e 204
7.30.3 Output e e e e e e e e 207
Handling large sets of coordinate data: align_and_reorder—_traj.py 208
7311 USage oo e 208
7312 Input e e 208
7313 OULPUL © o o v o o v e e e e e e e 209
Producing radial distribution functions: frames_to_RDF.py 209
7.32.1 USABe . . . o i e e e e e e 210
7.32.2 Input . .. 210
7.32.3 Options e e 210
7324 OULPUL © o o v o o e e e e e e e 210
7.32.5 Obtaining mask files L 210
Producing 3D distributions: frames_to_dx.py 211
7.33.1 USage o e e e e 211
7.33.2 Input . . . 211
7333 Options e e e e e e e 211
7.33.4 0Output L e e e e e e e e e 211
Computing X-ray scattering: ROF_to_scattering.py 211
7341 USABE . . . o o e e e e e e 212
7.34.2 Input 212
7343 Options oL e e e e e 212
7.34.4 Output L e e e e e e e e 212
Optimizations: otool_external and setup_orca_opt.py 213
7.35.1 USABE . . o v i e e e e e e e e e e e 213
7.35.2 Input . . .o 213
7.35.3 Output 214

SHARC Manual Contents | Contents

7.35.4 Description of orca_External and otool_external 214

7.36 Single Point Calculations: setup_single_point.py 215
7.36.1 USage e 215
7.36.2 Input 215
7363 OULPUL © o o v o v v e e e e e e e e 216

7.37 Format Data from QM.out Files: QMout_print.py 216
7371 USABE . . o v v e e e e e e e e e 216
7.37.2 0Output 216

8 Methods and Algorithms 217
8.1 Absorption Spectrum e e e 217
8.2 Activeand inactive statesl 217
83 Amdahl'sLaw e 218
8.4 Bootstrapping for Population Fits L L 218
8.5 Computing electronic populations L 219
8.6 Damping e 220
8.7 Decoherence 220
8.7.1 Energy-based decoherence L 220

8.7.2 Augmented FSSH decoherence L 220

8.8 Essential Dynamics Analysis 221
8.9 Excitation Selection e 222
8.9.1 Excitation Selection with Diabatization 222

8.10 Global fits and kineticmodels 222
8.10.1 Reactionnetworks 223
8.10.2 Kineticmodels e 223
8.10.3 Global fit. e 223

8.11 Gradient transformation 224
8.11.1 Nuclear gradient tensor transformation scheme 224
8.11.2 Time derivative matrix transformation scheme, 225
8.11.3 Dipole moment derivatives L 226

8.12 Internal coordinates definitions L e 226
8.13 Kinetic energy adjustments L e 227
8.13.1 Reflection for frustrated hops L L 228
8.13.2 Choices of momentum adjustment direction L. 228

8.14 Projection operator L e e e e e e e e e 229
8.15 Fewest switches with time uncertainty L 229
8.16 Laserflelds o . e 230
8.16.1 Formofthelaserfield 230
8.16.2 Envelope functions 230
8.16.3 Field functions e 230
8.16.4 Chirpedpulses e 231
8.16.5 Quadratic chirp without Fourier transform 231

8.17 Laserinteractions 231
8.17.1 Surface Hopping withlaserfields 232

8.18 Linear/Quadratic Vibronic Coupling Models oL 232
8.18.1 Obtaining LVC parameters from abinitiodata 233

8.19 Normal Mode Analysis e 234
8.20 Optimization of Crossing Points o e 234
8.21 Phasetracking e e 235
8.21.1 Phase tracking of the transformationmatrix o o Lo 235
8.21.2 Tracking of the phase of the MCH wave functions 236

8.22 Random initial velocities L 236
8.23 Representations o e e 236
8.23.1 Current state in MCH representation L 236

8.24 Sampling from Wigner Distribution L L o 237
8.24.1 Sampling at Non-zero Temperature ittt 237

8.25 Scaling 238

SHARC Manual

8.26 Seeding of the RNG
8.27 Selection of gradients and nonadiabatic couplings
8.28 Stateordering
8.29 Surface Hopping o
8.30 Self-Consistent Potential Methods

8.30.1 Decoherence in SCPmethods
8.31 Effective Nonadiabatic Coupling Vector
832 Velocity Verlet
8.33 Wavefunction propagation e

8.33.1 Propagation using nonadiabatic couplings

8.33.2 Propagation using overlap matrices - Local diabatization

8.33.3 Propagation using overlap matrices - Norm-preserving interpolation

8.34 Time Derivative Couplings and Curvature Approximation

Bibliography
List of Tables

List of Figures

Contents | Contents

10

1 Introduction

When a molecule is irradiated by light, a number of dynamical processes can take place, in which the molecule
redistributes the energy among different electronic and vibrational degrees of freedom. Kasha’s rule [1] states that
radiationless transfer from higher excited singlet states to the lowest-lying excited singlet state (S;) is faster than
fluorescence (F). This radiationless transfer is called internal conversion (IC) and involves a changes between electronic
states of the same multiplicity. If a transition occurs between electronic states of different spin, the process is called
intersystem crossing (ISC). A typical ISC process is from a singlet to a triplet state, and once the lowest triplet is
populated, phosphorescence (P) can take place. In Figure 1.1, radiative (F and P) and radiationless (IC and ISC) processes
are summarized in a so-called Jablonski diagram.

E)\

k1

hv
> 7}
So =X .
Singlet Triplet

Figure 1.1: Jabtonski diagram showing the conceptual photophysical processes. Straight arrows show radiative pro-
cesses: absorption (hv), fluorescence (F), and phosphorescence (P); wavy arrows show radiationless processes:
internal conversion (IC) and intersystem crossing (ISC).

The non-radiative IC and ISC processes are fundamental concepts which play a decisive role in photophysics, photo-
chemistry, and photobiology. IC processes are present in the excited-state dynamics of many organic and inorganic
molecules, whose applications range from solar energy conversion to drug therapy. Even many, very small molecules,
for example O, and O,, SO,, NO, and other nitrous oxides, show efficient IC, which has important consequences in
atmospheric chemistry and the study of the environment and pollution. IC is also the first step of the biological process
of visual perception, where the retinal moiety of rhodopsin absorbs a photon and non-radiatively performs a torsion
around one of the double bonds, changing the conformation of the protein and inducing a neural signal. Similarly,
protection of the human body from the influence of UV light is achieved through very efficient IC in DNA, proteins and
melanins. Ultrafast IC to the electronic ground state allows quickly converting the excitation energy of the UV photons
into nuclear kinetic energy, which is spread harmlessly as heat to the environment.

ISC processes are completely forbidden in the frame of the non-relativistic Schrédinger equation, but they become
allowed when including spin-orbit couplings, a relativistic effect [2]. Spin-orbit coupling depends on the nuclear charge
and becomes stronger for heavy atoms, therefore it is typically known as a “heavy atom” effect. However, it has been
recently recognized that even for molecules with only first- and second-row atoms, ISC might be relevant and can
be competitive in time scales with IC. A small selection of the growing number of molecules where efficient ISC in a
sub-ps time scale has been predicted are SO, [3-5], benzene [6], aromatic nitrocompounds [7] or DNA nucleobases and
derivatives [8-12]. However, IC and ISC are also of fundamental importance in transition metal complexes, which are
often used as photosensitizers or photocatalysts in various technological applications. Overall, it can be said that the

11

SHARC Manual 1 Introduction | 1 Introduction

possible applications of photoinduced ultrafast dynamics are legion, and its understanding is of critical importance for
many scientific investigations.

Theoretical simulations can greatly contribute to understand non-radiative processes by following the nuclear motion
on the excited-state potential energy surfaces (PES) in real time. These simulations are called excited-state dynamics
simulations. Since the Born-Oppenheimer approximation is not applicable for this kind of dynamics, nonadiabatic
effects need to be incorporated into the simulations. The principal methodology to tackle excited-state dynamics
simulations is to numerically integrate the time-dependent Schrédinger equation, which is usually called full quantum
dynamics simulations (QD). Given accurate PESs, QD is able to match experimental accuracy. However, the need for
the "a priori” knowledge of the full multi-dimensional PES renders this type of simulations quickly unfeasible for more
than few degrees of freedom. Several alternative methodologies are possible to alleviate this problem. One of the most
popular ones is to use surface hopping nonadiabatic dynamics.

Surface hopping was originally devised by Tully [13] and greatly improved later by the “fewest-switches criterion”[14]
and it has been reviewed extensively since then, see e.g. [15-19]. In surface hopping, the motion of the excited-state
wave packet is approximated by the motion of an ensemble of many independent, classical trajectories. Each trajectory
is at every instant of time tied to one particular PES, and the nuclear motion is integrated using the gradient of this PES.
However, nonadiabatic population transfer can lead to the switching of a trajectory from one PES to another PES. This
switching (also called “hopping”, which is the origin of the name “surface hopping”) is based on a stochastic algorithm,
taking into account the change of the electronic population from one time step to the next one.

The advantages of the surface hopping methodology and thus its popularity are well summarized in Ref. [15]:

+ The method is conceptually simple, since it is based on classical mechanics. The nuclear propagation is based
on Newton’s equations and can be performed in Cartesian coordinates, avoiding any problems with curved
coordinate systems as in QD.

« For the propagation of the trajectories only local information of the PESs is needed. This avoids the calculation of
the full, multi-dimensional PES in advance, which is the main bottleneck of QD methods. In surface hopping
dynamics, all degrees of freedom can be included in the simulation. Additionally, all necessary quantities can be
calculated on-demand, usually called “on-the-fly” in this context.

+ The independent trajectories can be trivially parallelized.

The strongest of these points of course is the fact that all degrees of freedom can be included easily in the calculations,
allowing to describe large systems. One should note, however, that surface hopping methods in the standard formula-
tion [13, 14]—due to the classical nature of the trajectories—do not allow to treat some purely quantum-mechanical
effects like tunneling, (tunneling for selected degrees of freedom is possible [20]). Additionally, quantum coherence
between the electronic states is usually described poorly, because of the independent-trajectory ansatz. This can be
treated with some ad-hoc corrections, e.g., in [21].

In the original surface hopping method, only nonadiabatic couplings are considered, only allowing for population
transfer between electronic states of the same multiplicity (IC). The SHARC methodology is a generalization of standard
surface hopping since it allows to include any type of coupling. Beyond nonadiabatic couplings (for IC), spin-orbit
couplings (for ISC) or interactions of dipole moments with electric fields (to explicitly describe laser-induced processes)
can be included. A number of methodologies for surface hopping including one or the other type of potential couplings
have been proposed in references [22-28], but SHARC can include all types of potential couplings on the same footing.

The SHARC methodology is an extension to standard surface hopping which allows to include these kinds of couplings.
The central idea of SHARC is to obtain a fully diagonal Hamiltonian, which is adiabatic with respect to all couplings.
The diagonal Hamiltonian is obtained by unitary transformation of the Hamiltonian including all couplings. Surface
hopping is conducted on the transformed electronic states. This has a number of advantages over the standard surface
hopping methodology, where no diagonalization is performed:

« Potential couplings (like spin-orbit couplings and laser-dipole couplings) are usually delocalized. Surface hopping,
however, rests on the assumption that the couplings are localized and hence surface hops only occur in the small
region where the couplings are large. Within SHARc, by transforming away the potential couplings, additional
terms of nonadiabatic (kinetic) couplings arise, which are localized.

« The potential couplings have an influence on the gradients acting on the nuclei. To a good approximation, within
SHARC it is possible to include this influence in the dynamics.

« When including spin-orbit couplings for states of higher multiplicity, diagonalization solves the problem of
rotational invariance of the multiplet components (see [26]).

The SHARC suite of programs is an implementation of the SHARC method. Besides the core dynamics code, it comes
with a number of tools aiding in the setup, maintenance, and analysis of the trajectories. It also provides a large suite of
interfaces to many different electronic structure methods and models for excited-state potential energy surfaces.

12

SHARC Manual 1 Introduction | 1.1 Capabilities

1.1

Capabilities

The main features of the SHARC suite in Version 4.0 are:

Non-adiabatic dynamics based on the surface hopping (SH) [29] and coherent switching with decay of mixing
(CSDM) [30, 31] methodologies

Ability to describe internal conversion and intersystem crossing with any number of states (singlets, doublets,
triplets, or higher multiplicities).

Inclusion of interactions with laser fields in the dipole approximation.

Algorithms for stable wave function propagation in the presence of very small or very large couplings.
Propagation using either nonadiabatic couplings vectors (a| a% |f), wave function overlaps (a(to)|f(t)) (via the
local diabatization procedure [21]), or based on the curvature of the potential energy surfaces [32, 33].
Gradients including the effects of spin-orbit couplings (with the approximation that the diabatic spin-orbit
couplings are slowly varying).

A flexible, modular, nestable suite of interfaces to potential energy surface models, electronic structure softwares,
and multiscale models [34]. The interface suite contains:

— Fast, I/O-avoiding interfaces for analytical model potentials, linear/quadratic vibronic coupling models
(optionally with electrostatic embedding) [35-37], molecular mechanics force fields (OPENMM) and machine-
learning potentials based on the FIELDSCHNET (with electrostatic embedding) or SPAINN packages;

— Interfaces for TD-DFT: GAUSsIAN 16, Orca 5 and 6, NWChem 7.2, and AMS ADF;
- Interfaces for ADC(2) and CC2: Turbomole 7.8;

— Interfaces for SA-CASSCF and correlated multireference methods (various variants of CASPT2, MRCI, and
PDFT): OPENMoLcAs 23 and 24, MoLPRro 2023, CoLUMBUS, BAGEL, and PYSCF;

— Interfaces for semi-empirical excited-state methods: MNDO and Morac-PI;

— Nestable “hybrid” interfaces for quantum mechanics/molecular mechanics (QM/MM), excitonic configuration
interaction (ECI), adaptive sampling, numerical differentiation, umbrella sampling, and storing electronic
structure data.

Energy-difference-based partial coupling approximation to speed up calculations [38].

Energy-based decoherence correction [21], augmented-FSSH decoherence correction [39] and decay-of-mixing
decoherence for SCP methods to perform CSDM or SCDM [30, 40].

Calculation of Dyson norms for single-photon ionization spectra (for most interfaces) [41].

On-the-fly wave function analysis with TheoDORE [42-44] (for several interfaces).

Langevin thermostat and droplet restraining potentials.

Suite of auxiliary Python scripts for all steps of the setup procedure and for various analysis tasks: Electronic
populations, nuclear motion, time-resolved spectra, solvent distributions, X-ray scattering, and several others.
Methods to parametrize vibronic coupling models (and support for active learning of machine-learning models).
Code to optimize minima and minimum-energy intersections (using the Orca optimizer).

Comprehensive tutorial.

13

SHARC Manual 1 Introduction | 1.1 Capabilities

1.1.1 New features in SHARC Version 4.0

The SHARC Version 4.0 constitutes a significant milestone in the development of the package. The main goal
was to redesign the complete framework of the communication between the SHARC dynamics driver and the
electronic structure data providers. To this end, a complete refactoring of the interfaces was carried out. The new
interfaces are developed in an object-oriented way, using inheritance to simplify development. The communication
protocol was generalized and made more rigorous. For the user, the main advantages are (i) better performance for
fast dynamics using model potentials, (ii) more systematic setup routines, and (iii) the possibility to combine and nest
interfaces to achieve a broad variety of workflows. These “interfaces that can call other interfaces” are called hybrid
interfaces in SHARC. The modularity of these hybrid interfaces was the inspiration for the new SHARC logo. The hybrid
interfaces enable methods like quantum mechanics/molecular mechanics (QM/MM) to describe solvated molecules,
excitonic configuration interaction (ECI) to describe multichromophoric systems, adaptive sampling and automatic data
storage to collect electronic structure data (for machine learning or other purposes), automatic numerical differentiation
(to get gradients, nonadiabatic couplings, or other derivatives), or umbrella sampling for various sampling tasks.

The most important changes in SHARC 4.0 are:
« Dynamics program:
— There are now two dynamics drivers, sharc.x and driver.py. The former driver supports all previous
and new features of SHARC and uses a file-I/O-based communication with the interfaces. The latter driver

communicates with all interfaces directly in-memory, similar to the previous PySHARC modules. Whenever
we refer to PySHARC in this manual, we refer to working with driver.py.

— Some features that in SHARC 3 were only available in sharc.x are now also available in driver.py (e.g.,
Army Ants, time uncertainty, SCP/Ehrenfest, CSDM, curvature-driven dynamics).

— Langevin thermostat and droplet restraining potential for long dynamics of liquid droplets.
« Interfaces:

— Complete redesign, using new data classes and interface base classes, refactoring of most interfaces as given
below

New electronic structure information:

» Atom-centered multipole fit of electron densities up to quadrupole charges based on the RESP method,
« Interfaces can deliver basis set information and density matrices (handled with PySCF),

« Interfaces can receive a dedicated set of point charges to use in electrostatic embedding, and can deliver
gradients and NACs on these point charges,

Stub interfaces:
+ SHARC_DO_NOTHING. py: for testing and developing
+ SHARC_QMOUT . py: for frozen-nuclei trajectories
Fast interfaces:
+ SHARC_ANALYTICAL.py: for analytical PESs, redesigned around sympy,

« SHARC_LVC. py: for vibronic coupling models, redesigned and strongly improved, can do electrostatic
embedding,[36, 37, 45] modify_LVC_template.py to edit LVC models,

» SHARC_SPAINN.py: new interface for machine-learning potentials based on the PaiNN architecture,

« SHARC_SCHNARC. py: new interface for machine-learning potentials based on the FieldSchnet architecture,
which can do ML/MM simulations,

* SHARC_OPENMM. py: new interface for MM dynamics using AMBER prmtop files,
— Ab initio interfaces with new, SHARc4-compatible implementations:

» SHARC_GAUSSIAN.py: redesigned, can do electrostatic embedding, RESP fits, provides density matrices,
GAUSSIAN_freq.py to extract frequency Molden files,

» SHARC_ORCA.py: redesigned, ORCA_hess_freq.py to extract frequency Molden files,
*+ SHARC_NWCHEM. py: new interface for TD-DFT in NWCHEM,

» SHARC_TURBOMOLE . py: redesigned (used to be called SHARC_RICC2. py), can do electrostatic embedding,
removed dependency with Orca for spin—orbit couplings,

» SHARC_MOLCAS.py: redesigned, can do electrostatic embedding, RESP fits, provides density matrices,

14

SHARC Manual 1 Introduction | 1.1 Capabilities

» SHARC_MNDO. py: new interface for semi-empirical MRCI based on OM2 using the MNDO code,

» SHARC_MOPACPI.py: new interface for semi-empirical MRCI using the Moprac-P1 code, which can do
QOM/MM with Tinker,

» SHARC_LEGACY.py: new interface that serves as a SHARC4-compatible frontend to SHARC3-style legacy
interfaces,

— Legacy ab initio interfaces:

+ SHARC_COLUMBUS . py, SHARC_BAGEL . py, SHARC_AMS_ADF . py: minor changes to make them compatible
to SHARC_LEGACY . py,

+ SHARC_MOLPRO.py: updated to work with MOLPRO 2023, minor changes to make it compatible to
SHARC_LEGACY . py,

» SHARC_PYSCF.py: new SHARC3-style legacy interface for PySCF (CASSCF, MC-PDFT),

— Single-child hybrid interfaces:

» SHARC_ASE_DB. py: new single-child hybrid interface to store geometries and electronic properties into
a database,

« SHARC_UMBRELLA. py: new single-child hybrid interface to add harmonic restrains to any other interface,

+ SHARC_NUMDIFF.py: new “multiple clones of a single-child” hybrid interface for numerical gradients,
nonadiabatic couplings, spin—orbit/dipole derivatives,

— Multi-child hybrid interfaces:

+ SHARC_QMMM. py: new multi-child hybrid interface for electrostatic-embedding QM/MM,

+ SHARC_ECI.py: new multi-child hybrid interface for divide-and-conquer-style excitonic configuration
interaction calculations,

» SHARC_ADAPTIVE.py: new multi-child hybrid interface for adaptive sampling (also called active learning
or query by committee),

» SHARC_FALLBACK.py: new multi-child hybrid interface that calls a secondary backup interface if a
primary trial interface fails,

— New save directory management concept that simplifies assignment of saved files to time steps, automatic
garbage collection in save directory,

- Charges per multiplicity are now defined by the driver/parent interface, rather than in template files,

— Interfaces know their own set of features and have their own setup routines, thus work smoother with all
setup tools, factory.py tool to find all available interfaces,

« Better support for calculations with many atoms:

— restartnc_to_xyz.py, setup_from_prmtop.py, sharctraj_to_xyz.py: new tools that help setting up and
analyzing trajectories from AMBER restart and prmtop files as well as to recycle SHARC trajectories into new
initial conditions

— align_and_reorder.py, frame_to_RDF.py, frame_to_dx.py, RDF_to_scattering.py: new tools to analyze
the time-dependent one- or three-dimensional distributions of solvent around a target molecule and related
X-ray scattering.

— The drivers can save electronic and nuclear data in separate output files with separate strides.

« Other changes:

— geo_NM.py: To compute normal mode coordinates from xyz. Using a combination of geo_NM.py and
data_collector.py, one can achieve all functionality of trajana_nma.py.

— data_converter_to_ASCII.x to convert output data files in NetCDF format to ASCII format.

— wigner_state_selected.py updated and bimolecular_collision.py added

— spectrum.py can compute absolute absorption cross sections

« Removed and deprecated functionalities:

— trajana_nma. py is superseded by a combination of geo_NM.py and data_collector.py.

— make—_fitscript.py and bootstrap.py are superseded by make_fit.py.

— ORCA_freq.py is superseded by ORCA_hess_freq.py.

— pysharc_lvc.py and pysharc_qmout.py are superseded by driver.py.

— The link with the COBRAMM package is not present in SHARc4 currently. QM/MM simulations can be setup
and run using tleap, setup_from_prmtop.py, setpu_traj.py, SHARC_QMMM. py, SHARC_OPENMM. py, and new
functions within sharc.x/driver.py. Alternatively, you can still use SHARC3 with COBRAMM.

« All package parts now use fully consistently defined physical constants.

15

SHARC Manual 1 Introduction | 1.2 References

1.2 References

The following references should be cited when using the SHARC suite:

« [46] S. Mai, P. Marquetand, L. Gonzalez: @ “Nonadiabatic dynamics: The SHARC approach”. WIREs Comput. Mol.
Sci., 8, 1370 (2018).

o [47] S. Mai, B. Bachmair, L. Gagliardi, H.-G. Gallmetzer, L. Grinewald, M. R. Hennefarth, N. M. Hoyer, F. A.
Korsaye, S. Mausenberger, M. Oppel, T. Pitesa, S. Polonius, E. S. Gil, Y. Shu, N. K. Singer, M. X. Tiefenbacher, D. G.
Truhlar, D. Vérés, L. Zhang, L. Gonzalez: “SHARC4.0: Surface Hopping Including Arbitrary Couplings — Program
Package for Non-Adiabatic Dynamics”. https://sharc-md.org/ (2025).

Details can be found in the following references:
The theoretical background of SHARc is described in Refs. [34, 46, 48-50].
Other features implemented in the SHARC suite are described in the following references:

« Energy-based decoherence correction: [21].

« Augmented-FSSH decoherence correction: [39].

« Global flux SH: [51].

« Local diabatization and wave function overlap calculation: [52-54].

Sampling of initial conditions from a quantum-mechanical harmonic Wigner distribution: [55-57].
« Excited state selection for initial condition generation: [58].

« Laser field interactions: [59-61]

« Calculation of ring puckering parameters and their classification: [62, 63].

« Normal mode analysis [64, 65] and essential dynamics analysis: [65, 66].

« Bootstrapping for error estimation: [67].

« Crossing point optimization: [68, 69]

« Computation of ionization spectra: [41, 70].

« Wave function comparison with overlaps: [71].

« Dynamics with linear vibronic coupling models: [35-37, 45, 72].

« Computation of electronic populations: [73].

« Dynamics with neural network potentials and other machine learning properties: [74]
« Coherent switching with decay of mixing: [30, 31]

« Time derivative algorithms tSE and tCSDM: [75]

« Curvature driven algorithms «SE, KTSH, and kCSDM: [32, 33]

« Projection operator conserves angular momentum and center of mass motion: [76]
« Time-derivative-matrix gradient correction scheme: [77]

Trajectory surface hopping with time uncertainty: [78, 79]

The quantum chemistry programs to which interfaces with SHARC exist are described in the following sources:

. ADF: [80],

« BageL: [81],

- CoLuMmBus: [82],
« GAUSSIAN: [83],
« MoLcas: [84],

« Morpro: [85],

« MNDO: [86],

« Moprac-PI: [87],
« NWCHEM: [88],
« PYSCF: [89, 90],
« Orca: [91],

« TURBOMOLE: [92],

Others:

« THEODORE: [42-44]
« WFOVERLAP: [54, 71]
- LVC/MM: [36, 37]

16

http://dx.doi.org/10.1002/wcms.1370

SHARC Manual 1 Introduction | 1.3 Authors

1.3 Authors

1.3.1 Eternal list of contributors

Since the initial release in 2014, the SHARC suite has received contributions from (listed alphabetically): Andrew Atkins,
Davide Avagliano, Brigitta Bachmair, Laura Gagliardi, Hans Georg Gallmetzer, Sandra Gomez, Leticia Gonzalez, Jesus
Gonzalez-Vazquez, Lorenz Griilnewald, Moritz Heindl, Matthew R. Hennefarth, Nicolai Machholdt Hayer, Lea M. Ibele,
Feven A. Korsaye, Simon Kropf, Sebastian Mai, Philipp Marquetand, Sascha Mausenberger, Maximilian F. S. J. Menger,
Markus Oppel, Tomislav Pitesa, Felix Plasser, Severin Polonius, Martin Richter, Matthias Ruckenbauer, Eduarda Sangiogo
Gil, Yinan Shu, Nadja K. Singer, Ignacio Sola, Maximilian X. Tiefenbacher, Donald G. Truhlar, Déra V6ros, Linyao
Zhang, Patrick Zobel.

1.3.2 List of contributors to SHARC 4

The list of contributors to the current release SHARC 4.0 (as used in the package citation) is: Sebastian Mai, Brigitta
Bachmair, Laura Gagliardi, Hans Georg Gallmetzer, Lorenz Griinewald, Matthew R. Hennefarth, Nicolai Machholdt
Hoyer, Feven A. Korsaye, Sascha Mausenberger, Markus Oppel, Tomislav Pitesa, Severin Polonius, Eduarda Sangiogo
Gil, Yinan Shu, Nadja K. Singer, Maximilian X. Tiefenbacher, Donald G. Truhlar, Déra Vo6rds, Linyao Zhang, Leticia
Gonzalez.

1.4 Suggestions and Bug Reports

Bug reports and suggestions for possible features can be submitted ¢z to the Issues page on Github (for publicly accessible
discussions) or to & sharc@univie.ac.at (if non-public information are to be shared).

1.5 Notation in this Manual

Names of programs The SHARC suite consists of Fortran90 programs as well as Python and Shell scripts. The
executable Fortran90 programs are denoted by the extension .x, the Python scripts have the extension .py and the
Shell scripts .sh. Within this manual, all program names are given in bold monospaced font.

Shaded Sections Important sections are given in blue boxes like the following one:

Important sections are given in blue boxes like this one.

On the other hand, examples of input files and command lines are marked like this:

user@host> example example.dat

17

https://github.com/sharc-md/sharc/issues
mailto:sharc@univie.ac.at

SHARC Manual 1 Introduction | 1.6 Terms of Use

1.6 Terms of Use

SHARC Program Suite
Copyright ©2025, University of Vienna

SHARC is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

SHARc is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

A copy of the GNU General Public License is given below. It is also available at @ www.gnu.org/licenses/.

GNU General Public License
1. Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change
the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all
versions of a program-to make sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities
to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients
the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer
you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software.
For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems
will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although
the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change
the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict
development and use of software on general-purpose computers, but in those that do, we wish to avoid the special
danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures
that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

2. Terms and Conditions

0. Definitions.

18

http://www.gnu.org/licenses/

SHARC Manual 1 Introduction | 1.6 Terms of Use

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a
work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying
a private copy. Propagation includes copying, distribution (with or without modification), making available to
the public, and in some countries other activities as well.
To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere
interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and
prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no
warranty for the work (except to the extent that warranties are provided), that licensees may convey the work
under this License, and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modifications to it. “Object code”
means any non-source form of a work.
A “Standard Interface” means an interface that either is an official standard defined by a recognized standards
body, or, in the case of interfaces specified for a particular programming language, one that is widely used among
developers working in that language.
The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major Component,
and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface
for which an implementation is available to the public in source code form. A “Major Component”, in this context,
means a major essential component (kernel, window system, and so on) of the specific operating system (if any)
on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to
run it.
The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to control
those activities. However, it does not include the work’s System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files associated with source files for the
work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow between those subprograms and
other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from other parts of
the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable
provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the
unmodified Program. The output from running a covered work is covered by this License only if the output, given
its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as your
license otherwise remains in force. You may convey covered works to others for the sole purpose of having them
make modifications exclusively for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not control copyright. Those
thus making or running the covered works for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of your copyrighted material outside their

19

SHARC Manual 1 Introduction | 1.6 Terms of Use

relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is
not allowed; section 10 makes it unnecessary.
3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling
obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting
or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technological measures
to the extent such circumvention is effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices
stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the
Program.
You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in the form
of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

¢) You must license the entire work, as a whole, under this License to anyone who comes into possession of a
copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of
the work, and all its parts, regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make
them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting
copyright are not used to limit the access or legal rights of the compilation’s users beyond what the individual
works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also
convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software
interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or
customer support for that product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a
network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding
Source. This alternative is allowed only occasionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b.

20

SHARC Manual 1 Introduction | 1.6 Terms of Use

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need
not require recipients to copy the Corresponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object
code and Corresponding Source of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.
A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is
normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into
a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user, “normally used” refers to a typical or common
use of that class of product, regardless of the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modification has
been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and
the conveying occurs as part of a transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But
this requirement does not apply if neither you nor any third party retains the ability to install modified object
code on the User Product (for example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and protocols
for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a
format that is publicly documented (and with an implementation available to the public in source code form), and
must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by making exceptions from one
or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as
though they were included in this License, to the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be used separately under those permissions, but the
entire Program remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions from
that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain
cases when you modify the work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the

21

SHARC Manual 1 Introduction | 1.6 Terms of Use

10.

Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or
modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these
contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10.
If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License
along with a term that is a further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or
stated as exceptions; the above requirements apply either way.

. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt
otherwise to propagate or modify it is void, and will automatically terminate your rights under this License
(including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60
days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your
receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated, you
do not qualify to receive new licenses for the same material under section 10.

. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation
of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by
modifying or propagating a covered work, you indicate your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors,
to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance
by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one,
or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity
transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to
the work the party’s predecessor in interest had or could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or
can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License.
For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion

22

SHARC Manual 1 Introduction | 1.6 Terms of Use

11.

12.

13.

14.

of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which
the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether
already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of
making, using, or selling its contributor version, but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For purposes of this definition, “control” includes
the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the
contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denomi-
nated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent
infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not
to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work
is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be
so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3)
arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying
the covered work in a country, or your recipient’s use of the covered work in a country, would infringe one or
more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring
conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise
of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this
License. You may not convey a covered work if you are a party to an arrangement with a third party that is in
the business of distributing software, under which you make payment to the third party based on the extent of
your activity of conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered
work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work
so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could satisfy both those
terms and this License would be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work
with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and
to convey the resulting work. The terms of this License will continue to apply to the part which is the covered
work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address

23

SHARC Manual 1 Introduction | 1.6 Terms of Use

15.

16.

17.

new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version
of the GNU General Public License “or any later version” applies to it, you have the option of following the
terms and conditions either of that numbered version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the GNU General Public License, you may
choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version
for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are
imposed on any author or copyright holder as a result of your choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

INNO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according
to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all
civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of
the Program in return for a fee.

24

2 Installation

2.1 How To Obtain

SHARC can be obtained from the SHARC homepage 7 www.sharc-md.org. In the Download section, follow the link to
GITHUB to clone or download the latest SHARC release version. Note that in some cases a more recent version can
be downloaded from the ¢ main branch on Github, which can contain bugfixes that are not yet included in a release
version.

Note that you accept the Terms of Use given in Section 1.6 when you download SHARc.

2.2 Installation

In order to install and run SHARC under Linux (Windows and OS X are currently not supported), the following are
required or recommended:

« A Fortran90 compiler (this release is tested against i GNU Fortran 8.5.0 and ¢f Intel Fortran ifort/ifx 2024.1).

« A C compiler.

« The 2 BLAS, 2 LAPACK and 2 FFTW?3 libraries.

« 7 Python 3 (This release requires at least Python 3.11).

+ Conda/miniconda with several libraries as indicated below (or another way of installing all required Python
packages)

+ make.

. git.

Extracting The source code of the SHARC suite is distributed via @ github. In order to install it, first clone the
repository in a suitable directory:

git clone https://github.com/sharc-md/sharc.git

The new directory called sharc/ which contains all the necessary subdirectories and files. In Figure 2.1 the directory
structure of the complete SHARC directory is shown.

25

http://sharc-md.org
https://github.com/sharc-md/sharc/tree/main
https://gcc.gnu.org/fortran/
https://software.intel.com/en-us/fortran-compilers
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://http://www.fftw.org/
https://www.python.org/downloads/release/python-3109/
https://github.com/sharc-md/sharc

SHARC Manual

sharc/
—{bin/) =$SHARC
sharc.x

—(Data extractors)
—(Interface code)

2 Installation

source/

Makefile

2.2 Installation

—{Auxilliary scripts) INPUT/

manual . pdf

tutorial.pdf

Test Cases .../

Test Cases .../

—(developer tests]
I—('l’est Scripts .. ./}
—| wfoverlap/

scripts/

test_jobs/

pysharc/

1ib/

pysharc_src/

—(READIE)
—(conda,env,sharcll .0. yml]

sharc_setup/

Figure 2.1: Directory tree containing a complete SHARC installation.

2.2.1 Libraries

Fortran installation SHARC requires the BLAS, LAPACK and FFTW?3 libraries. During the installation, it might be
necessary to alter the LDFLAGS string in the Makefile, depending on where the relevant libraries are located on your
system. In this way, it is for example possible to use vendor-provided libraries like the 7 Intel MKL. For more details see
the INSTALL file which is included in the SHARc distribution.

Python installation In order to compile with pysharec, it is necessary to first create a suitable Python installation
through the Anaconda distribution. A working minimal environment can be created with (ignore the line break):

conda create -n sharc4.0 -c conda-forge python=3.12 numpy scipy h5py matplotlib

pyparsing netcdf4 gfortran_linux-64 pyscf openmm numba sympy pyyaml pytorch pytest ase
opt_einsum threadpoolctl

Subsequently, the environment has to be activated with

conda activate sharc4.0

before one can proceed with the installation of SHARC.

Instead of the command above, you should also be able to use

conda env create --file=$SHARC/../conda_env_sharc4.0.yml

Note that these two approaches might not produce 100% identical results.

26

https://software.intel.com/en-us/intel-mkl

SHARC Manual 2 Installation | 2.2 Installation

Machine learning interfaces To use the SPaiNN interface, clone the repository and install it:

git clone https://github.com/CompPhotoChem/SPaiNN.git
cd SPaiNN && pip install .

To use the SchNarc interface, install schnetpack 1, clone the repository, and install it:

pip install schnetpack==1.0.1
git clone https://github.com/schnarc/SchNarc.git
cd SchNarc && pip install .

Note that the SPaiNN and SchNarc interfaces are mutually exclusive, since they require different versions of
SchNetPack!

Compiling and installing (without pysharc) To compile the Fortran90 programs of the SHARC suite, go to the
source/ directory.

cd source/

and edit the Makefile by adjusting the variables in the top part. If you only want to install regular SHARC (no pysharc
or NetCDF), set USE_PYSHARC to false.

Then, inside source/ issuing the command:

make install

will compile the source, create all the binaries, and copy the binary files into the sharc/bin/ directory of the SHARC
distribution, which already contains all the python scripts which come with SHARC.

Compiling and installing (with pysharc) If you intend to perform computations with pysharc (using the efficient
driver.py) or with NetCDF functionality, you need to set USE_PYSHARC to true in source/Makefile. Note that currently,
some options (adaptive time steps) are not supported in this way.

Due to a number of dependencies, compiling with pysharc is slightly more complicated than without. The simplest
way to compile both pysharc and the regular executables together is to

1. run make install in pysharc/, then
2. run make installin source/.

Alternatively, you might want to compile the regular executables without pysharc or NetCDF, and then compile
pysharc. To do this:

1. set USE_PYSHARC to false,

run make install in source/,
run make clean in source/,
set USE_PYSHARC to true,

run make install in pysharc/.

ANl ol

Environment setup In order to use the SHARC suite, you have to set some environment variables. The recommended
approach is to source either of the sharcvars files (generated by make) that are located in the bin/ directory. For
example, if you have cloned SHARC into your home directory, just use:

source ~/sharc/bin/sharcvars.sh (for bourne shell users)

or

27

SHARC Manual 2 Installation | 2.2 Installation

source ~/sharc/bin/sharcvars.csh (for c-shell type users)
Note that it may be convenient to put this line into your shell’s login scripts.

2.2.2 WFovEeRrLAP Program

The SHARC package contains as a submodule the program WFovERLAP, which is necessary for many functionalities of
SHARC. In order to install and test this program, see Section 6.29.

2.2.3 Test Suite

After the installation, it is advisable to first execute the test suite of SHARC, which will test the fundamental functionality
of SHARC to communicate with other programs. Change to an empty directory and execute

$SHARC/tests.py

The interactive script will first verify the Python installation (no message will appear if the Python installation is fine).
Subsequently, the script prompts the user to enter which tests should be executed. The script will also ask for a number
of environment variables, which are listed in Table 2.1 if needed.

In SHARCY, the tests have been updated. There is at least one test for each ab initio interface. Additional tests are present
for interfaces that require wfoverlap.x, TheoDORE, or interact somehow with other (optional) software. In each case,
the _curvature test (if present) tests the corresponding interface without any auxiliary programs. All tests starting
with the name of an ab initio program run short trajectories testing whether the main dynamics code, the interfaces, the
quantum chemistry programs, and auxiliary programs (e.g., THEODORE, wfoverlap.x, Orca) work correctly together.

Table 2.1: Environment variables for SHARC test jobs. These variables need to be set before the test job execution.

Keyword Description
$GAUSSIAN Points to the main directory of the GAussiAN installation, which contains the GAUSSIAN
executables (e.g., g09/g16 or 19999.exe).

$MNDO

$MOLCAS Points to the main directory of the OPENMOLCAS installation, containing molcas.rte and
directories basis_library/ and bin/.

$MOPACPI

$TURBOMOLE Points to the main directory of the TUrRBoMOLE installation, which contains subdirectories
like basen/, bin/, or scripts/.

$ORCA Points to the directory containing the Orca executables, e.g., orca, orca_gtoint, or
orca_fragovl.
$NWCHEM Points to the main installation directory, which contains subdirectories bin and data.

$THEODORE Points to the main directory of the THEODORE installation. $THEODORE/bin/ should contain
analyze_tden.py. If you install and activate TheoDORE as usual, then $THEODIR is that
folder.

$molcas Should point to the same location as $MOLCAS, or another MoLcas installation. Note that
$molcas is only used by some COLUMBUS test jobs. Also note that $molcas does not need to
point to the MoLcas installation interfaced to CoLumBUS.

$orca Should point to the same location as $0RCA, or another Orca installation. Note that $orca is
only used by some tests where ORrca is used as helper program (e.g., for setup_orca_opt.py
or spin-orbit calculations with SHARC_TURBOMOLE . py).

$AMS Points to the main directory of the ADF installation, which contains the file adfrc.sh and
subdirectory bin/.

$BAGEL Points to the main directory of the BAGEL installation, which contains subdirectories bin/
and lib/.

$COLUMBUS Points to the directory containing the CoLuMBUSs executables, e.g., runls.

$MOLPRO Points to the bin/ directory of the MovrpPRo installation, which contains the molpro.exe file.

28

SHARC Manual 2 Installation | 2.2 Installation

If the installation was successful and Python is installed correctly, Analytical_overlap, LVC_overlap, and most tests
named scripts_<NAME> should execute without error.

The test calculations involving the quantum chemistry programs can be used to check that SHARC can correctly call
these programs and that they are installed correctly.

If any of the tests show differences between output and reference output, it is advisable to check the respective files (i.e.,
compare $SHARC/ . ./tests/RESULTS/<job>/ to ./RUNNING_TESTS/<job>/). Note that small differences (different sign
of values or small numerical deviations) in the output can already occur when using a different version of the quantum
chemistry programs, different compilers, different libraries, or different parallization schemes. It should be noted that
along trajectories, these small changes can add up to notably influence the trajectories, but across the ensemble these
small changes will likely cancel out.

29

SHARC Manual 2 Installation | 2.2 Installation

2.2.4 Additional Programs

For full functionality of the SHARC suite, several additional programs are recommended (all of these programs are
currently freely available, except for some parts of AMBER):

The Python package 2 MATPLOTLIB.
If the MATPLOTLIB package, some auxiliary scripts (e.g., trajana_essdyn.py) can automatically generate certain
plots.

The ¢ GnupLOT plotting software.

GNUPLOT is not strictly necessary, since all output files could be plotted using other plotting programs. However,
a number of scripts from the SHARC suite automatically generate GNUPLOT scripts after data processing, allowing
to quickly plot the results.

A molecular visualization software able to read xyz files (e.g. @ MOLDEN, & GABEDIT, 0 MOLEKEL or ¢ VMD).
Molecular visualization software is needed in order to animate molecular motion in the dynamics.

The &2 THEODORE wave function analysis suite (version 3.0 or higher).
The wave function analysis package THEODORE allows to compute various descriptors of electronic wave
functions (supported by some interfaces), which is helpful to follow the state characters along trajectories.

The 2 AMBER molecular dynamics package.
AMBER can be used to prepare topology files and initial conditions based on ground state molecular dynamics
simulations (instead of using a Wigner distribution), which is especially useful for large systems.

The 7 Orca ab initio package.
Orca can be employed as external optimizer. In combination with the SHARC interfaces, it is possible to perform
optimizations of minima, conical intersections, and crossing points for any method interfaced to SHARc.

2.2.5 Quantum Chemistry Programs

Even though SHARC comes with several interfaces for analytical potentials (and hence can be used without any quantum
chemistry program), one of the main application of SHARC is certainly on-the-fly ab initio dynamics. In this case, one of
the following interfaced quantum chemistry programs is necessary:

7 OpenMM

7 GAUSSIAN (this release was checked against GAUSSIAN 16).

7 OrcA (version 5.0 or 6.0).

2 NWCHEM (version 7.2 or higher)

2 TurBOMOLE (this release was checked against TURBOMOLE 7.8).

7 OPENMOLCAS (this release was checked against OPENMOLCAS 24).

2 MNDO (version 8.0 of 15 August 2019).

2 MOPAC-PI (commit c2124b7a from 6 November 2024), including its internal version of TINKER.
7 CoLUMBUS 7

- 7 CoLuMBUS-MoLcas interface for spin-orbit couplings.

7 BAGEL (commit 0ea6b59 from Mar 27, 2019 or newer).

7 AMSTERDAM DENSITY FUNCTIONAL (this release was tested against AMS 2024).
7 MoLPRo (this release was checked against MoLPRO 2023).

7 PYSCF with t7 PySCF Forge

See the relevant sections in Chapter 6 for a description of the quantum chemical methods available with each of these
programs.

30

https://matplotlib.org/
http://www.gnuplot.info/
http://www.cmbi.ru.nl/molden/molden.html
http://gabedit.sourceforge.net/
http://molekel.cscs.ch/wiki/pmwiki.php
http://www.ks.uiuc.edu/Research/vmd/
http://theodore-qc.sourceforge.net/
http://ambermd.org/
https://orcaforum.kofo.mpg.de
https://openmm.org/
http://www.gaussian.com
https://orcaforum.kofo.mpg.de
https://nwchemgit.github.io/index.html
http://www.turbomole.com
https://gitlab.com/Molcas/OpenMolcas/
https://mndo.kofo.mpg.de/
https://gitlab.com/granucci/mopacpi
http://www.univie.ac.at/columbus/docs_COL70/documentation_main.html
http://www.univie.ac.at/columbus/docs_COL70/columbus_molcas_link.html
https://nubakery.org/index.html
http://www.scm.com/ADF
http://www.molpro.net/
https://pyscf.org/
https://github.com/matthew-hennefarth/pyscf-forge

3 Execution

The SHARC suite consists of the two main dynamics codes sharc.x and driver.py and a large set of auxiliary programs,
like setup scripts and analysis tools. Additionally, the suite comes with interfaces to several quantum chemistry software
packages, as described elsewhere.

In the following, first it is explained how to run a single trajectory by setting up all necessary input for the dynamics
code sharc.x manually, as a minimum working example. Afterwards, the usage of the auxiliary scripts and the standard
workflow is explained. Detailed information on the SHARc input files is given in chapter 4. Chapter 5 documents the
different output files SHARC produces. The interfaces are described in chapter 6 and the auxiliary scripts in chapter 7.
All relevant theoretical background is given in chapter 8.

More hands-on examples can be found in the Tutorial. Additionally, we recommend several instructional videos recorded
during the iz Cyber Training Workshop 2022 by Alexey Akimov from the University af Buffalo, NY. These videos were
recorded with SHARC3, but they still have instructional value for new users.

3.1 Running a single trajectory

3.1.1 Input files

Both drivers (sharc.x and driver.py) requires the same input files. The most important file is called input and contains
all settings for the dynamics. The initial geometry is read from the geom file. These two files are mandatory. Additional,
optional files can be used to provide the initial velocities (veloc), the initial state coefficients (coeff), and/or a laser field
(Laser). Moreover, several files can be used to mask certain atoms from certain algorithms (atommask), to constrain
certain bond lengths (rattle), to freeze the position of certain atoms (frozen), to apply a droplet restraining potential
to certain atoms (droplet), and/or to define settings of the thermostat (thermostat_setting). For all optional files. if
not given, the missing information is automatically set according to some keywords in input.

The input files inside a trajectory folder are shown in Figure 3.1. The content of the main input file is explained in
detail in Section 4.1, the geometry file is specified in Section 4.2. The specifications of the velocity, coefficient, and laser
files are given in Sections 4.3, 4.4 and 4.5, respectively. The atom mask file is likewise documented in Section 4.6, the
RATTLE file in Section 4.7, the frozen atoms file in Section 4.8, the droplet atoms file in Section 4.9, and the thermostat
file in Section 4.10.

Additionally, the directory QM/ is required, containing the interface-specific input files. If the trajectory is run with
sharc.x, then the script QM/runQM. sh needs to be present, since the communication of sharc.x and the interfaces is
implemented through this script. Every time that sharc.x is making a quantum chemistry call, the current geometry
and the requests are written to QM/QM. in. Then, sharc.x calls QM/runQM. sh, waits for the script to finish and then reads
the requested quantities from QM/QM. out. The script QM/runQM. sh is fully responsible to generate the requested results
from the provided input. In virtually all cases, this task is handled by SHARC’s interfaces (see Chapter 6), so that the
script QM/runQM. sh has a particularly simple form:

cd QM/
$SHARC/SHARC_<NAME>.py QM.in

with the corresponding interface name given. When running with sharc. x, this script is the location where the chosen
interface is defined.

If the trajectory is instead run with driver.py, then the runQM.sh script does not need to be present. The chosen
interface is instead given to driver.py as a command line option.

Note that the interfaces in nearly all cases need additional input files, which must be present in QM/, independent
of whether sharc.x or driver.py is used. Most interfaces require two files, a template file and a reource file. The
contained information depends on the type of interface, but typically contains model information, quantum chemistry

31

https://compchem-cybertraining.github.io/Cyber_Training_Workshop_2022/_episodes/06-sharc

SHARC Manual 3 Execution | 3.1 Running a single trajectory

TRAJ
run.sh

(qu)

<Interface files>)

Figure 3.1: Input files for a SHARC dynamics simulation. Directories are in blue, executable scripts in green, regular
files in white and optional files in grey.

information, information about the child interfaces, and/or information about computational resources. See Chapter 6
for details.

3.1.2 Running the dynamics code

Given the necessary input files, SHARC can be started by executing

user@host> $SHARC/sharc.x input

Note that besides the input file, at least the geometry file needs to be present (see chapter 4 for details). If using the
Python driver, the trajectory can be started by executing

user@host> $SHARC/driver.py -i <NAME> input

Note that for large systems (i.e., many electronic states and/or many atoms), it might in some cases be required to
increase the stack size before starting either of the two dynamics drivers. This can be achieved by

user@host> ulimit -s unlimited

If the system is too large and the stack size is not increased, typically SHARC will crash with a segmentation fault.

A running trajectory can be stopped gracefully after the current time step by creating an empty file STOP:

user@host> touch STOP

This is usually preferable to simply killing SHARC, because the current time step is properly finished and all files are
correctly written for analysis and restart.

In order to restart a trajectory, add the restart keyword to the input file and call the driver again. Please refer to
Section 4.1 for further details.

32

SHARC Manual 3 Execution | 3.1 Running a single trajectory

In order to start a trajectory from time zero, no restart files from a previous run must be present, otherwise the
dynamics drivers will raise an error. A trajectory folder can conveniently be purged of most output files by using
$SHARC/clean_traj.sh.

3.1.3 Output files

run.sh
input

geom

restart.ctrl
restart.traj

<Interface files>)

Figure 3.2: Files of a SHARC dynamics simulation after running. Directories are in blue, executable scripts in green,
regular files in white and optional files in grey. Output files are in yellow.

Figure 3.2 shows the content of a trajectory directory after the execution of either of SHARC’s drivers. There will be
at least six new files. The files that always will be created are output.log, output.lis, output.dat and output.xyz,
as well as restart.ctrl and restart.traj. Optionally, two more output files are created, output.dat.nc and
output_NUC.dat.nc.

The file output.log contains mainly a listing of the chosen options and the resulting dynamics settings. At higher print
levels, the log file contains also information per time step (useful for debugging). output.lis contains a table with one
line per time step, giving active states, energies and expectation values. output.xyz contains the geometries of all time
steps (the comments to each geometry give the active state and current time). output.dat contains a list of all important
matrices and vectors at each time step. This information can be extracted with data_extractor.x to yield plottable
table files. If netcdf output has been selected via the options in the input file, then output.dat.nc will be present as
well. If it is present, output.dat will only contain its header, but no information per time step. The information per time
step is contained in output.dat.nc. Use data_extractor_NetCDF.x in this case. If, the netcdf_separate_nuc option
is chosen instead of regular netcdf output, then the output_NUC.dat.nc file is also present. In this case, electronic
information is in output.dat.nc and nuclear information in output_NUC.dat.nc, which is useful because one can
separately control how often these files are written.

For details about the content of the output files, see chapter 5.

The restart files contain the full state of a trajectory and its control variables from the last successful time step. These
files are needed in order to restart a trajectory at this time step (either because the calculation failed, or in order to extend
the simulation time beyond the original maximum simulation time). The restart/ directory contains all persistent files
that are needed for the interfaces (for restarting, but also between all time steps). Usually, users do not need to inspect
the restart files.

33

SHARC Manual 3 Execution | 3.2 Typical workflow for an ensemble of trajectories

3.2 Typical workflow for an ensemble of trajectories

Usually, one is not interested in running only a single trajectory, since a single trajectory cannot reproduce the branching
of a wave packet into different reaction channels. In order to do so, within surface hopping an ensemble of independent
trajectories is employed. When dealing with a (possibly large) ensemble of trajectories, setup, management, and analysis
need to be automatized. Hence, the SHARC suite contains a number of scripts fulfilling different tasks in the usual
workflow of setting up ensembles of trajectories. The standard workflow is given schematically in Figure 3.3.

(SHARC Workflow)
[Quantum Chemistry]
Preparation{ Req l
[Quantum Chemistry]
Req, {vi}, {ni} I freq.molden
[Wigner Sampling} |wigner.py |
{(R,v)«} initconds
Initial Conditions @tup setup.init.py initconds
[Excited—State Calcs.] [Quantum Chemistryj
V{AE s} (F5) | Q. out
[Excited-State Selection] |excite.py |
{(R. v, Oé)k} initconds.excited
o . Setup setup_traj.py
Dynamics Simulationsq
| output.dat, output.xyz
Aftermathd \/many tools...j

Figure 3.3: Typical basic workflow for conducting excited-state dynamics simulations with SHARC.

3.2.1 Initial condition generation

In the typical workflow, the user will first create a set of suitable initial conditions. In the context of the SHARC package,
an initial condition is a set of an initial geometry, initial velocity, initial occupied state, and initial wave function
coefficients. Many such sets are needed in order to setup physically sound dynamics simulations.

Generation of initial geometries and velocities Within the SHARC suite, initial geometries and velocities can
be generated based on a quantum harmonic oscillator Wigner distribution. The theoretical background is given in
Section 8.24. The calculation is performed by wigner. py, which is explained in Section 7.1. For special Wigner sampling
tasks (e.g., only specific energies, modes), one can use wigner_state_selected.py (Section 7.2). To combine the initial
conditions of two molecules for collision/scattering simulations, one can use bimolecular_collision.py (Section 7.3).

As given in Figure 3.3, wigner.py needs as input the result of a frequency calculation in MoLDEN format. The calculation
can be performed by any quantum chemistry program and any method the user sees fit (there are some scripts which can
aid in the frequency calculation, see Sections 6.8.4, 6.9.4, 6.12.4, 6.16.4, 6.19.6). wigner.py produces the file initconds,
which contains a list of initial conditions ready for further processing.

Alternatively, initial geometries and velocities can be extracted from molecular dynamics simulations in the ground state.
Currently, it is possible to either convert restart files from AMBER to an initconds file (using amber_to_initconds.py,
see Section 7.4) or to randomly sample snapshots from previous SHARC trajectories (using sharctraj_to_initconds.py,
see Section 7.5). In some cases, these tasks can also be performed with restartnc_to_xyz.py (Section 7.6) and
sharctraj_to_xyz.py (Section 7.7).

34

SHARC Manual 3 Execution | 3.2 Typical workflow for an ensemble of trajectories

Generation of initial coefficients and states In the second preparation step, for each of the sampled initial
geometries it has to be decided which excited state should be the initial one. In simple cases, the user may manually
choose the initial excited state using excite.py (optionally after diabatization; see 7.9). Alternatively, the selection of
initial states can be performed based on the excitation energies and oscillator strengths of the excited states at each
initial geometry (this approximately simulates a delta-pulse excitation).

The latter options (diabatization or energies/oscillator strengths) make it necessary to carry out vertical excitation
calculation before the selection of the initial states. The calculations can be set up with setup_init.py (see Section 7.8).
This script prepares for each initial condition in the initconds file a directory with the necessary input to perform the
calculation. The user should then execute the run script (run.sh) in each of the directories (either manually or through
a batch queueing system).

After the vertical excitation calculations are completed, the vertical excitation energies and oscillator strengths of each
calculation are collected by excite.py (see 7.9). The same script then performs the selection of the initial electronic state
for each initial geometry. The results are written to a new file, initconds.excited. This file contains all information
needed to setup the ensemble.

Additionally, spectrum.py (7.10) can calculate absorption spectra based on the initconds.excited file. This may be
useful to verify that the level of theory chosen is appropriate (e.g., by comparing to an experimental spectrum), or to
choose a suitable excitation window for the determination of the initial state.

3.2.2 Setting up the dynamics simulations

To prepare for the trajectory setup, in some cases specific input files need to be prepared. This includes laser files that can
be produced with laser.x (Section 7.11) or QM/MM-related files that can be created with setup_from_prmtop.py (Sec-
tion 7.12). Further interface-specific files can be produced with, e.g., molcas_input.py (Section 6.12.4), molpro_input.py
(Section 6.19.6), setup_LVCparam. py, create_LVCparam.py, and modify_LVC_template.py (see all three in Section 6.4.4).
However, for many interface, one only needs to take an example template file from $SHARC/. ./examples/ and adapt it
to the specific needs.

Based on the initial conditions given in initconds.excited and the prepared input/template files, the input for all
trajectories in the ensemble can be setup by setup_traj.py (see Section 7.13). The script produces one directory for
each trajectory, containing the input files for the dynamics drivers and the selected interface.

3.2.3 Running the dynamics simulations

In order to run a particular trajectory, the user should execute the run script (run.sh) in the directory of the trajectory.
Since those calculations can run between minutes and several weeks (depending on the level of theory used and the
number of time steps), it is advisable to submit the run scripts to a batch queueing system.

The progress of the simulations can be monitored most conveniently in the output.lis files. If the calculations are
running in some temporary directory, the output files can be copied to the local directory (where they were setup) with
the scp wrapper retrieve.sh (see Section 7.14). This allows to perform ensemble analysis while the trajectories are
still running.

If a trajectory fails, the temporary directory where the calculation is running is not deleted. The file README will be
created in the trajectory’s directory, giving the time of the failure and the location of the temporary data, so that the
case can be investigated.

In order to signal SHARC to terminate a trajectory after the current time step is completed, the user can create a (possibly
empty) file STOP in the working directory of the trajectory (the directory where sharc.x is running).

To remove all output files of a trajectory and restore it to the status after setup, one can use clean_traj.sh (Section 7.15).

The status of the ensemble of trajectories can be checked with diagnostics.py (Section 7.16). This script checks the
presence and integrity of all relevant files, the progress of all trajectories, and warns if trajectories behave unexpectedly
(non-conversion of total energy, intruder states, etc).

3.2.4 Analysis of the dynamics results

Each trajectory can be analyzed independently by inspecting the output files (see chapter 5). Most importantly, calling
data_extractor.x (7.17) or data_extractor_NetCDF.x (7.18) on the output.dat file of a trajectory creates a number
of formatted files. If needed, the output.dat and output.dat.nc files can be interconverted with data_converter.x

35

SHARC Manual 3 Execution | 3.2 Typical workflow for an ensemble of trajectories

(7.19) and data_converter_to_ASCII.x (7.20). In special cases, the file output_NUC.dat.nc is produced, which can
be converted to output.xyz with data_extractor_NUC_xyz.py (Section 7.21). The files produced by the extractor
programs can be plotted with the help of make_gnuscript.py (Section 7.22) and GNUPLOT.

The nuclear geometries in output.xyz file can be analyzed in terms of internal coordinates (bond lengths, angles, ring
conformations, etc.) using geo. py (Section 7.23) and in terms of normal mode coordinates using geo_NM. py (Section 7.24).
The manual analysis of all individual trajectories is usually a good idea to verify that the trajectories are correctly
executing, and to find general reaction pathways. The manual analysis often permits to formulate some hypotheses,
which can then be verified with the statistical analysis tools.

For the statistical analysis of the complete ensemble, the first step should usually be to run diagnostics.py (Section 7.16).
This script will determine how long the different trajectories are, and, more importantly, will check the trajectories for
file integrity, conservation of total energy, and continuity of potential/kinetic energy. Based on a set of customizable
criteria, the script determines for each trajectory a “maximum usable time”. The script then can mark all trajectories
with maximum usable time below a given threshold to be excluded from analysis (by creating a file DONT_ANALYZE in the
trajectory’s directory). The other analysis scripts will then ignore trajectories marked by diagnostics.py. Trajectories
can also be manually excluded from analysis, by creating a file called CRASHED, DEAD, or RUNNING in the respective
directory.

After the trajectories were checked and unsuitable ones excluded, the statistical analysis scripts can be used. The script
populations.py (Section 7.25) can calculate average excited-state populations using different algorithms and prepares
files needed to obtain time constants and their uncertainties. The script transition.py (Section 7.26) can analyze the
total number of hops between all pairs of states in an ensemble, allowing to identify relevant relaxation routes in the
dynamics. Using the script make_fit.py (Section 7.27), it is possible to make elaborate global fits of chemical kinetics
models to the populations data, allowing to extract rate constants from the populations, and to compute errors for these
rate constants. The script crossing.py (Section 7.28) can find and extract notable geometries, e.g., those geometries
where a surface hop between two particular states occurred. Using trajana_essdyn.py (Section 7.29) it is possible to
perform essential dynamics analysis. Finally, data_collector.py (Section 7.30) can merge arbitrary tabulated data
from the trajectories and perform various analysis procedures (compute mean/standard deviation, data convolution,
summation, integration), which can be used to compute, e.g., time-dependent distribution functions or time-dependent
spectra.

Three new analysis scripts in SHARC4 can be used to collect coordinate data for each time step, align them in specific
ways, and compute one- and three-dimensional distribution functions. These scripts are align_and_reorder_traj.py
(Section 7.31), frames_to_RDF.py (Section 7.32), and frames_to_dx.py (Section 7.33). As they are intended for large-
scale analysis of big systems, they are only compatible with NetCDF output. The output of frames_to_RDF.py can be
used to compute X-ray scattering signals using RDF_to_scattering.py (Section 7.34).

36

SHARC Manual

3 Execution | 3.3 Programs and Scripts of the SHARC Suite

3.3 Programs and Scripts of the SHARC Suite

The following tables list all the programs in the SHARC suite. The rightmost column gives the section where the program

is documented.

3.3.1 Setup and Preparation

wigner.py
wigner_state_selected.py
bimolecular_collision.py
amber_to_initconds.py
sharctraj_to_initconds.py
restartnc_to_xyz.py
sharctraj_to_xyz.py
setup_init.py

excite.py

spectrum.py

laser.x
setup_from_prmtop.py

setup_traj.py
setup_LVCparam.py
create_LVCparam.py
modify_LVC_template.py
GAUSSIAN_freq.py
ORCA_hess_freq.py
molcas_input.py
AMS_ADF_freq.py
molpro_input.py

Creates initial conditions from a Wigner distribution.

Creates initial conditions from selected vibrational states.

Creates initial conditions from two initconds files.

Creates initial conditions from Amber restart files.

Creates initial conditions from SHARC trajectories.

Directly creates QM. in or geom/veloc files from Amber restart files.
Directly creates QM. in or geom/veloc files from SHARC trajectories.

Sets up initial vertical excitation calculations.

Generates excited state lists for initial conditions and selects initial states.
Generates absorption spectra from initial conditions files.

Prepares files containing laser fields.

Sets up files for QM/MM simulations (topology/force field files, RATTLE
files, and QM/MM table files) from Amber topology files.

Sets up the dynamics simulations based on the initial conditions.

Sets up single point calculations for LVC parametrization.

Produces LVC model files from parametrization data.

Removes states, modes, or dipole moments from LVC parameter files.
Converts GAUssIAN output files of frequency calculations to Molden format.
Converts Orca Hessian files to Molden format.

Prepares MoLcas input files and template files for the MoLcas interface.
Converts ADF output files of frequency calculations to Molden format.
Prepares MoLPRro input files and template files for the MorpRo interface.

3.3.2 Trajectory Running and Management

sharc.x Legacy dynamics driver with full feature support but slow I/O-based inter- 3.4.1
face communication.

driver.py New PySHARC dynamics driver with fast in-memory interface communi- 3.4.2
cation but with a few unsupported features.

retrieve.sh scp wrapper to retrieve dynamics output during the simulation. 7.14

clean_traj.sh Removes all output and restart files from a trajectory. 7.15

diagnostics.py Checks ensembles for integrity, progress, energy conservation. 7.16

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

7.13
6.4.4
6.4.4
6.4.4
6.8.4
6.9.4

6.12.4
6.16.4
6.19.6

37

SHARC Manual 3 Execution | 3.3 Programs and Scripts of the SHARC Suite

3.3.3 Analysis

data_extractor.x Extracts plottable results from the SHARC output data file. 7.17
data_extractor_NetCDF.x Extracts plottable results from the SHARC output data file in NetCDF format. 7.18
data_converter.x Converts output.dat files to output.dat.nc files. 7.19
data_converter_to_ASCII.x Converts output.dat.nc files to output.dat.cp. 7.20
data_extractor_NUC_xyz.py Converts output_NUC.dat.nc files to output.xyz 7.21
make_gnuscript.py Creates gnuplot scripts to plot trajectory data. 7.22
geo.py Calculates internal coordinates from xyz files. 7.23
geo_NM. py Calculates normal model coordinates from xyz files. 7.24
populations.py Calculates ensemble populations. 7.25
transition.py Calculates total number of hops within an ensemble. 7.26
make_fit.py Performs kinetic model fits and bootstrapping. 7.27
crossing.py Extracts specific geometries from ensembles. 7.28
trajana_essdyn.py Performs an essential dynamics analysis for an ensemble. 7.29
data_collector.py Collects data from tabular files and performs various analyses 7.30
align_and_reorder_traj.py Collects, aligns, and converts coordinates into NetCDF files per time step. ~ 7.31
frames_to_RDF.py Computes radial histograms/distribution functions from NetCDF files. 7.32
frames_to_dx.py Computes 3D distributions in dx format from NetCDF files. 7.33
RDF_to_scattering.py Computes X-ray scattering from histogram data. 7.34

3.3.4 Others

tests.py Script to automatically run the SHARC test suite. 223

wfoverlap.x Program to compute wave function overlaps, used by most interfaces. 6.29

Orca_External Script to carry out optimizations with Orca4 as optimizer and SHARC as 7.35
gradient provider.

otool_external Script to carry out optimizations with ORca5/6 as optimizer and SHARC as 7.35
gradient provider.

setup_orca_opt.py Script to setup optimizations with Orca as optimizer and SHARC as gradient ~ 7.35
provider.

setup_single_point.py Script to setup single point calculations with SHARC interfaces. 7.36

QMout_print.py Script to convert a QM.out file to a table with energies and oscillator ~ 7.37
strengths.

3.3.5 Interfaces

Stub interfaces
SHARC_DO_NOTHING.py Provides zeros for all requested quantities (overlap matrices are returned 6.1
as unit matrices). Intended for testing purposes only.
SHARC_QMOUT . py Provides the Hamiltonian (with SOCs) and dipole moments from a provided 6.2
QM. out file and returns zeros otherwise (unit matrix overlaps). Intended
for SHARC trajectories with frozen nuclei/electron-only dynamics.

38

SHARC Manual 3 Execution | 3.3 Programs and Scripts of the SHARC Suite

Fast interfaces

SHARC_ANALYTICAL.py Provides SOCs, gradients, overlaps, dipole moments, and dipole moment 6.3
derivatives based on analytical expressions formulated in sympy of diabatic
matrix elements defined in Cartesian coordinates.

SHARC_LVC. py Provides SOCs, gradients, nonadiabatic couplings, overlaps, and dipole 6.4
moments based on linear/quadratic-vibronic coupling models defined in
mass-weighted normal mode coordinates.

SHARC_SPAINN. py Calculates gradients, dipole moments, and nonadiabatic coupling vectors 6.5
using SPaiNN machine learning models.

SHARC_SCHNARC. py Provides gradients, dipole moments, and nonadiabatic coupling vectors 6.6
using (Field)Schnet machine learning models. Can do electrostatic embed-
ding.

SHARC_OPENMM. py Provides gradients, dipole moments, and multipolar fits using OpenMM 6.7
and Amber force fields.

Ab initio interfaces

SHARC_GAUSSIAN. py Provides dipole moments, gradients, overlaps, Dyson norms, TheoDORE 6.8
wave function descriptors, multipolar fits, and density matrices at the
TD-DFT level of theory using Gaussian. Can do electrostatic embedding.

SHARC_ORCA. py Provides SOCs, dipole moments, gradients, overlaps, Dyson norms, and 6.9
TheoDORE wave function descriptors at the TD-DFT level of theory using
Orca. Can do electrostatic embedding.

SHARC_NWCHEM. py Provides dipole moments, gradients, and overlaps at the TD-DFT level of 6.10
theory using NWCHEM.

SHARC_TURBOMOLE.py Provides SOCs, dipole moments, gradients, overlaps, Dyson norms, and 6.11
TheoDORE wave function descriptors at the ADC(2) and CC2 levels of the-
ory using TURBOMOLE. Can do electrostatic embedding. Some restrictions
apply to CC2. Needs Orca for SOCs.

SHARC_MOLCAS. py Provides SOCs, dipole moments, gradients, nonadiabatic coupling vectors, 6.12
overlaps, Dyson norms, TheoDORE wave function descriptors, multipolar
fits, and density matrices for CASSCF/RASSCEF, several CASPT2 variants,
and some PDFT variants (using OpENMoLcas). Can do electrostatic em-
bedding.

SHARC_MNDO . py Provides dipole moments, gradients, nonadiabatic coupling vectors, and 6.13
overlaps at the semiempirical MRCI level of theory using the MNDO code.
Restricted to singlet states. Can do electrostatic embedding.

SHARC_MOPACPI. py Provides dipole moments, gradients, nonadiabatic coupling vectors, and 6.14
overlaps at the semiempirical MRCI level of theory using the MOPAC-PI
code. Restricted to singlet states. Has built-in QM/MM capabilities.

SHARC_LEGACY.py Provides SOCs, dipole moments, gradients, nonadiabatic coupling vectors, 6.15
overlaps, Dyson norms, and TheoDORE wave function descriptors by
calling any of the legacy interfaces below.

39

SHARC Manual 3 Execution | 3.3 Programs and Scripts of the SHARC Suite

Legacy ab initio interfaces

SHARC_AMS_ADF . py Provides SOCs, dipole moments, gradients, overlaps, Dyson norms, and 6.16
TheoDORE wave function descriptors at the TD-DFT level of theory using
ADF.

SHARC_COLUMBUS.py Provides SOCs, dipole moments, gradients, nonadiabatic couplings, over- 6.17
laps, and Dyson norms at the CASSCF, RASSCF, and MRCISD levels of
theory using CoLumBUS. Some restrictions apply depending on the chosen
integral engine.

SHARC_BAGEL . py Provides dipole moments, gradients, nonadiabatic couplings, and overlaps 6.18
at the CASSCF, CASPT2, MS-CASPT2, and XMS-CASPT2 level of theory
using BAGEL. Restricted to singlet states.

SHARC_MOLPRO . py Provides SOCs, dipole moments, gradients, nonadiabatic couplings, over- 6.19
laps, and Dyson norms at the CASSCF level of theory (using MOLPRO).

SHARC_PYSCF. py Provides dipole moments, gradients, and nonadiabatic couplings at the 6.20
CASSCF, MC-PDFT, CMS-PDFT, and L-PDFT levels of theory (using PYSCF).
Restricted to singlet states.

Single-child hybrid interfaces

SHARC_ASE_DB. py Provides any requested data from a single child interface. Stores geometry, 6.21
point charges, and all results in a database using the ASE package.
SHARC_UMBRELLA.py Provides any requested data from a single child interface. Adds harmonic 6.22
restraints to energies and gradients, using various collective variables.
SHARC_NUMDIFF.py Provides requested data from a single child interface. Also provides gra- 6.23
dients, nonadiabatic couplings, and dipole moment/SOC derivatives from
finite differences.

Multi-child hybrid interfaces

SHARC_QMMM. py Provides requested data by performing an electrostatic embedding QM/MM 6.24
calculation with one QM and two MM children.
SHARC_ECI.py Provides energies and dipole moments by performing an excitonic configu- 6.25

ration interaction calculation based on several fragments computed with
child interfaces. Requires electronstatic embedding, multipolar fitting, and
density matrices from all children.

SHARC_ADAPTIVE.py Provides requested data from several child interfaces with a quorum-based 6.26
termination criterion.

SHARC_FALLBACK.py Provides requested data from a trial child. If the trial child fails, provides 6.27
data from a backup child instead.

40

SHARC Manual 3 Execution | 3.4 The SHARC dynamics drivers

3.4 The SHARC dynamics drivers

The original dynamics driver of SHARc, present since version 1.0, is sharc.x. This is a monolithic Fortran program
that performs all steps of the SHARC method, including input parsing, initialization, nuclear propagation, requesting
electronic structure information from an interface, electronic propagation, computing hopping probabilities, making
hopping decisions, and producing output. The communication with the electronic structure interfaces is based on
writing and reading ASCII files, as described in Section 6.28. Besides the reading and writing of several files (which
takes time and limits precision), this form of communication also implies that the electronic structure interface is
restarted/reloaded into memory at every time step (or even several times per time step). Hence, this is a relatively slow
form of communication, which typically adds a few tenths of a second up to a few seconds per time step. For expensive
on-the-fly quantum chemistry interfaces, where each time step takes at least several minutes, this time overhead is
negligible. However, for very fast potential energy surface methods (like analytical models, vibronic coupling models,
machine learning models, or force fields), the overhead might well take much longer than the actual computation.

To overcome the limitations of file I/O and reloading interface code, with SHARC2.1 the PyYSHARC approach was
introduced. PYSHARC is an implementation of the SHARC dynamics driver in Python that directly calls the Fortran
routines of sharc.x through the Python-C API via intermediate C routines. In this way, both the Fortran code and the
interface code can be run within the same program, omitting file-based communication and reloading of interface code.
Using PySHARC can reduce the cost per time step for the mentioned fast methods from few seconds to few milliseconds,
providing a dramatic speedup of the SHARC simulations. Consequently, the use of PySHARC is highly advisable for
SHARC simulations with all fast interfaces. Whereas in SHARC3, each interface required a separate PySHARC driver, in
SHARC4, all interfaces use the common driver. py.

PySHARC is intended to change the SHARC workflow as little as possible. Basically all features of sharc.x are supported.
The only change that needs to be applied is to call the pysharc driver instead of sharc.x. The general trajectory setup
script setup_traj.py can create input files for either driver.

The high efficiency of PySHARC is optimally combined with an efficient way of producing output. As the historical
output format of SHARC in terms of ASCII files is not optimized for performance, during the implementation of PySHARC
also new output routines, using the NetCDF binary file format, were implemented. It is advisable that every time
PySHARC is run, output is written in NetCDF format. Details of NetCDF output are documented in Section 5.4.

As described in Section 2.2, the SHARC code can be compiled in two ways, without and with PySHARC support. If
compiled without PySHARC support, then only sharc.x is available. If compiled with PyYSHARC support, then both
drivers will be created. It is noteworthy that the sharc.x with PySHARC is compiled differently and supports some
different options than if compiled without PySHARC support.

3.4.1 Original driver: sharc.x

The sharc.x driver is executed with

user@host> $SHARC/sharc.x <filename>

Typically, the input file name is input. Instead of the file name, one can provide any one of the arguments -v, - -version,
or --info. In this way, sharc.x will print its version infos and then exits.

When using sharc.x, the verbosity of the driver code is controlled by the printlevel keyword in the input file. The
verbosity of the employed interfaces can be controlled via the environment variables $SHARCLOG or $SHARC_LOG.
Possible settings are 40 for "silent", 11 for default verbosity, and 10 for "debug" print.

Within sharc.x, if the package was compiled without PySHARC support, the no support for NetCDF output is provided.
The only output_format is ascii. However, if the package was compiled without PyYSHARC, then the Bulirsch-Stoer-
Hack and adaptive velocity Verlet nuclear integrators are available.

3.4.2 PySHARC driver: driver.py

The PySHARC driver can be execited with

user@host> $SHARC/driver.py -i <NAME> <filename>

41

SHARC Manual 3 Execution | 3.4 The SHARC dynamics drivers

Here, <filename> has the same meaning as for sharc.x. The -i option (alias - -interface) is used to select the interface
that is employed in the dynamics. If hybrid interfaces are used, the - option only specifies the top-level interface;
its child interfaces are set in the input files for the top-level interface, and driver.py does not know about the child
interfaces.

By default, driver. py initializes its child interface in the so-called persistent mode. This mode only has an effect for
fast interfaces (those derived from SHARC_FAST. py); most other interfaces simply ignore this mode. In persistent mode,
fast interfaces will not write interface-specific restart files in each time step, but only in the very last time step. This
improves performance with those interfaces, but leaves the output without restart files in the case of a crash/external
termination. Using -p or --nonpersistent, the driver can be ordered to initialize the interface in non-persistent mode,
where restart files are written every time step.

With driver. py, the verbosity of the used interface(s) can be directly controlled via command line options. Using -s
or --silent, only minimal information is printed. The level -s or --verbose provides the standard amount of output.
Using -d or --debug, additional information on the execution of the interfaces is provided. Instead of using these flags,
the environment variables $SHARCLOG or $SHARC_LOG can be used. Note that the flags and environment variables
have no effect on the verbosity of the dynamics code itself.

When the package is compiled with PySHARC support, then via driver.py (and also via sharc.x), NetCDF output
might be available (needs to be separately activated during compilation). In turn, with PySHARC support, the Bulirsch-
Stoer-Hack and adaptive velocity Verlet integrators are not available. Other options that in SHARC3 were not supported
by PySHARC are now available in SHARC4.

42

4 Input files

In this chapter, the format of all SHARC input files are presented. Those are the main input file (here called input),
the geometry file, the velocity file, the coefficients file, the laser file, and the atom mask file. Only the first two are
mandatory, the others are optional input files. All input files are ASCII text files.

4.1 Main input file

This section presents the format and all input keywords for the main SHARC input. Note that when using setup_traj.py,
full knowledge of the SHARC input keywords is not required.

4.1.1 General remarks

The input file has a relatively flexible structure. With very few exceptions, each single line is independent. An input
line starts with a keyword, followed optionally by a number of arguments to this keyword. Example:

stepsize 0.5

Here, stepsize is the keyword, referring to the size of the time steps for the nuclear motion in the dynamics. 8.5 gives
the size of this time step, in this example 0.5 fs.

A number of keywords have no arguments and act as simple switches (e.g., restart, gradcorrect, grad_select,
nac_select, ionization, track_phase, dipole_gradient). Those keywords can be prefixed with no to explicitly
deactivate the option (e.g., norestart deactivates restarts).

In each line a trailing comment can be added in the input file, by using the special character #. Everything after # is
ignored by the input parser of SHARC. The input file also can contain arbitrary blank lines and lines containing only
comments. All input is case-insensitive.

The input file is read by SHARC by subsequently searching the file for all known keywords. Hence, unknown or
misspelled keywords are ignored. Also, the order of the keywords is completely arbitray. Note however, that if a
keyword is repeated in the input only the first instance is used by the program.

4.1.2 Input keywords

In Table 4.1, all input keywords for the SHARC input file are listed.

43

SHARC Manual

4 Input files | 4.1 Main input file

Table 4.1: Input keywords for sharc.x and driver.py. The first column gives the name of the keyword, the second
lists possible arguments and the third line provides an explanation. Defaults are marked like this. $n denotes
the n-th argument to the keyword.

Keyword | Arguments | Explanation
— General control keywords —
printlevel integer Controls the verbosity of the log file.
$1=0 Log file is empty
$1=1 + List of internal steps
$1=2 + Input parsing information
$1=3 + Some information per time step
$1=4 + More information per time step
$1=5 + Much more information per time step
restart Dynamics is resumed from restart files.
norestart Dynamics is initialized from input files. This gives
an error if restart files are present.
norestart takes precedence.
write_restart_files Write restart files.
nowrite_restart_files Don’t write restart files. Restart will not be possi-
ble!
write_restart_files takes precedence.
retain_restart_files integer Retain interface restart files for the last $1 steps.
$=2o0r 3 With overlaps, default is 3 and minimum value is 1.
rngseed integer Seed for the random number generator.
10997279 Used for surface hopping and AFSSH decoherence.
compatibility $1=0 Compatibility mode disabled.
$1=1 Do not draw a second random number per step
(for decoherence).
— Input file keywords —
geomfile quoted string File name containing the initial geometry.
"geom"
velocfile quoted string File containing the initial velocities.
"veloc" Only read if veloc external.
coefffile quoted string File containing the initial wave function coeffi-
cients.
"coeff” Only read if coeff external.
laserfile quoted string File containing the laser field.
"laser" Only read if laser external.
atommaskfile quoted string File containing the atom mask.
"atommask" Only read if atommask external.
rattlefile quoted string File containing the list of bond length constraints.
"rattle" Only read if rattle.
— Trajectory initialization keywords —
veloc string Sets the initial velocities.
$1=zero Initial velocities are zero.
$1=random $2 float Random initial velocities with $2 eV kinetic energy per atom.
$1=external Initial velocities are read from file.
nstates list of integers Number of states per multiplicity.
$1 (1) Number of singlet states
$2 (0) Number of doublet states
$3 (0) Number of triplet states
$...(0) Number of states of higher multiplicities
charge list of integers Charge of states per multiplicity.

$1 (no default)
$2

Charge of singlet states
Charge of doublet states

Continued on next page

44

SHARC Manual 4 Input files | 4.1 Main input file

Table 4.1 - Continued from previous page

Keyword Arguments Explanation
$3 Charge of triplet states
$... Charge of states of higher multiplicities
actstates list of integers Number of active states per multiplicity.
same as nstates By default, all states are active.
state integer, string Specifies the initial state.
(no default; SHARC exits if state is missing).
$1 Initial state.
$2=MCH Initial state and coefficients are given in MCH representation.
$2=diag Initial state and coefficients are given in diagonal representa-
tion.
coeff string Sets the wave function coeflicients.
$1=auto Initial coefficient are determined automatically from initial
state.
$1=external Initial coefficients are read from file.
— Laser field keywords —
laser string Sets the laser field.
$1=none No laser field is applied.
$1=internal Laser field is calculated at each time step from internal func-
tion.
$1=external Laser field for each time step is read during initialization.
laserwidth float Laser bandwidth used to detect induced hops.
1.0eV
— Time step keywords —
stepsize float Length of the nuclear dynamics time steps in fs.
0.5 fs
nsubsteps integer Number of substeps for the integration of the elec-
tronic equation of motion.
25
nsteps integer Number of simulation steps.
3
tmax float Total length of the simulation in fs.
No effect if nsteps is present.
killafter float Terminates the trajectory after $1 fs in the lowest
state.
-1 If $1<0, trajectories are never killed.
— Integrator keywords —
integrator string Method to control the integrator.
$1=fvv Fixed time step velocity Verlet integrator.
$1=avv Adaptive time step velocity Verlet integrator (not in pysharc).
convthre float Convergence threshold for adaptive integrators
(in eV).
$1=1e-04
stepsize_min float Minimum step size allowed in adaptive velocity
Verlet.
$1=stepsize/16
stepsize_max float Maximum step size allowed in adaptive velocity
Verlet.

$1=stepsize*2

stepsize_min_exp integer Minimum power of 2 allowed in adjusting the
time step in adaptive velocity Verlet. If used, this
keyword will overwrite keyword stepsize_min.

$1=-4

Continued on next page

45

SHARC Manual 4 Input files | 4.1 Main input file
Table 4.1 - Continued from previous page
Keyword Arguments Explanation
stepsize_max_exp integer Maximum power of 2 allowed in adjusting the
time step in adaptive velocity Verlet. If used, this
keyword will overwrite keyword stepsize_max.
$1=2

— Dynamics setting keywords that applicable to

both TSH and SCP methods —

$1=ddr,nacdr
$1=ddt,nacdt

method string Nonadiabatic dynamics method.
$1=tsh Uses trajectory surface hopping.
$1:SCp, ehrenfest Uses self-consistent potential methods.
coupling string Quantities describing the nonadiabatic couplings.

Uses vectorial nonadiabatic couplings (¥ |9/ dR|¢g).
Uses temporal nonadiabatic couplings (Y |9/ dt|Yg).

$1=gradient

$1 :overlap Uses the overlaps (1 (£0) [{/5(¢)) (local diabatization).
$1=ktdc Uses curvature driven approximation for time derivative cou-
pling.
ktdc_method string Method to compute curvature driven approxi-
mated time derivative coupling.
$1=energy Second order finite difference of energy (default for TSH).

First order finite difference of dot product of gradients and
velocity vector (default for SCP).

$1=gradient

eeom string Method to control the propagator of electronic
equation of motion. We suggest the users use
default options.
$ 1=ci Constant interpolation.
$1=li Linear interpolation. This is the default when set coupling=ddr
or coupling=ktdc.
$1=1d Local diabatization. This is the default when set cou-
pling=overlap and method=tsh.
$1=npi Norm preserving interpolation.[93] This is the default when
set coupling=overlap and method=scp.
gradcorrect empty or string Include NACs in gradient transformation.
$1=none, ngt, nac Include (Eq — Eg){¥a|9/dR|Yp) in gradient transformation.
$1=tdm, kmatrix Include (Eq — Eg) (Y |9/ dt|p) in gradient transformation.
nogradcorrect Transform only the gradients.
tdm_method string Method to control the computations of time deriva-

tive of potential energies in diagonal basis in TDM
gradient correction scheme.

Time derivative of potential energies in diagonal basis are
computed from transformation of time derivative matrix in
MCH basis. And the time derivative of potential energies in
MCH basis are computed by a dot product between nuclear
gradient vector and velocity vector. This is the default option

for coupling=ddr or coupling=overlap.

$1=energy Time derivative of potential energies in diagonal basis are
computed from finite difference. This is more accurate for cur-
vature driven methods because in curvature-driven algorithms
we approximate TDCs instead of computing TDCs accurately
form electronic structure software. This is the default option
for coupling=ktdc.

decoherence_scheme string Method for decoherence correction.

$1=none No decoherence correction.

$1=edc Energy-difference based correction.[94]

$1=afssh Augmented FSSH.[39]

Continued on next page

46

SHARC Manual

4 Input files | 4.1 Main input file

Table 4.1 - Continued from previous page

Keyword Arguments Explanation
$1=dom Add decay-of-mixing decoherence to SCP methods to perform
CSDM or SCDM.[30, 31] Not usable for TSH.
decoherence Applies decoherence correction (defaults are EDC
for TSH methods and Decay-of-Mixing for SCP
methods).
nodecoherence No decoherence correction.
nodecoherence takes precedence.
— Surface hopping setting keywords —
surf string Potential energy surfaces used in TSH. No effect
for SCP.
$1=diagonal,sharc Uses diagonal potentials.
$1=MCH Uses MCH potentials.
ekincorrect string Adjustment of the kinetic energy after a surface
hop.
$1=none Kinetic energy is not adjusted. Jumps are never frustrated.

$1=parallel_vel
$1=parallel_pvel

$1=parallel_nac
$1=parallel_diff

$1=parallel_pnac

$1=parallel_enac

$1=parallel_penac

Velocity is rescaled to adjust kinetic energy.

Only the velocity component in the direction of vibrational
motion is rescaled.

Only the velocity component in the direction of
(V| 9/ R) is rescaled.

Only the velocity component in the direction of AVE is
rescaled.

Only the velocity component in the direction of projected
(V| 9/ 3R|) is rescaled. The projection ensures conserva-
tion of nuclear orbital angular momentum and center of mass
motion[76]

Only the velocity component in the direction of effective nona-
diabatic coupling vector is rescaled.[75]

Only the velocity component in the direction of projected

effective nonadiabatic coupling vector is rescaled.[75, 76]

reflect_frustrated

string

$1=none
$1=parallel_vel
$1=parallel_pvel
$1=parallel_nac

$1=parallel_diff

$1=parallel_pnac

$1=parallel_enac
$1=parallel_penac

$1=delV_vel
$1=delV_pvel

$1=delV_nac

$1=delV_diff

Reflection of trajectory after frustrated hop.

No reflection.

Full velocity vector is reflected.

Only the velocity component in the direction of vibrational
motion is reflected.

Only the velocity component in the direction of
(V| 3/ OR|Yp) is reflected.

Only the velocity component in the direction of AVE is re-
flected.

Only the velocity component in the direction of projected
(V| 9/ OR|) is reflected. The projection ensures conserva-
tion of nuclear orbital angular momentum and center of mass
motion[76]

Only the velocity component in the direction of effective nona-
diabatic coupling vector is reflected.[75]

Only the velocity component in the direction of projected
effective nonadiabatic coupling vector is reflected.[75, 76]
Full velocity vector is reflected according to VV criteria.[95]
Only the velocity component in the direction of vibrational
motion is reflected according to VV criteria.

Only the velocity component in the direction of
(Y| 3/ OR|) is reflected according to VV criteria.

Only the velocity component in the direction of AVE is re-

flected according to VV criteria.

Continued on next page

47

SHARC Manual 4 Input files | 4.1 Main input file
Table 4.1 - Continued from previous page
Keyword Arguments Explanation

$1=delV_pnac
$1=delV_enac

$1=delV_penac

Only the velocity component in the direction of projected
(Y| 9/ OR|) is reflected according to VV criteria.

Only the velocity component in the direction of effective nona-
diabatic coupling vector is reflected according to VV criteria.
Only the velocity component in the direction of projected
effective nonadiabatic coupling vector is reflected according

to VV criteria.

hopping_procedure

string

$1=off
$1=sharc,standard
$1=gfsh

Method for hopping probabilities.
No hops (same as no_hops).

Standard SHARC hopping probabilities.
Global flux SH hopping probabilities.[51]

no_hops

Disables surface hopping.

no_hops takes precedence over hopping_procedure.

force_hop_to_gs float Activates forced hops to lowest state.
hop is forced if lowest-active energy difference < $1 (in eV)
time_uncertainty Employ fewest switches with time uncertainty al-
gorithm in TSH to reduce the number of frustrated
hops.
notime_uncertainty No time uncertainty used.
decoherence_param float Value « in EDC (in Hartree).
0.1 $1> 0.0
atommask string Activates masking of atoms (for EDC,
parallel_vel).
$1=none No atoms are masked.
$1=external Atom mask is read from external file.
— Self-consistent potential methods setting keywords —
neom string Methods to control the direction of the nonadia-
batic force in nuclear equation of motion for SCP
methods.
$1=ddr,nacdr Use full nonadiabatic coupling vector. This is the default when
coupling=ddr.
$l=gdiﬁ Use effective nonadiabatic coupling vector, which is a combi-
nation of difference gradient vector and velocity vector. This
is the default when coupling=overlap or coupling=ktdc.
neom_rep string Representations used to propagate nuclear equa-
tion of motion for SCP methods.
$1 =diag Use diagonal representation.
$1=MCH Uses MCH representation.
pointer_basis string Methods to control the pointer basis employed in
decay-of-mixing algorithms. We suggest use the
default option.
$1=diag Use the diagonal basis as the pointer basis.
$1=MCH Use the MCH basis as the pointer basis.
switching_procedure string Methods for scheme used to switch the pointer
state in decay-of-mixing algorithms.
$1=csdm Using coherent switching with decay of mixing. [30, 31]
$1=scdm Using self-consistent decay of mixing. [40]
$1=ndm Using natural decay of mixing. [96]
$1=off Surface switching is off.

nac_projection

Applies projection on the direction of the nona-
diabatic force in nuclear equation of motion for
SCP methods.

This is the default option that ensures conservation of nuclear
orbital angular momentum and center of mass motion.

Continued on next page

48

SHARC Manual 4 Input files | 4.1 Main input file
Table 4.1 - Continued from previous page
Keyword Arguments Explanation
nonac_projection Do not apply projection on the direction of nona-
diabatic force in nuclear equation of motion for
SCP methods.
decotime_method string Method to control computation of decoherence
time.
$1=csdm computed with CSDM method [30, 31].
$1=scdm computed with SCDM method [40].
$1=edc computed with EDC (energy based decoherence) method [94].
$1=sd computed with SD (stochastic decoherence) method [97].
decoherence_param_alpha float Value « in decay of mixing decoherence time (in
Hartreee).
0.1 $1> 0.0
decoherence_param_beta float Value f in decay of mixing decoherence time (unit-
less).
1.0 $1>0.0
— Constraints —
rattle Enables bond length constraints through RATTLE.
norattle No RATTLE.
norattle takes precedence.
rattletolerance float Convergence criterion for RATTLE.
le-7 $1> 0.0
freeze various Specifies info for freezing atoms.
$1=none All atoms are propagated.
$1=last $2=n Last n atoms are not propagated.

$1=atoms $2=at; at, ...
$1=file $2="frozen"

Atoms with index aty, ats, ...are not propagated.
Read information from file (Section 4.8).

restrictive_potential string Activate restrictive potentials.
$1=none No restrictive potential is used.
$1=droplet Restricted droplet potential is used.
$1=tether Tethering of atom(s) is employed.
$1=droplet_tether Both restrictive potential and tethering of atom(s).
restricted_droplet_force float Sets force for restricted droplet potential.
$1 Force constant in i—’z’
0
restricted_droplet_radius float Sets radius of sphere for restricted droplet poten-
tial beyond this sphere.
12 Radius in A.
restricted_droplet_atoms string Specifies atoms to be affected by the restrictive
potential.
$1=all All atoms are affected.
$1=noH H atoms are not affected.
$1=list Look up atoms from keyword

$1=file $2=("droplet")

restricted_droplet_atoms_list.

Infos about which atoms are affected is set in spec-
ified file. This file is required to have nyoms lines
specifying for each atom whether to apply the
potential: T (affected) or F (not affected).

restricted_droplet_atoms_list

list of integers

Lists atoms to be not affected by the potential.

$1=at; at; ... Atoms with atom index aty, ats, ...not affected.
tethering_force float Force constant for tethering of atom.
$1 Force constant in i—’z‘
0
tethering_radius float Sets radius inside which tethering potential is zero.
$1 Radius in A.

tether_at

(list of) integers

Selects indices for tethering.

Continued on next page

49

SHARC Manual

4 Input files | 4.1 Main input file

Table 4.1 - Continued from previous page

Keyword Arguments Explanation
$1=(at; at, ...) Atoms with indices aty, at, ...are to be tethered.
tethering_position list of floats Sets position to which selected atoms are tethered.
$1= Xtether x-coordinate of tethering center in A.
$2= Ytether y-coordinate of tethering center in A.
$3= Ziether z-coordinate of tethering center in A.

Center of mass of tethered atoms.

— Energy control keywords —

ezero float Energy shift for Hamiltonian diagonal elements
(Hartree).
0.0 Is not determined automatically!
scaling float Scaling factor for Hamiltonian matrix and gradi-
ents.
1.0 0. <$1
soc_scaling float Scaling factor for spin-orbit coupling.
1.0 0. <$1
dampeddyn float Scaling factor for kinetic energy at each time step.
1.0 0. <$1< 1.
— Thermostat keywords —
thermostat string Activates thermostat.
$1=none No thermostat is used.
$1=langevin Langevin thermostat is used.
rngseed_thermostat integer Seed for the thermostat random number genera-
tor.
$1=rngseed Same as used for surface hopping.
norestart_thermostat_random Use only when want to restart with seed given in
restart file without recovering end of last random
number sequence.
thermostatregions various Specifies info for thermostatting regions.
$1=one Same thermostat conditions for whole system (1
region only).
$1=first $2=n Thermostat with 2 regions where first n atoms
belong to region 1.
$1=atomlist $2=r; r5 ... Thermostat where region number (integer starting
from 1) is defined here for each atom. (Number of
regions is taken as maximum.)
$1=file $2="file" Thermostat settings are taken from the file (default
"thermostat_setting"), see Section 4.10.
temperature list of floats Sets the temperatures in K for each region.
$n=293.15 Temperature for region n (provide as many num-
bers as regions).
thermostat_const list of floats Sets additional values required by the thermostat.
$n Depends on thermostat. For the Langevin ther-

mostat, provide one friction coefficient in fs~! per
region.

remove_trans_rot

Removes the translational and rotational compo-
nents of the entire system in each time step.

— Gradient and NAC selection keywords —

grad_select

grad_all

Only some gradients are calculated at every time
step.

All gradients are calculated at every time step
(Alias: nograd_select).

grad_all takes precedence.

Continued on next page

50

SHARC Manual 4 Input files | 4.1 Main input file
Table 4.1 - Continued from previous page
Keyword Arguments Explanation
nac_select Only some (i, |9/dR|{/g) are calculated at every
time step.
nac_all All (Y, |0/0R|yg) are calculated at every time step
(Alias: nonac_select).
nac_all takes precedence.
eselect float Parameter for selection of gradients and NACs (in
ev).
0.5eV

select_directly

noselect_directly

Do not do a second QM calculation for gradients
and NACs.

Do a second QM calculation for gradients and
NACs.

— Phase tracking keywords —

track_phase
notrack_phase

Track the phase of the transformation matrix U.
No phase tracking of U (can provide very large
speedups in pysharc, but check whether results
are affected).

phases_from_interface
nophases_from_interface

Request phase information from interface.
Try to recover phase information from QM data.

phases_at_zero

Request phase from interface at t = 0.

— Property computation keywords —

spinorbit
nospinorbit

Include spin-orbit couplings into the Hamiltonian.
Neglect spin-orbit couplings.

dipole_gradient

nodipole_gradient

Include dipole moments derivatives in the gradi-
ents.
Neglect dipole moments derivatives.

ionization
noionization

Calculate ionization probabilities on-the-fly.
No ionization probabilities.

ionization_step integer Calculate ionization probabilities every $1 time
step.

1 By default calculated every time step (if ionization).
theodore Calculate wavefunction descriptors on-the-fly.
notheodore No wavefunction descriptors.
theodore_step integer Calculate wavefunction descriptors every $1 time

step.

1 By default calculated every time step (if theodore).
n_propertyld integer Allocate for that many 1D properties.

1
n_property2d integer Allocate for that many 2D properties.

1

— Output control keywords —

write_grad
nowrite_grad

Writes gradients to output.dat.

write_nacdr
nowrite_nacdr

Writes NACs to output.dat.

write_overlap
nowrite_overlap

Writes overlaps to output.dat.

Not written if not requested.

only_store_overlaps

Enables computation and storage of overlaps even
when not required by the simulation (e.g., to dia-
batize populations).

write_propertyld
nowrite_propertyld

on if theodore

Writes 1D properties to output.dat.

write_property2d

on if ionization

Writes 2D properties to output.dat.

Continued on next page

51

SHARC Manual 4 Input files | 4.1 Main input file

Table 4.1 - Continued from previous page

Keyword Arguments Explanation
nowrite_property2d
output_dat_steps integer (1, 3, or 5 numbers) | Determines at which steps sharc.x writes to
output.dat.
$1 (1) Stride for writing to output.dat (default every step).
$2 (not given) Step at which stride is switched to $3.
$3 (not given) New stride applied if step > $2.
$4 (not given) Step at which stride is switched to $5.
$5 (not given) New stride applied if step > $4.
Always give 1, 3, or 5 arguments.
output_dat_steps_nuc integer (1, 3, or 5 numbers) | If output_format netcdf_separate_nuclei,
then this controls the steps at which nuclear data
is written.
Works the same as output_dat_steps.
output_format string Format of output.dat.
$1=ascii as documented in Section 5.3.
$1=netcdf as documented in Section 5.4. Also deactivates writing of

restart files (except last step) and output.xyz.
$1=netcdf_separate_nuclei as netcdf and as documented in Section 5.5.

4.1.3 Detailed Description of the Keywords

Printlevel The printlevel keyword controls the verbosity of the log file. The data output file (output.dat) and the
listing file (output.lis) are not affected by the print level. The print levels are described in section 5.1.

Restart There are two keywords controlling trajectory restarting. The keyword restart enables restarting, while
norestart disables restart. If both keywords are present, norestart takes precedence. The default (none of the
keywords present) is no restart.

When restarting, all control variables are read from the restart file instead of the input file. The only exceptions are
nsteps and tmax. In this way, a trajectory which ran for the full simulation time can easily be restarted to extend the
simulation time.

Note that none of the auxiliary scripts adds the restart keyword to the input file. The user has to manually add the
restart file to the input files of the relevant trajectories.

In SHARC4, the interfaces employ a new way of tracking their interface-specific restart files. Therefore, the SHARC3
keywords restart_rerun_last_qm_step and restart_goto_new_gm_step are not needed anymore and were removed.
The interfaces can now automatically identify the last successful previous step and restart accordingly. Thus, users do
not need to distinguish anymore whether they restart a trajectory after a non-graceful crash/kill of the simulation (e.g.,
due to queueing system time limits) or a after the simulation was gracefully stopped (e.g., after reaching tmax/nsteps,
after using the STOP file, or after using the killafter mechanism).

In SHARC4, the keywords write_restart_files and nowrite_restart_files were added. The default is to write
restart files, unless the NetCDF output_format is chosen. With NetCDF output, restart files are generally not written,
except at the last time steps, where write_restart_files and nowrite_restart_files take control. If both keywords
are present, write_restart_files takes precendence.

Another new keyword in SHARC4 is retain_restart_files. This keyword is passed from the driver to the interfaces
and controls how many interface-specific restart files the interfaces will keep in storage. A sensible behavior of ab
initio interfaces would be to always retain the files from the previous time step, e.g., for orbital restart. If wave function
overlaps are used, then the files from the previous time step must be retained. The retain_restart_files is mostly
intended to store additional restart files, e.g., to archive orbital files for all time steps.

RNG Seed The RNG seed is used to initialize the random number generator, which provides the random numbers for
the surface hopping procedure (and the AFSSH decoherence scheme). For details how the seed is used internally, see
section 8.26.

52

SHARC Manual 4 Input files | 4.1 Main input file

Note that in the case of a restart, the random number generator is seeded normally, and then the appropriate number of
random numbers is drawn so that the random number sequence is consistent.

Compatibility Mode With this keyword, one can activate a compatibility mode that allows reproducing results of
older versions of SHARC. A value of 0 disables compatibility mode.

Currently, the only other option is a value of 1. In this mode, sharc.x draws only one random number for each step,
like it was the case in SHARC 1.0 (from SHARC 2.0, it draws two random numbers per step, one for hopping and one for
decoherence schemes). This compatibility mode cannot be combined with the A-FSSH decoherence correction.

Geometry Input The initial geometry must be given in a second file in the Z input format also used by CoLumBUS.
The default name for this file is geom. The geometry filename can be given in the input file with the geomfile keyword.
Note that the filename has to be enclosed in single or double quotes. See section 4.2 for more details.

Velocity Input Using the veloc keyword, the initial velocities can be either set to zero, determined randomly or read
from a file. Random determination of the velocities is such that each atom has the same kinetic energy, which must be
specified after veloc random in units of eV. Determination of the random velocities is detailed in 8.22. Note that after
the initial velocities are generated, the RNG is reseeded (i.e., the sequence of random numbers in the surface hopping
procedure is independent of whether random initial velocities are used).

Alternatively, the initial velocities can be read from a file. The default velocity filename is veloc, but the filename can
be specified with the velocfile keyword. Note that the filename has to be enclosed in single or double quotes. The
file must contain the Cartesian components of the velocity for each atom on a new line, in the same order as in the
geomety file. The velocity is interpreted in terms of atomic units (bohr/atu). See section 4.3 for more details.

Number of States and Active States The keyword nstates controls how many states are taken into account in the
dynamics. The keyword arguments specify the number of singlet, doublet, triplet, etc. states. There is no hard-coded
maximum multiplicity in the SHARC code, however, some interfaces may restrict the maximum multiplicity.

Using the actstates keyword, the dynamics can be restricted to some lowest states in each multiplicity. For each
multiplicity, the number of active states must not be larger than the number of states. All couplings between the active
states and the frozen states are deleted. These couplings include off-diagonal elements in the HMH matrix, in the
overlap matrix, and in the matrix containing the nonadiabatic couplings. Freezing states can be useful if transient
absorption spectra are to be calculated without increasing computational cost due to the large number of states.

Note that the initial state must not be frozen.

Charges of States In SHARc4, the charge of the different electronic states has been promoted from an interface-
private, optional parameter to a compulsory parameter that the driver is aware of. This is primarily to prepare for
multi-fragment calculations including charge transfer. This change makes it necessary to specify the charge for each
multiplicity in the SHARC input file. Note that all states of a given multiplicity are required to have the same charge.
Different multiplicities can and will have different charges.

Initial State The initial state can be given either in MCH or diagonal representation. The keyword state is followed
by an integer specifying the initial state and either the string mch or diag. For the MCH representations, states are
enumerated according to the canonical state ordering, see 8.28. The diagonal states are ordered according to energy.
Note that the initial state must be active.

If the initial state is given in the MCH basis but the dynamics is carried out in the diagonal basis, determination of the
initial diagonal state is carried out after the initial QM calculation.

Initial Coefficients The initial coefficients can be determined automatically from the initial state, using coeff auto
in the input file. If the initial state is given in the diagonal representation as i, the initial coefficients are cj.liag =4 If
the initial state is, however, given in the MCH representation, then clj\./ICH = §;; and the determination of cdiag = yFMCH
is carried out after the initial QM calculation. Currently, coeff auto is always used by the automatic setup scripts.

Besides automatic determination, the initial coefficients can be read from a file. The default filename is coeff, but
the filename can be given with the keyword coefffile. Note that the filename has to be enclosed in single or double

53

http://www.univie.ac.at/columbus/docs_COL70/documentation_main.html

SHARC Manual 4 Input files | 4.1 Main input file

quotes. The file must contain the real and imaginary part of the initial coefficients, one line per state with no blank
lines inbetween. These coefficients are interpreted to be in the same representation as the initial state, i.e. the state
keyword influences the initial coefficients. For details on the file format, see section 4.4. Note that the setup scripts
currently cannot setup trajectories with coeff external, so this can be considered an expert option.

Laser Input The keyword laser controls whether a laser field is included in the dynamics (influencing the coefficient
propagation and the energies/gradients by means of the Stark effect).

The input of an external laser field uses the file laser. This file is specified in 4.5.

In order to detect laser-induced hops, SHARC compares the instantaneous central laser energy with the energy gap
between the old and new states. If the difference between the laser energy and the energy gap is smaller than the laser
bandwidth (given with the laserwidth keyword), the hop is classified as laser-induced. Those hops are never frustrated
and the kinetic energy is not scaled to preserve total energy (instead, the kinetic energy is preserved).

Simulation Time step The keyword stepsize controls the length of a time step (in fs) for the dynamics. The nuclear
motion is integrated using the Velocity-Verlet algorithm with this time step. Surface hopping is performed once per time
step and 1-3 quantum chemistry calculations are performed per time step (depending on the selection schedule). Each
time step is divided in nsubsteps substeps for the integration of the electronic equation-of-motion. Since integration
is performed in the MCH representation, the default of 25 substeps is usually sufficient, even if very small potential
couplings are encountered. A larger number of substeps might be necessary if high-frequency laser fields are included
or if the energy shift (ezero) is not well-chosen.

Simulation Time The keyword nsteps controls the total length of the simulation. The total simulation time is
nsteps times stepsize. nsteps does not include the initial quantum chemistry calculation. Instead of the number of
steps, the total simulation time can be given directly (in fs) using the keyword tmax. In this case, nsteps is calculated
as tmax divided by stepsize. If both keywords (nsteps and tmax) are present, nsteps is used. All setup scripts will
generally use the tmax keyword.

Using the keyword killafter, the dynamics can be terminated before the full simulation time. killafter specifies
(in fs) the time the trajectory can move in the lowest-energy state before the simulation is terminated. By default,
simulations always run to the full simulation time and are not terminated prematurely.

Integrator for Nuclear Equation of Motion The keyword integrator controls the integrator for nuclear equation
of motion used in SHARC. There are two options, integrator fvv uses the fixed time step velocity Verlet algorithm,
which is the default. The time step in fixed time step velocity Verlet is set by keyword stepsize.

Alternatively, one can use integrator avv, which turns on the adaptive time step velocity Verlet algorithm. The initial
time step in adaptive velocity Verlet algorithm is set by keyword stepsize. In adaptive velocity Verlet, the algorithm
will check the total energy conservation of the trajectory at successive time steps. If the energy difference is above the
threshold, the timestep will be reduced to half, and if the energy difference is less than one fifth of the threshold, the
timestep will be doubled. The threshold can be set by keyword convthre, the default is 1e-04 €V. One can also set up
the minimum and maximum allowed stepsize in adaptive velocity Verlet. This is achieved by keyword stepsize_min
and stepsize_max. The default values for stepsize_min and stepsize_max are stepsize/16 and stepsize*2 respectively.
Alternatively, one can set up the minimum or maximum stepsize in an exponential form to base 2. This is done by
calling keywords stepsize_min_exp and stepsize_max_exp. The default values for these two keywords are -4 and
1, respectively. For example, when setting stepszie_min_exp -4, the minimum stepsize is stepsize/(27%). Setting up
keywords stepsize_min_exp and stepsize_max_exp will overwrite keywords stepsize_min and stepsize_max.

If the adaptive time step is used, the output files will contain data at the computed times, which might not be a regular
grid of time steps. This can lead to a swarm of trajectories that do not have data at the same time steps. To enable
ensemble analysis, in this case data_extractor.x will automatically perform linear interpolation of the results. It will
write all output files twice, once with the original time steps (file names contain original) and once interpolated to
multiples of the original stepsize.

Note that for the SHARC4.0 release, adaptive time steps are not available when the compilation was done with pysharc
support.

54

SHARC Manual 4 Input files | 4.1 Main input file

Dynamics Method Starting from SHARC3.0, one is able to perform two categories of nonadiabatic dynamics algo-
rithms, namely trajectory surface hopping, and self-consistent potential methods. The dynamics employed can be
set up by keyword method. Using keyword method tsh enables trajectory surface hopping, and method scp enables
self-consistent potential methods.

Note that for the SHARC3.0 release, self-consistent potential methods are not available when the compilation was done
with pysharc support.

Description of Non-adiabatic Coupling The code allows propagating the electronic wave function using four
different quantities describing nonadiabatic effects, see 8.33. The keyword coupling controls which of these quantities is
requested from the QM interfaces and used in the propagation. The first option is nacdr, which requires the nonadiabatic
coupling vectors (1/|9/dR|1/g). For the wave function propagation, the scalar product of these vectors and the nuclear
velocity is calculated to obtain the matrix (1,|9/dt|{). During the propagation, this matrix is interpolated linearly
within each classical time step. Currently, only few SHARC interfaces can provide these couplings.

Alternatively, one can directly request the matrix elements (,|3/dt|}/3), which can be used for the propagation. The
corresponding argument to coupling is nacdt. In this case, the matrix is taken as constant throughout each classical
time step. Currently, none of the interfaces in SHARC can deliver these couplings, because they are computed via
overlaps, and if overlaps are known it is preferable to use local diabatization.

The third possibility is the use of the overlap matrix, requested with coupling overlaps (this is the default). The
overlap matrix is used subsequently in the local diabatization algorithm for the wave function propagation. Currently,
all SHARC interfaces can provide these couplings.

The fourth possibility is to use the curvature driven method to approximate time derivative couplings (coupling ktdc).
In curvature driven methods, the time derivative coupling is completely approximated by knowing the curvatures
of the potential energy surfaces. And therefore, can be interfaced with electronic structure theories for which the
nonadiabatic coupling vector is not available, or the wave function is not defined - and therefore one can not compute
overlap integrals from electronic structure theory. Therefore, curvature driven methods can be interfaced with any
electronic structure theory that provides energies and gradients.

Method to Compute Curvature Approximated Time Derivative Coupling If one uses coupling ktdc, there
are two possible ways to compute time derivative coupling (TDC). One can compute the curvature of potential energy
surface with respect to time from either the second order finite difference of energy along time by calling ktdc_method
energy; or from the first order finite difference of the dot product of gradients and velocity vector ktdc_method
gradient, see 8.34.

Electronic Equation of Motion Propagator One can control the electronic propagator by calling keyword eeom,
see 8.33. There are four options, eeom ci does not interpolate the time derivative coupling during the substep propaga-
tion. eeom 1i linearly interpolates the time derivative coupling during the substep propagation. eeom 1d uses the local
diabatization. eeom npi uses a norm preserving interpolation propagator.[75, 93] We suggest the users use the default
propagator, which depends on the used coupling quantity.

Correction to the Diagonal Gradients As detailed in 8.11, transformation of the diagonal representation requires
contributions from the nonadiabatic coupling vectors or time derivative couplings. The two correction schemes are
called nuclear-gradient-tensor scheme and time-derivative-matrix scheme. The nuclear-gradient-tensor scheme corrects
the gradients with nonadiabatic coupling vectors. In this case SHARC will request the calculation of the nonadiabatic
coupling vectors, even if they are not used in the wave function propagation. The time-derivative-matrix scheme
corrects the gradients with the time derivative couplings. Using gradcorrect, gradcorrect ngt, or gradcorrect nac
enables nuclear-gradient-tensor scheme; using gradcorrect tdm enables time-derivative-matrix scheme. In order to
explicitly turn off this gradient correction, use the nogradcorrect keyword.

Method to Compute Time-Derivative-Matrix Scheme This approach only applies when one uses gradcorrect
tdm. There are two ways to compute time derivatives of potential energies in the diagonal basis in the TDM scheme. One
can compute the time derivative of potential energies in the diagonal basis from transformation of the time derivative
matrix in the MCH basis. This computation is enabled by using tmd_method gradient. In this approach, the time
derivative of potential energies in the MCH basis are computed from the dot product between the nuclear gradient
vector and the velocity vector. This is the default option for coupling ddr or coupling overlap.

55

SHARC Manual 4 Input files | 4.1 Main input file

Alternatively, one can compute the time derivative of potential energies in the diagonal basis from finite differences.
This approach is more accurate for curvature driven methods because in curvature-driven algorithms we do not have
ab initio time derivative couplings. This is the default option for coupling ktdc

Decoherence Correction Scheme There are four options for the decoherence correction (see 8.7) in SHARc, which
can be selected with the decoherence_scheme keyword.

With the default decoherence_scheme none, no decoherence correction is applied. The energy-difference based
decoherence (EDC) scheme of Granucci et al. [94] can be activated with decoherence_scheme edc. The keyword
decoherence_param can be used to change the relevant parameter « (see 8.7). The default is 0.1 Hartree, which is the
value recommended by Granucci et al. [94]. Notice EDC scheme only applies to TSH methods. Alternatively, the AFSSH
(augmented fewest-switches surface hopping) scheme of Jain et al. [39] can be employed, using decoherence_scheme
afssh. This scheme does not use any parameters, so the keyword decoherence_param will have no effect. Note that in
any case, the decoherence correction is applied to the states in the representation chosen with the surf keyword.

For self-consistent potential methods, the decay of mixing decoherence scheme of Truhlar et al.[30, 31, 40] can be acti-
vated with decoherence_scheme dom. In combination with method scp, it enables either CSDM or SCDM methods. The
decoherence time in CSDM or SCDM uses energy based decoherence time. The keywords decoherence_param_alpha
and decoherence_param_beta can be used to change the relevant parameters « and § (see 8.7). The default is 0.1
Hartree for « and 1 for .

Note that for the SHARC3.0 release, self-consistent potential methods and decay of mixing decoherence are not available
when the compilation was done with pysharc support.

The keywords decoherence (activates EDC decoherence) and nodecoherence are present for backwards compatibility.

Surface Treatment The keyword surf controls whether the dynamics runs on diagonal potential energy surfaces
(which makes it a SHARC simulation) or on the MCH PESs (which corresponds to a spin-diabatic [26] or FISH [25]
simulation, or a regular surface hopping simulation). Internally, dynamics on the MCH potentials is conducted by
setting the U matrix equal to the unity matrix at each time step.

Adjustment of the Kinetic Energy The keyword ekincorrect controls how the kinetic energy is adjusted after
a surface hop to preserve total energy. ekincorrect none deactivates the adjustment, so that the total energy is not
preserved after a hop. Using this option, jumps can never be frustrated and are always performed according to the
hopping probabilities.

Using ekincorrect parallel_vel, the kinetic energy is adjusted by simply rescaling the nuclear velocities so that the
new kinetic energy is Eior — Epot. Jumps are frustrated if the new potential energy would exceed the total energy.

Using ekincorrect parallel_nac, the kinetic energy is adjusted by rescaling the component of the nuclear velocities
parallel to the nonadiabatic coupling vector between the old and new state. The hop is frustrated if there is not enough
kinetic energy in this direction to conserve total energy. Note that ekincorrect parallel_nac implies the calculation
of the nonadiabatic coupling vector, even if they are not used for the wave function propagation. Note that using
the nonadiabatic coupling vector causes non-conservation of nuclear orbital angular momentum, and center of mass
motion.

Using ekincorrect parallel_diff, the kinetic energy is adjusted by rescaling the component of the nuclear velocities
parallel to the difference gradient vector between the old and new state. The hop is frustrated if there is not enough
kinetic energy in this direction to conserve total energy.

Using ekincorrect parallel_pnac, the kinetic energy is adjusted by rescaling the component of the nuclear velocities
parallel to the projected nonadiabatic coupling vector between the old and new state. The hop is frustrated if there is
not enough kinetic energy in this direction to conserve total energy. Projected nonadiabatic coupling vector ensures
conservation of nuclear orbital angular momentum and center of mass motion.

Using ekincorrect parallel_enac, the kinetic energy is adjusted by rescaling the component of the nuclear velocities
parallel to the effective nonadiabatic coupling vector between the old and new state. The hop is frustrated if there is not
enough kinetic energy in this direction to conserve total energy. Notice that effective nonadiabatic coupling vector also
destroys the conservation of nuclear orbital angular momentum and center of mass motion.

Using ekincorrect parallel_penac, the kinetic energy is adjusted by rescaling the component of the nuclear velocities
parallel to the projected effective nonadiabatic coupling vector between the old and new state. The hop is frustrated if
there is not enough kinetic energy in this direction to conserve total energy. Using the projection conserves angular
momentum and center of mass motion.

56

SHARC Manual 4 Input files | 4.1 Main input file

Frustrated Hops The keyword reflect_frustrated furthermore controls whether the velocities are inverted after a
frustrated hop. With reflect_frustrated none (the default), after a frustrated hop, the velocity vector is not modified.

Using reflect_frustrated parallel_vel, the full velocity vector is inverted when a frustrated hop is encountered.

With the third option, reflect_frustrated parallel_nac, only the velocity component parallel to the nonadiabatic
coupling vector between the active and frustrated states is inverted. This implies the calculation of the nonadiabatic
coupling vector, even if they are not used for the wave function propagation. Note that reflect the velocity along the
direction of nonadiabatic coupling vector will cause non-conservation of nuclear orbital angular momentum and center
of mass motion.

With reflect_frustrated parallel_diff, only the velocity component parallel to the gradient difference vector
between the active and frustrated states is inverted.

With reflect_frustrated parallel_pnac, only the velocity component parallel to the projected nonadiabatic coupling
vector between the active and frustrated states is inverted. Using projection operator conserves nuclear orbital angular
momentum and center of mass motion.

With reflect_frustrated parallel_enac, only the velocity component parallel to the effective nonadiabatic coupling
vector between the active and frustrated states is inverted.

With reflect_frustrated parallel_penac, only the velocity component parallel to the projected effective nonadi-
abatic coupling vector between the active and frustrated states is inverted. Using projected effective nonadiabatic
coupling vector ensures conservation of angular momentum.

Alternatively, one can employ the VV criteria by Jasper and Truhlar.[95] This is enabled by calling respectively
reflect_frustrated delV_vel, reflect_frustrated delV_pvel, reflect_frusrated delV_nac, reflect_frustrated
delV_diff, reflect_frustrated delV_pnac, reflect_frustrated delV_enac,and reflect_frustrated delV_penac
for velocity component parallel to velocity vector, projected velocity vector, nonadiabatic coupling vector, gradient
difference, projected nonadiabatic coupling vector, efffective nonadiabatic coupling vector, and projected effective
nonadiabatic coupling vector.

Surface Hopping Scheme There are three options for the computation of the hopping probabilities (see 8.29) in
SHARCc, which can be selected with the hopping_procedure keyword.

Using hopping_procedure off, surface hopping will be disabled, such that the active state (in the representation
chosen with the surf keyword) will never change. With the default, hopping_procedure sharc, the standard hopping
probability equation from Ref. [50] will be used. Alternatively, one can use the global flux surface hopping scheme [51],
which might be advantageous in super-exchange situations.

One can also turn off surface hopping with the no_hops keyword.

Forced Hops to Ground State With this option, one can force SHARC to hop from the active to the lowest state if
the energy gap between these two states falls below a certain threshold. The threshold is given as argument to the
force_hop_to_gs keyword (in €V). This option is useful for single-reference methods that fail to converge if the ground
state-excited state energy gap becomes too small. ¢ Note that this option forces hops from any higher-lying state to the
lowest, independent whether there are other states between the active and the lowest state. Also note that once in the
lowest state, hopping is completely forbidden if this option is active.

Surface hopping with time uncertainty The time uncertainty algorithm is the same as the Tully’s fewest switches
algorithm except when a frustrated hop is encountered.[78, 79] When a frustrated hop is encountered, the trajectory
surface hopping with fewest switches and time uncertainty (TSH-FSTU) method effectively looks for nearby regions
where a hop can be successful. Then, if a such a region is found, the TSH-FSTU method allows a nonlocal hop. One
can interpret this as the FSTU algorithm borrowing some energy along the timeline of the trajectory according to
time-energy uncertainty principle. The FSTU algorithm can greatly reduce the number of frustrated hops. The time
uncertainty option can be turn on by using keyword time_uncertainty

Note that for the SHARC3.0 release, surface hopping with time uncertainty is not available when the compilation was
done with pysharc support.

Atom Masking Some of the above surface hopping settings might not be fully size consistent: (i) in ekincorrect
parallel_vel, all atoms are uniformly accelerated/slowed during velocity rescaling; (ii) in reflect_frustrated
parallel_vel, the velocities of all atoms are inverted; (iii) with decoherence_scheme edc, the kinetic energy of all

57

SHARC Manual 4 Input files | 4.1 Main input file

atoms determines the decoherence rate. In large systems (e.g., in solution), these effects might be unrealistic, because,
e.g., a surface hop in the chromophore should not uniformly slow down all water molecules.

The atommask keyword can then be used to exclude certain atoms from the three mentioned procedures. With atommask
external, the list of masked and active atoms is read from the file specified with the atommaskfile keyword (default
"atommask"). The format of this file is described in section 4.6. With the other possible option, atommask none (the
default), all atoms are considered for these procedures.

Note that the atommask keyword has no effect on ekincorrect parallel_nac, reflect_frustrated parallel_nac,
and decoherence_scheme afssh, because these procedures are size consistent by themselves.

Nonadiabatic Force Direction in SCP Methods In generalized self-consistent potential method, the nuclear
equation of motion involves two terms, the adiabatic force and nonadiabatic force, see 8.30. The keyword neom
controls the direction of the nonadiabatic force. There are two options, neom ddr or neom nacdr uses the nonadiabatic
coupling vector as the direction for nonadiabatic force. This reduces the generalized semiclassical Ehrenfest to original
semiclassical Ehrenfest. Alternatively, one can use neom gdiff where the direction of nonadiabatic force is set to be
effective nonadiabatic coupling vector, see 8.31.

Representation for nuclear equation of motion in SCP methods One can actually show that for SCP methods,
nuclear equation of motion should be invariant with respect to the choice of representation. However, when decoherence
is included, such invariance may not be rigorously true anymore. Therefore, one can use either diagonal or MCH
representation to propagate nuclear equation of motion. This can be achieved by keyword neom_rep. Currently, we
suggest users to use diagonal representation by using neom_rep diag, which is also the default.

Pointer Basis The keyword pointer_basis controls the representation of the pointer state in the decay of mixing
algorithm (self-consistent potential method),[98] i.e., whether decoherence converges towards a state in the diagonal
basis or MCH basis. It is recommended to use the diagonal representation by setting pointer_basis diag, and this is
the default option.

Surface Switching Procedure Keyword switching_procedure only applies to self-consistent potential methods.
This keyword controls how pointer state is switched in decay of mixing algorithms. switching_procedure csdm turns
on coherent switching with decay of mixing (CSDM). In CSDM switching procedure, one propagates two populations,
namely true electronic population which involves decay of mixing, and coherent electronic population which only
propagates coherently. The coherent population will be synchronized to the true electronic population for every
complete passage of a strong interaction region. This procedure has been shown to be the most accurate way to compute
pointer state switching probability.[30, 99]

Alternatively, one can use an older version of decay of mixing algorithm called self-consistent decay of mixing (SCDM),
which can be enabled by using switching_procedure scdm. Similarly as in CSDM, one propagates both true electronic
population and coherent electronic population. The difference between CSDM and SCDM is that in SCDM one does not
synchronize the coherent electronic population to true population. This has been shown to be accurate in many cases
but not as accurate as CSDM.

NAC projection When using NACs computed from electronic structure software in nuclear equation of motion of the
SCP method, it does not preserve conservation of angular momentum and center of mass motion. The projection operator
option (nac_projection) removes translational and rotational components in a vector. Therefore, it is suggested that
one should always use projected NACs or projected effective NACs in nuclear EOM.[76]

The keywords nac_projection and nonac_projection are used to control if the projection should be used for terms
involve NACs in SCP methods. If nac_projection is used, then the nonadiabatic force direction in SCP methods set by
keyword neom will be projected. Therefore, using nac_projection is always suggested and is set to default.

For trajectory surface hopping, the only place that may exist a term associated with NACs are in momendum adjustment
after a hop or momentum reversal after a frustrated hop. Using projected velocity vector, projected NACs or projected
effective NACs can be set up using the keywords ekincorrect and reflect_frustrated.

58

SHARC Manual 4 Input files | 4.1 Main input file

Decoherence time parameters for Decay of Mixing algorithms The decoherence time for decay of mixing algo-
rithms can be selected with decotime_method. Similarly as in EDC, decay of mixing uses an energy-based decoherence
time.[30, 40] Selecting decotime_method edc two parameters in energy-based decoherence time can be changed, see 8.7.
The two parameters can be set by keywords decoherence_param_alpha and decoherence_param_beta. Default values
for these two parameters are 0.1 Hartree and 1.0. These are also the suggested values in the original publicaton.[30]
Alternatively one can use decotime_method scdm or decotime_method scdm to select decoherence time as defined in
scdm and csdm methods (see 8.30).

Bond length constraints with RATTLE One can use the RATTLE algorithm to constrain the length of some bonds
(or generally, interatomic distances) to some fixed value. The rattle keyword can be used to activate this option.

Activating rattle requires providing a file with the list of atom pairs whose distance should be fixed. The format for
this file is described in section 4.7.

One can also use the rattletolerance keyword to modify the convergence criterion of the RATTLE linear equation
solver. However, for most purposes, the default should be acceptable.

Freezing atoms Using the freeze keyword, one can constrain a set of atoms to their initial Cartesian positions.
This is implemented by skipping these atoms in the velocity Verlet and thermostat routines, however, from a physical
standpoint this is equivalent to giving them infinite masses and zero initial velocities.

The freeze keyword can be used in different ways. If the first argument is none, no atoms are frozen and dynamics is
occurring normally. This is the default.

If the first argument is last, then SHARC expects a second argument, which is an integer specifying the number of
atoms that should be frozen. Thus, freeze last 10 will freeze the ten last atoms in the system.

If the first argument is atoms, then SHARC will read a arbitrary number of atom indices (counting starts at 1) from the
same line. For example, freeze atoms 1 4 7 will freeze the atoms with indices 1, 4, and 7.

If the first argument is file, then SHARC will read the frozen atoms from the file frozen (Section 4.8). Optionally, a
second argument can be given to specify the file name (e.g., freeze file "frozen_atoms"). Note that the filename
must be given in quotes.

Droplet restraining potential and tethering potential The droplet potential and tethering potentials are intended
for large QM/MM simulations of a central solute molecule surrounded by a large sphere of solvent molecules (the
droplet). The droplet potential’s task is to keep the droplet from evaporating, because in SHARC one currently cannot
use periodic boundary conditions. The tethering potential’s task is then to ensure that the solute molecule remains
close to the center of the droplet.

To use either of the two potentials, the restrictive_potential keyword has to be used. One can either activate only
the droplet (argument droplet), the tether (argument tether), or both (argument droplet_tether). With the default
choice none, neither is active.

The droplet potential is defined as Eqyop (I_é) = §(|§i| — Reut)? @(lﬁil — R.yut), with all distances |§,—| measured from the
origin of the coordinate system. The droplet potential is a flat-bottom harmonic potential acting on each atom individually.
It is defined by two parameters, k and Ry, which can be set by the keywords restrictive_droplet_force (in Hartree
per Bohr?, no default) and restrictive_droplet_radius (in A, default 12 A). Using the restricted_droplet_atoms
and restricted_droplet_atoms_list keywords, one can control which atoms should feel the droplet force, as indicated
in Table 4.1. However, in most cases, all atoms should be included.

The tether potential actually has the same functional form as the droplet potential. The main difference is that the
tether is typically only applied to a few atoms (e.g., the solute molecule or only some solute atoms) and that one can
choose its origin. The tether potential is defined by two parameters, k and R.,t, which can be set by the keywords
tethering_force (in Hartree per Bohr?) and tethering_radius (in A). Using the tether_at keyword, one can provide
the atom indices. Using tethering_position, one can define the origin of the tethering force.

Reference Energy The keyword ezero gives the energy shift for the diagonal elements of the Hamiltonian. The shift
should be chosen so that the shifted diagonal elements are reasonably small (large diagonal elements in the Hamiltonian
lead to rapidly changing coefficients, requiring extremely short subtime steps).

Note that the energy shift default is 0, i.e., SHARC does not choose an energy shift based on the energies at the first time
step (this would lead to each trajectory having a different energy shift).

59

SHARC Manual 4 Input files | 4.1 Main input file

Scaling and Damping The scaling factor for the energies and gradients must be positive (not zero), see section 8.25.
One can also scale only spin-orbit couplings by using soc_scaling.

The damping factor must be in the interval [0, 1] (first, since the kinetic energy is always positive; second, because a
damping factor larger than 1 would lead to exponentially growing kinetic energy). Also see section 8.6.

Thermostat settings In SHARcC4, one thermostat is available, which is the Langevin thermostat. It can be activated
with thermostat langevin. The default is thermostat none.

The Langevin thermostat is stochastic and therefore requires random numbers in every time step. In SHARC, the Langevin
thermostat uses its own, separate random number generator, independent of the one that is used for determining surface
hops. The rngseed_thermostat keyword can be used to set the seed for this second RNG. The default behaviour is to
use the same seed as for the hopping RNG. This is safe, as the thermostat RNG uses a different implementation than the
surface hop RNG, and therefore different, unrelated sequences will be obtained.

The behaviour of SHARC’s thermostats when restarting a trajectory requires a short notice. By default, when restarting
a trajectory, the thermostat RNG seed is read from restart.traj and the thermostat RNG is fast-forwarded to the same
state it would have had without stopping and restarting the trajectory. In certain cases (e.g., forward flux sampling,
where multiple trajectories with different thermostat seeds should be restarted from one restart file), this behaviour can
be turned off with the norestart_thermostat_random keyword. If the keyword is used, the RNG seed is still read from
restart.traj, but the RNG is not fast-forwarded. The trajectory can be restarted with a different thermostat RNG
seed by manually modifying restart.traj.

The thermostat in SHARC4 can be used to heat different sets of atoms (“regions”) to different temperatures. The
thermostatregions keyword can be used in several ways. Using thermostatregions one sets only one all-encompassing
region. Using thermostatregions first 20 instead sets up two regions, where the first 20 atoms are in region 1 and all
remaining atoms in region 2. General regions can be defined via thermostatregions atomlist 1 1 1 2 2 2, where
the user should provide the thermostat region index for each atom in the atom order (e.g., in the example, atoms 1-3
are in region 1 and atoms 4-6 in region 2). Alternatively, thermostatregions file "thermostat_settings" would
read the thermostat region indices for each atom from file thermostat_settings, together with the temperatures and
thermostat constants. The file format is defined in Section 4.10.

For each region, the temperature can be set separately. You have to provide as many temperatures as there are regions.
For example, temperature 300. 600. sets the temperature to 300K for region 1 and to 600K for region 2. Note
that using multiple regions with very strongly differing temperatures can lead to non-equilibrium heat transport
through the system, which can lead to various problems if not set up carefully. The temperature keyword is ignored if
thermostatregions file is used.

The keyword thermostat_const can be used to set further parameters for the thermostat in each region. In SHARC4,
there is only the Langevin thermostat, which takes one parameter, the friction coefficient. If you have multiple regions,
the friction coefficient has to be given for each region. For example, with two regions, you could use thermostat_const
0.001 0.02 to have a weak thermostat in region 1 and a more aggressive thermostat in region 2. Note that the friction
constant from the input file is interpreted in fs~!, which is a very large unit. Typical friction coefficients are around
0.001fs™1, although larger values (e.g., the default of 0.020 fs~!) are probably needed to ensure fast thermalization in
short trajectories. The thermostat_const keyword is ignored if thermostatregions file is used.

A related keyword is remove_trans_rot, which projects out translational and rotational components from the velocity
vector. This keyword is only active if a thermostat is used. If you are interested in preserving the momentum and
angular momentum in simulations without thermostat, see the options using projected NAC vectors with keywords
ekincorrect, reflect_frustrated, and nac_projection.

Selection of Gradients and Non-Adiabatic Couplings SHARc allows to selectively calculate only certain gradients
and nonadiabatic coupling vectors at each time step. Those gradients and nonadiabatic coupling vectors not selected are
not requested from the interfaces, thus decreasing the computational cost. The selection procedure is detailed in 8.27.
Selection of gradients is activated by grad_select, selection for nonadiabatic couplings by nac_select. Selection is
turned off by default.

The selection procedure picks only states which are closer in energy to the classically occupied state than a given
threshold. The threshold is 0.5 eV by default and can be adjusted using the eselect keyword.

Since SHARC2.1, by default the select_directly keyword is active, which tells SHARC to use the energies of the last
time step for selecting, so that only one call per time step is necessary. The alternative (keyword noselect_directly) is
to perform two quantum chemistry calls per time step. In the first call, all quantities are requested except for the ones to

60

SHARC Manual 4 Input files | 4.1 Main input file

be selected. The energies are used to determine which gradients and NACs to calculate in a second quantum chemistry
call. The option select_directly is strongly recommended in almost all instances, since for most quantum chemistry
programs it is not possible to make sure that the wave function phases from both calls are consistent. Additionally, for
all interfaces the calculation becomes more expensive with two calls per step.

Note that some interface may (for some electronic structure methods) compute the gradients numerically. In this
case, the interface will automatically compute the gradients of all states together. Therefore, grad_select offers no
advantage for numerical gradient runs and it is strongly suggested to use the default option grad_atl.

Phase Tracking Phase tracking is an important ingredient in SHARC. It is necessary for two reasons: (i) the columns
of the transformation matrix U are determined only up to an arbitrary phase factor ' (and additional mixing angles in
case of degeneracy), and (ii) the wave functions produced by any quantum chemistry code are determined only up to
an arbitrary sign. Both kind of phases need to be tracked in SHARC in order to obtain smoothly varying matrix elements
which can be properly integrated.

By default, SHARC automatically tracks the phases in the U matrix (explicit keyword: track_phase), because all required
information is always available. This phase tracking can be deactivated with the notrack_phase keyword, which can
provide a significant speed advantage for pysharc calculations. However, you should check whether your results are
affected by notrack_phase, and revert to track_phase if they do.

The tracking of the wave function signs depends on the interfaces, because only they have access to the explicit form of
the wave functions. SHARc by default (explicit keyword: phases_from_interface) requests that the interface tracks
the signs and reports any sign changes to SHARc. Currently, all interfaces can provide this phase information, but all of
them need to perform overlap calculations to do so. The nophases_from_interface keyword can be used to deactivate
these requests.

In some situations, it might be necessary to have consistent wave function signs between different trajectories. In this
case, the phases_at_zero keyword can be used to compute sign information at ¢ = 0; this requires that the relevant
wave function data of the reference is already located in the restart/ directory before the trajectory is started. Note
that phases_at_zero is therefore an expert option.

Spin-Orbit Couplings Using the keyword nospinorbit the calculation of spin-orbit couplings is disabled. SHARC
will only request the diagonal elements of the Hamiltonian from the interfaces. If the interface returns a non-diagonal
Hamiltonian anyways, the off-diagonal elements are deleted.

The keyword spinorbit (which is the default) enables spin-orbit couplings.

Dipole Moment Gradients The derivatives of the dipole moments can be included in the gradients. This can be
activated with the keyword dipole_gradient. Currently, only the analytical and MoLcas interfaces can deliver these
quantities.

lonization The keyword ionization activates (noionization deactivates) the on-the-fly calculation of ionization
transition properties. If the keyword is given, by default these properties are calculated every time step. The keyword
ionization_step can be used to calculate these properties only every n-th time step. If the keyword is given, SHARC
will request the calculation of the ionization properties from the interface, which needs to be able to calculate them.

The ionization probabilities are treated as one 2D property matrix, hence n_property2d should be at least 1.

THEODORE The keyword theodore activates (notheodore deactivates) the on-the-fly calculation of wave function
descriptors with the THEODORE program. This can be very useful to track the wave function character of the states
on-the-fly. The interface must be able to execute and THEODORE and return its output to SHARC (currently, the ADF,
GaussIaN, TURBOMOLE, and Orca interfaces can do this). The keyword theodore_step can be used to calculate these
descriptors only every n-th time step.

The THEODORE descriptors are treated as one 1D property vector for each descriptor, and n_propertyld should be at
least as large as the number of descriptors computed by the interface.

Output control There are a number of keywords which control what information is written to the output.dat
file. These keywords are write_grad, write_nacdr, write_overlap, write_propertyld, and write_property2d (and
the inverse of each one, e.g., nowrite_grad). Only write_overlap is activated by default, because it does not enlarge

61

SHARC Manual 4 Input files | 4.1 Main input file

the data file by much, and contains important information which is read by data_extractor.x. write_grad and
write_nacdr are turned off by default; they are primarily intended for users who want to keep all quantum chemical
data, e.g., for training in machine learning. The keywords write_propertyld and write_property2d are automatically
activated if theodore or ionization (respectively) are activated.

Output writing stride The keyword output_dat_steps can be used to control how often data is written to
output.dat. This is useful to reduce the amount of data generated by long trajectories (e.g., with the LVC or an-
alytical interfaces).

In the simplest version, using output_dat_steps N will set the output stride to N, so that output.dat is updated
every N-th step (i.e., if step modulo N is equal to zero). The default is to write every step. Because in nonadiabatic
dynamics, usually ballistic processes occur rapidly in the beginning and statistical processes occur slowly for longer
times, this keyword allows printing more often in the beginning and less often for longer times. To use this feature,
write output_dat_steps N1 M2 N2, which will use N1 as the stride if step is larger or equal to zero, and N2 as the stride
if step is larger or equal to M2. One can also use three different strides via output_dat_steps N1 M2 N2 M3 N3, but not
more than three.

Note that for these numbers sharc.x enforces N>1 and M>0, but no particular ordering. Hence, it is possible to use
longer strides in the beginning and smaller strides later, although this is rarely useful. If step is larger/equal to both M2
and M3, then N3 will be used.

Also note that the data written to output.dat is always simply the data for the respective time step, no average over
the last N steps. This needs to be kept in mind when analyzing the trajectory plots. In particular, data_extractor.x
computes diabatic coefficients from the product of all overlap matrices in output.dat. Hence, if not all time steps are
written, the diabatized coefficients will be wrong.

Setting a variable output stride is currently not compatible with the adaptive time step integrator.

If output_format netcdf_separate_nuclei is active, then one can use output_dat_steps_nuc to separately control
the stride for writing output into output_NUC.dat.nc. In this way, it is possible to write out electronic information
(Hamiltonian, dipoles, overlaps, coefficients, etc.) every time step but write nuclear data only every N steps. This is
useful if one has only few electronic states but a large number of atoms. Conversely, it is possible to write nuclear data
every time step but electronic data only every N time steps.

Output format See Sections 5.3, 5.4, and 5.5 for details.

4.1.4 Example

The following input samples provide typical inputs for excited-state dynamics: the first for trajectory surface hopping
(TSH) and the second for CSDM. Both include internal conversion (IC) within a singlet manifold as well as intersystem
crossing (ISC) to triplet states. A large number of excited singlet states are included to enable the calculation of transient
absorption spectra but only the lowest three singlet states actually participate in the dynamics.

nstates 8 03
actstates 3 0 3
charge 0 +1 0

many singlet states for transient absorption
only few states to reduce gradient costs
neutral singlets and triplets

doublet charge ignored (their number is zero)

H* H R B

H*

stepsize 0.5
tmax 1000.0

typical time step for a molecule containing H
one picosecond

HH

surf diagonal

method tsh

state 3 mch # start on the S2 singlet state

coeff auto # coefficient of S2 will be set to one
coupling overlap # \

decoherence_scheme edc # | typical settings

ekincorrect parallel_vel # |

62

SHARC Manual
gradcorrect

grad_select #
nac_select #
eselect 0.3 #
veloc external #
velocfile "veloc" #

RNGseed 65435
ezero -399.41494751 #

nstates 8 03
actstates 3 0 3
charge 0 +1 0

H OB B W

HH

stepsize 0.1
tmax 1000.0 #

surf diagonal

method scp

state 3 mch

coeff auto

coupling nacdr

neom ddr
switching_procedure CSDM
decoherence_scheme dom
decotime_method csdm
ekincorrect parallel_nac
nac_projection

gradcorrect

grad_select #
nac_select #
eselect 0.3 #
veloc external #
velocfile "veloc" #

RNGseed 65435
ezero -399.41494751 #

4.2 Geometry file

/
\
| improve performance
/

velocities come from file "veloc"

ground state energy of molecule

many singlet states for transient absorption
only few states to reduce gradient costs
neutral singlets and triplets

doublet charge ignored (their number is zero)

typical time step for CSDM method
one picosecond

start on the S2 singlet state
coefficient of S2 will be set to one
#\
|
|
|
| typical settings
|
|
/
\
| improve performance
/

velocities come from file "veloc"

ground state energy of molecule

4 Input files

4.2 Geometry file

The geometry file (default file name is geom) contains the initial coordinates of all atoms. This file must be present when

starting a new trajectory.

The format is based on the @ CoLumBUs geometry file format (however, SHARC is more flexible with the formatting
of the numbers). For each atom, the file contains one line, giving the chemical symbol (a string), the atomic number
(a real number), the x, y and z coordinates of the atom in Bohrs (three real numbers), and the relative atomic weight
of the atom (a real number). The six items must be separated by spaces. The real numbers are read in using Fortran
list-directed I/O, and hence are free format (can have any numbers of decimals, exponential notation, etc.). Element
symbols can have at most 2 characters.

The following is an example

of a geon file for CH,:

63

http://www.univie.ac.at/columbus/docs_COL70/documentation_main.html

SHARC Manual 4 Input files | 4.3 Velocity file

C6.0 0.0 0.0 0.0 12.000
H1.06 1.7 6.0 -1.2 1.008
H1.06 1.7 6.0 3.7 1.008

4.3 Velocity file

The velocity file (default veloc) contains the initial nuclear velocities (e.g., from a Wigner distribution sampling). This
file is optional (the velocities can be initialized with the veloc input keyword).

The file contains one line of input for each atom, where the order of atoms must be the same as in the geom file. Each
line consists of three items, separated by spaces, where the first is the x component of the nuclear velocity, followed by
the y and z components (three real numbers). The input is interpreted in atomic units (Bohr/atuy).

The following is an example of a veloc file:

0.0001 0.0000 0.0002
0.0002 0.0000 0.0012
0.0003 0.0000 -0.0007

4.4 Coefficient file

The coefficient file contains the initial wave function coefficients. The file contains one line per state (total number of
states, i.e., multiplets count multiple times). Each line specifies the initial coefficient of one state. If the initial state
is specified in the MCH representation (input keyword state), then the order of the initial coefficients must be as
given by the canonical ordering (see section 8.28). If the initial state is given in diagonal representation, then the initial
coefficients correspond to the states given in energetic ordering, starting with the lowest state. Each line contains two
real numbers, giving first the real and then the imaginary part of the initial coefficient of the respective state. Note that
after read-in, the coefficient vector is normalized to one.

Example:

0.0 0.0
1.0 0.0
0.0 0.0

4.5 Laser file

The laser file contains a table with the amplitude of the laser field e(t) at each time step of the electronic propagation.
Given a laser field of the general form:

Re(ex (1)) +ilm(ex(t))
€(t) = |Re(ey(1)) +ilm(ey (1)) (4.1)
Re(e;(1)) +1iIm(e; (1))

each line consists of 8 elements: ¢ (in fs), Re(ex (1)), Im(ex(t)), Re(ey(t)), Im(e, (1)), Re(e; (1)), Im(e,(t)), (all in atomic
units), and finally the instantaneous central frequency (also atomic units).

The time step in the laser file must exactly match the time step used for the electronic propagation, which is the time
step used for the nuclear propagation (keyword stepsize) divided by the number of substeps (keyword nsubsteps).
The first line of the laser file must correspond to t=0 fs.

Example:

64

SHARC Manual 4 Input files | 4.6 Atom mask file

0.00E+00 -0.68E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.31E+00
0.10E-02 -0.77E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.33E+00
0.20E-02 -0.13E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.35E+00

4.6 Atom mask file

The atom mask file contains for each atom a line with a Boolean entry ("T" or "F"), which indicates whether the atom
should be considered in the relevant procedures. Specifically, the atom masking settings affect the options ekincorrect
parallel_vel, reflect_frustrated parallel_vel, and decoherence_scheme edc. In all cases, "T" indicates that the
atom should be considered (as if atommask was not given), whereas "F" indicates that the atom should be ignored for
these procedures.

Example:

e I |

4.7 RATTLE file

The RATTLE file contains a list of all the atom pairs whose interatomic distance should be fixed by the RATTLE
algorithm. In the file, each line should contain two integer numbers that indicate the atom indices of one atom pair.
Atom indices start at 1. Optionally, some lines can also have a third entry, which is a float with the desired interatomic
distance in Bohr units. If the third entry is not give, then the distance is fixed to the value that is found in the initial
geometry file.

Example:
13
24 2.05
25

4.8 Frozen atoms file
The frozen atoms file contains one line per atom, which should be either T (atom is propagated) or F (atom is frozen).

This format is exactly the same as in the atommaskfile (Section 4.6). The default file name is frozen, which is used
with freeze file.

4.9 Droplet atoms file

The droplet atoms file contains one line per atom, which should be either T (atom feels droplet potential) or F (droplet
potential does not act on that atom). This format is exactly the same as in the atommaskfile (Section 4.6). The default
file name is droplet, which is used with restricted_droplet_atoms file.

65

SHARC Manual 4 Input files | 4.10 Thermostat settings file

4.10 Thermostat settings file

The thermostat settings file can be used to define the number of thermostat regions, their temperatures, their thermostat
parameters, and the assignment of all atoms to the regions. The file format is

<n_regions>

<n_regions lines with temperatures>

<n_regions lines with all parameters for the thermostat>
<n_atom lines with one region index>

For example, with two regions, the Langevin thermostat, and six atoms, the thermostat file could look like:

2 ! two regions

300.0 ! temperature in K for region 1

500.0 ! temperature in K for region 2

0.01 ! friction coefficient in fs”-1 for region 1
0.05 ! friction coefficient in fs”-1 for region 2
1 ! atom 1 assigned to region 1

1 ! atom 2 assigned to region 1

1

2 ! atom 4 assigned to region 2

2

2

Trailing comments beyond the expected amount of entries per line are ignored.

The default file name is thermostat_settings, which is used with thermostatregions file.

66

5 Output files

This chapter documents the content of the output files of SHARc. Those output files are output.log, output.lis,
output.dat and output.xyz. For users using NetCDF output via PySHARC, additional output files are output.dat.nc
and output_NUC.dat.nc.

5.1 Log file: output.log

The log file output.log contains general information about all steps of the SHARcC simulation, e.g., about the parsing of
the input files, results of quantum chemistry calls, internal matrices and vectors, etc. The content of the log file can be
controlled with the keyword printlevel in the SHARC main input file.

In the following, all printlevels are explained.

Printlevel 0 At printlevel 0, only the execution infos (date, host and working directory at execution start) and build
infos (compiler, compile date, building host and working directory) are given.

Printlevel 1 At printlevel 1, also the content of the input file (cleaned of comments and blank lines) is echoed in the
log file. Also, the start of each time step is given.

Printlevel 2 At printlevel 2, the log file also contains information about the parsing of the input files (echoing all
enabled options, initial geometry, velocity and coefficients, etc.) and about the initialization of the coefficients after the
first quantum chemistry calculation. This printlevel is recommended for production calculations, since it is the highest
printlevel where no output per time step is written to the log file.

Printlevel 3 This and higher printlevels add output per time step to the log file. At printlevel 3, the log file contains at
each time step the data from the velocity-Verlet algorithm (old and new acceleration, velocity and geometry), the old and
new coefficients, the surface hopping probabilities and random number, the occupancies before and after decoherence
correction as well as the kinetic, potential and total energies.

Printlevel 4 At printlevel 4, additionally the log file contains information on the quantum chemistry calls (file names,
which quantities were read, gradient and nonadiabatic coupling vector selection) and the propagator matrix.

Printlevel 5 At printlevel 5, additionally the log file contains the results of each quantum chemistry calls (all matrices
and vectors), all matrices involved in the propagation as well as the matrices involved in the gradient transformation.
This is the highest printlevel currently implemented.

5.2 Listing file: output.lis

The listing file output.lis is a tabular summary of the progress of the dynamics simulation. At the end of each time
step (including the initial time step), one line with 11 elements is printed. These are, from left to right:

1. current step (counting starts at zero for the initial step),
current simulation time (fs),

current state in the diagonal representation,

approximate corresponding MCH state (see subsection 8.23.1),
kinetic energy (eV),

potential energy (eV),

ARl

67

SHARC Manual 5 Output files | 5.3 Data file: output.dat

7. total energy (eV),
8. total angular momentum [#],
9. current gradient norm (in eV/A),
10. total sum of populations (called Density in the file),
11. current expectation values of the state dipole moment (Debye),
12. current expectation values of total spin,
13. wall clock time needed for the time step.

The listing file also contains one extra line for each surface hopping or pointer state switching event. For accepted hops,
the old and new states (in diagonal representation) and the random number are given. Frustrated hops and resonant
hops are also mentioned. Note that the extra line for surface hopping occurs before the regular line for the time step.

The listing file can be plotted with standard tools like GNUPLOT and can be read with data_collector.py.

Energies The kinetic energy is calculated at the end of each time step (i.e., after surface hopping events and the
corresponding adjustments). The potential energy is the energy of the currently active diagonal state. The total energy
is the sum of those two.

Expectation values The gradient norms given in the listing file is calculated as follows:

Natom
2. (5.1)

a d=x,yz

1
3N, atom

Glist =

which is then transformed to eV/A.

The expectation values of the dipole moment for the active state f is calculated from:

2

= Z (Z Z Re [U;;Upg,U,ﬁ] (5.2)
p=xyz\ o T
The expectation value of the total spin of the active state f is calculated as follows:
§= D UaplSa (53)
a

where S, is the total spin of the MCH state with index «.

5.3 Data file: output.dat

The data file output.dat contains all relevant data from the simulation for all time steps, in ASCII format. Accordingly,
this file can become quite large for long trajectories, for many atoms, or if many states are included, but for most file
systems it is easier to deal with a single large file than with many small files.

Usually, after the simulation is finished the data file is processed by data_extractor.x to obtain a number of tabular
files which can be plotted or post-processed (e.g., with data_collector.py). For this, see Sections 7.17 for the data
extractor, 7.22 for plotting, and 7.30 for post-processing.

Note that if you use NetCDF output, then output.dat will only contain the header information and header arrays. See
Section 5.4 for more details.

5.3.1 Specification of the data file

The data file format was changed between SHARC1 and SHARC2. The new format uses a different header, which is
keyword-based (like the input file) and starts with SHARC_version X.Y. The general structure of the time step data is
the same as in the first release version.

The data file contains a short header followed by the data per time step. All quantities are commented in the data file.
The header is keyword-based and contains at least the following entries:
1. method (surface hopping or CSDM),

68

SHARC Manual 5 Output files | 5.4 Data file in NetCDF format: : output.dat.nc

integrator,

maximum multiplicity,

number of states per multiplicity,
number of atoms,

time step,

maximum number of time steps,
number of substeps,

reference energy,
write_overlap,

. write_grad,

. write_nacdr,

. write_propertyld,
write_property2d,

. number of 1D properties,

. number of 2D properties,

17. information whether a laser field is included.

W XN

e e e e

At the end of the header, the data file contains a header array section. Currently, this includes:

1. atomic numbers,

2. elements,

3. masses,

4. full laser field for all substeps (only if flag is set).

The entry for each time step contains:

—_

. step index and current time for adaptive integrators,

. Hamiltonian in MCH representation,

. transformation matrix U,

. MCH dipole moment matrices (x, y, z),

. overlap matrix in MCH representation (only if flag is set),
. coefficients in the diagonal representation,

. hopping probablities in the diagonal representation

. kinetic energy,

. currently active state in diagonal representation and approximate state in MCH representation,
. random number for surface hopping,

. wall clock time (in seconds)

. geometry (Bohrs),

. velocities (atomic units),

. 2D property matrices (only if flag is set),

. 1D property vectors (only if flag is set),

. gradient vectors (only if flag is set),

. nonadiabatic coupling vectors (only if flag is set).

O 00 3 O U W DN

e e S
NN U DN = O

5.4 Data file in NetCDF format: : output.dat.nc

If output_format is set to netcdf, then only the header and header arrays will be written to the output.dat file, but
no information per time step. The latter is instead written in (binary) NetCDF format to output.dat.nc.

This option is intended to provide faster output for fast simulations with pysharc. However, it is also an option that
leads to less disk memory consumption, and can be used with sharc.x. To this end, output_format=netcdf also
deactivates writing of the output.xyz file. Also, when NetCDF files are written, no restart files are produced, except on
the last time step or in case of errors.

NetCDF output files can be extracted with data_extractor_NetCDF.x (see Section 7.18). This program can also
regenerate the output.xyz for further analysis.

Currently, there are a few limitations in this approach. Most importantly, the NetCDF files do not store the property
vectors and property matrices that can be stored in the output.dat files. Hence, computations with the ionization or
theodore keywords should not use the NetCDF format. Additionally, gradients and nonadiabatic coupling vectors are
not written to NetCDF output files.

69

SHARC Manual 5 Output files | 5.5 Separate nuclear data file in NetCDF format: output_NUC.dat.nc

The program data_converter.x (see Section 7.19) can be used to convert an output.dat file into a NetCDF file. This
can be useful when archiving an ensemble of trajectories, as the NetCDF files are much smaller than the ASCII files.
Note that after conversion, the output.xyz files can be deleted, as they can be regenerated from the NetCDF file.

Conversely, sometimes it is useful to inspect the data manually, which is difficult in NetCDF format. In this case, one can
use data_converter_to_ASCII.x (see Section 7.20), which will produce a file called output.dat.cp (to not overwrite
the original output.dat with the header).

5.5 Separate nuclear data file in NetCDF format: output_NUC.dat.nc

With the option output_format netcdf_separate_nuclei, SHARC will split the output data into two NetCDF files.
The files output.dat and output.dat.nc are written as if the system contains only one atom. Additionally, the file
output_NUC.dat.nc is written with only the coordinates and velocities.

Note that output_NUC.dat.nc is not compatible with data_extractor_NetCDF.x or data_converter_to_ASCII.x.
However, it can be read by sharctraj_to_xyz.py (Section 7.7), data_extractor_NUC_xyz.py (Section 7.21), and
align_and_reorder—_trjaj.py (Section 7.31). The first of these scripts can be used to extract one time step from
the file and write it in xyz, initconds, or geom/veloc formats; this is useful to setup trajectories starting from time steps
of a previous trajectory. The second script extracts the entire output_NUC.dat.nc into XYZ format for visualization
and analysis purposes (e.g., with geo.py or geo_NM.py. The third script can align coordinates in output_NUC.dat.nc
files, reorder a trajectory swarm to get NetCDF coordinate files for each time step, and convert the files to a NetCDF
format that follows Amber conventions (thus, can be opened by, e.g., VMD or cpptraj).

5.6 XYZ file: output.xyz

The file output.xyz contains the geometries of all time steps in standard xyz file format. It can be used with visualization
programs like MOLDEN, GABEDIT or MOLEKEL to create movies of the molecular motion, or with geo.py (see 7.23) to
calculate internal coordinates for each time step. Using geo_NM. py and a normal mode file (V0. txt, see Section 6.4.4 for
details), normal mode coordinates can be computed. Furthermore, trajana_essdyn.py (see 7.29) reads this file.

The comments of the geometries (given in the second line of each geometry block) contain information about the
simulation time and the active state (first in diagonal basis, then in MCH basis).

If output_format=netcdf, the output.xyz file will be empty. Use data_extractor_NetCDF.x (Section 7.18) with
the -xyz flag to obtain the output.xyz file. Conversely, if output_format=netcdf_separate_nuclei is used, the
output.xyz file can be generated from output_NUC.dat.nc via the script data_extractor_NUC_xyz.py (Section 7.21).

70

6 Interfaces

This chapter describes the interface between SHARC and any provider of electronic structure information, like potential
energy surface models or quantum chemistry programs.

The interface infrastructure of SHARC was completely overhauled in SHARC4, compared to previous versions. In SHARC3
and previous versions, SHARC interfaces were in principle any script that reads a communication file (QM.in) coming
from sharc.x and returning the requested information in a second communication file (QM.out). On the contrary, in
SHARc4 each interface is a Python module implementing a class. Each interface has a main function that implements the
communication via QM. in and QM.out, but additionally each interface also has several methods to instantiate, initialize,
execute, and setup a calculation from within Python. In this way, one can run PySHARC trajectories using driver.py
that avoid file I/O for much higher performance. This dual capability is shown in Figure 6.1. Additionally, SHARC4
interfaces can call other SHARc4 interfaces, which makes it possible to produce complex workflows in a flexible manner
(e.g., QM/MM, numerical gradients, etc). Note that this interface nesting also applies to setting up of trajectories, where
SHARC4 interfaces communicate with the setup scripts by providing the available features and routines to take care of
all interface-specific files.

other interfaces]

internal Python codeJ

GAUSSIAN

Shell caller

Legacy interface

Figure 6.1: Communication between sharc.x, driver.py, the interfaces, and the quantum chemistry codes.
Section 6.0.1 gives a short overview of the existing interfaces. The subsequent sections document the capabilities of

all interfaces. In Section 6.28, a short specification of the interface is given (for users who want to develop their own
interface). Finally, Section 6.29 provides the documentation for the wfoverlap.x auxiliary program.

71

SHARC Manual 6 Interfaces | 6 Interfaces

6.0.1 Overview over Interfaces

The SHARC4 interfaces are derived from three different base classes: fast interfaces, ab initio interfaces, and hybrid
interfaces. However, this classification is more relevant for interface developers, whereas for users a slightly finer
granularity is more useful. In this way, we can distinguish six different interface kinds of interfaces:

Stub interfaces are very simply interfaces that do not do file I/O or call an external program, but instead simply
return trivial information, like zeros, unit matrices, or constant values. These are mostly intended for testing.
Fast interfaces implement fast potential energy methods that are evaluated within Python, without file I/O
or expensive ab initio computations. Examples include analytical, machine-learning, or molecular mechanics
models. These interfaces can run in the so-called persisent mode, where they do not even write files for restart
(except on the last time step).

Ab initio interfaces allow SHARC to communicate with external quantum chemistry programs. These interfaces
perform file I/O and use the save directory to store information between time steps (e.g., for orbital restart, wave
function overlaps). These interfaces have been reimplemented to follow SHARC4 standards.

Legacy ab initio interfaces are interfaces that have been directly taken from SHARC3 without extensive
reimplementations for SHARc4. They have all capabilities they had in SHARC3. In order to use them in SHARC4,
they can be called via SHARC_LEGACY . py, which is a SHARc4-compliant interface that acts as a front-end to the
legacy interfaces.

Single-child hybrid interfaces are interfaces that use a single child interface to do part or most of the work.
These allows users to manipulate the electronic structure data on the way between the actual providing interface
and the caller. Examples are storing electronic structure data in a data base, adding harmonic restrains, or
performing numerical differentiation.

Multi-child hybrid interfaces are interfaces that use a kindergarden of several child interfaces, e.g., to compute
the electronic structure results for only a part of the system. They implement, e.g., QM/MM, excitonic multi-
fragment models, or adaptive sampling procedures.

Table 6.1 gives an overview over all interfaces available in SHArc4. The different features in the table are explained here:

Energies (H): This is the most basic request and is available from every interface. It is omitted in Table 6.1.
Spin-orbit couplings (S0C): Adds spin-orbit coupling matrix elements between all electronic states to the electronic
Hamiltonian. The relevant spin functions are typically in the spherical representation (i.e., complex-valued and
with well-defined Ms values) but can also be in another basis (e.g., real-valued spin functions).

Dipole moments (DM): This requests the entire matrix of electric dipole moments and transition dipole moments
between all electronic states. Typically, SHARc4 interfaces will return those in the length representation. For
some interfaces, some dipole moments cannot be returned and will thus be zero (e.g., excited-to-excited transition
dipole moments for TD-DFT).

Gradients (GRAD): This requests the entire list of gradients of all electronic states, although the request can also be
posed to compute only a subset of all gradients.

Nonadiabatic coupling vectors (NACDR): This requests the entire matrix of nonadiabatic coupling vectors (‘I‘a|V §|‘I’/3>
for all electronic states, although also a subset can be requested.

Wave function overlaps (OVERLAP): This requests the matrix containing <‘I’a(t)|‘lfﬁ(t + At)), computed between
the current step and the most recent previous one (using information in the save directory, unless the interface is
persistent). Interfaces that can compute overlaps can also serve PHASES requests.

Dyson norms (ION): This requests the matrix containing the Dyson norms between all electronic states. This is
handled by SHARC as a property matrix, which does not affect the dynamics.

Electronic wave function descriptors (TheoDORE): This requests various descriptors for electronic wave functions
(charge transfer, multiconfigurational character, localization, etc), which are treated as sets of property vectors
that do not affect the dynamics.

Electrostatic embedding via point charges (point charges): This is not request, but a feature that some SHARC4
interfaces have. They can receive a set of point charges and perform electrostatic embedding. If gradients or
nonadiabatic coupling vectors are requested, also returns those on the point charges.

Atomic point-multipole representation of electronic densities (nultipolar—_fit): This requests for each electronic
state and each pair of electronic states a set of monopoles+dipoles+quadrupoles per atom that represents the
electrostatics of the corresponding state or transition density.

Molecular wave function information and density matrices (mol/densities): This requests that the atomic orbital
basis set and all possible electronic density matrices in the atomic orbital basis are returned.

72

SHARC Manual 6 Interfaces | 6 Interfaces

Table 6.1: Overview over capabilities of SHARC4 interfaces.

Ay gé go LE :'E
< < < 17
= d 5 g § =

O § 8 & Z % = § S 2 &

Interface Method Mult 2 E ; % S & & g g é &
— Stub interfaces —
DO_NOTHING zeros any QG G I I G I G B G B CY I CY) i N S
QMOUT constant ay N VW)W W)W Y - 62 7
— Fast interfaces —
ANALYTICAL sympy any v oA Y- = = = = 63 T8
LVC LVC/QVC models any A N Y R A — 64 81
SPAINN PaiNN models any - v N N - - = = — — 65 85
SCHNARC SchnArc models any v AN - = = 4 = — 66 85
OPENMM MM force fields Istate — 4 + — () — — — « = 67 87
— Ab initio interfaces —
GAUSSIAN TD-DFT any - VW v - v v v v v 4 68 88
ORCA TD-DFT any VAR Y = VN Y Y — — 69 a1
NWCHEM TD-DFT any - Wy - v - - - — — 610 93
TURBOMOLE ADC(2), CC2 any VO NV — NNV = — 611 95
MOLCAS RASSCF, (X)MS-CASPT2 any B N B Y L N N Y Y A S VIR Y
MNDO OM2/MRCI singlet v vV N = — = — 613 101
MOPACPI AM1/FOMO-CI singlet v v v ¥ - - —4 — — 614 103
LEGACY SHARC legacy interface any v oA A A N N - — — 615 106
— Legacy ab initio interfaces —
AMS_ADF TD-DFT any v W v - v vV = = — 616 107
COLUMBUS CASSCF, MRCISD any ¢ v v v v v - - — — 617 111
BAGEL CASSCF, (X)MS-CASPT2 singlet — + + v + - — — — — 618 114
MOLPRO CASSCF any v v v Vv v - - - — 619 117
PYSCF CASSCF, CMS-PDFT singlet — + V + — - = - — — 620 122
— Single-child hybrid interfaces —
ASE save data Depends on child interface. 6.21 125
UMBRELLA add restraints Depends on child interface. 6.22 126
NUMDIFF finite differences Depends on child interface. 6.23 128
— Multi-child hybrid interfaces —

QMMM el.-stat. embedding Depends on child interfaces. 6.24 131
ECI excitonic HF/CI Depends on child interfaces. 6.25 133
ADAPTIVE quorum-based Depends on child interfaces. 6.26 145
FALLBACK catches exceptions Depends on child interfaces. 6.27 147

+/ available; (v/) only returns trivial results (zeros/unit matrices); ¢ and wave function phases; * TDMs only between So and excited
singlets; ¢ SOCs only between singlets and triplets; 4 Has an internal QM/MM implementation; ¢ either NAC or SOC, but not both at
the same time;

73

SHARC Manual 6 Interfaces | 6 Interfaces

6.0.2 Assoiated File Names and Example Directory

Table 6.2 shows the file names for interface-related input files of the different interfaces.

The directory $SHARC/../examples/ contains comprehensively commented examples of these input files for all in-
terfaces. These example files should be regarded as supplementary files to the documentation of the interfaces. In
general, it is recommended that users copy the example template files and modify them to their needs, except for the
few interfaces for which some automated template generation tool exists.

Note that the subdirectories of $SHARC/../examples/ are not intended for testing. To make functioning calculations
out of the examples, some paths and variables in the resource files need to be adjusted. If you need automatically
working test calculations for SHARC, consider using tests.py instead.

Table 6.2: Overview over files of SHARC interfaces.

Interface Template file Resource file Initial MOs
— Stub interfaces —

DO_NOTHING N/A

QMOUT QMOUT . template N/A

— Fast interfaces —
ANALYTICAL ANALYTICAL.template ANALYTICAL.resources

LvC LVC. template LVC.resources
SPAINN SPAINN.template SPAINN.resources
OPENMM OPENMM. template OPENMM. resources
— Ab initio interfaces —
GAUSSIAN GAUSSIAN.template GAUSSIAN.resources GAUSSIAN.chk.<job>.init
ORCA ORCA. template ORCA.resources ORCA.gbw.<job>.init
NWCHEM NWCHEM. template NWCHEM. resources
TURBOMOLE TURBOMOLE.template TURBOMOLE.resources mos.init
MOLCAS MOLCAS. template MOLCAS. resources MOLCAS.<mult>.RasOrb.init
MOLCAS.<mult>.JobIph.init
MNDO MNDO. template MNDO. resources
MOPACPI MOPAC_PI. template MOPAC_PI.resources
LEGACY LEGACY.template LEGACY.resources
— Legacy ab initio interfaces —
AMS_ADF AMS_ADF . template AMS_ADF. resources AMS_ADF.t21.<job>.init
COLUMBUS a directory COLUMBUS. resources mocoef_mc.init.<job>
COLUMBUS molcas.RasOrb.init.<job>
BAGEL BAGEL. template BAGEL.resources archive.<mult>.init
MOLPRO MOLPRO. template MOLPRO. resources wf.<job>.init
PYSCF PYSCF.template PYSCF.resources pyscf.init.chk
— Single-child hybrid interfaces —
PIPE PIPE.template N/A
ASE DB ASE_DB. template N/A
UMBRELLA UMBRELLA. template N/A
NUMDIFF NUMDIFF.template NUMDIFF.resources N/A
— Multi-child hybrid interfaces —
QMMM QMMM. template QMMM. resources N/A
ECI ECI.template ECI.resources N/A
ADAPTIVE ADAPTIVE.template ADAPTIVE.resources N/A
FALLBACK FALLBACK.template FALLBACK.resources N/A

74

SHARC Manual 6 Interfaces | 6 Interfaces

6.0.3 Generic keywords in resource files of many interfaces

Table 6.3, 6.4, and 6.5 provides general information about keywords that are valid for the resource files of many
interfaces.

Table 6.3: General keywords for the resource files. Which keywords are actually used depends on the interface.

Keyword Description

scratchdir Is a path to the temporary directory. Relative and absolute paths, environment
variables and ~ can be used. If it does not exist, the interface will create it. In any case,
the interface will delete this directory after the calculation.

savedir Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there. Is
superseded by the savedir requested by the caller, so this keyword is usually
optional in the resource file.

retain Followed by an integer giving the number of old time steps to retain in the step file.
Is superseded by the retain setting from the caller, so this keyword is usually
optional in the resource file.

memory The memory usable by the interface. Behaviour is interface-specific.

ncpu The number of CPUs used by the interface. Is overridden by environment variables
from queuing engines (e.g., $NSLOTS or $SLURM_NTASKS_PER_NODE). Parallel behaviour
is interface-specific.

min_cpu Minimum number of CPUs per job. Parallel behaviour is interface-specific.

ngpu The number of GPUs used by the interface. Parallel behaviour is interface-specific.

schedule_scaling

delay
always_orb_init

always_guess

Gives the expected parallelizable fraction of the parallezable calculations (Amdahl’s
law). With a value close to zero, the interface will try to run all jobs at the same time.
With values close to one, jobs will be run sequentially with the maximum number of
cores. Exact behaviour is interface-specific.

Followed by a float giving the delay in seconds between starting parallel jobs to avoid
excessive disk I/O (usually not necessary).

Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.

Always use the orbital guess from the quantum chemistry program.

the interface.

Keyword Description

wfoverlap Path to the WFovERLAP code. Needed for overlap and Dyson norm calculations in
some interfaces.

wfthres (float) Gives the amount of wave function norm which will be kept in the truncation
of the determinant files. Default is interface-specific.

numfrozcore Number of frozen core orbitals for overlap and Dyson norm calculations. A value of
-1 enables automatic frozen core.

wfnumocc Number of ignored occupied orbitals in Dyson calculations.

nooverlap Do not save determinant files for overlap computations.

theodir Path to the THEODORE installation. Relative and absolute paths, environment vari-

theodore_prop

theodore_fragment

ables and ~ can be used. The interface will set $PYTHONPATH automatically.

Followed by a list with the descriptors which THEODORE should compute. Note that
descriptors will only be computed for restricted singlets (and triplets). Instead of a
simple list, a Python literal can also be used, as in the THEODORE input files.
Followed by a list of atom numbers which should constitute a fragment in THEODORE.
For multiple fragments, the keyword can be used multiple times. Instead, the keyword
can be followed by a Python literal, as in the THEODORE input files.

Table 6.4: Auxiliary-program-related keywords for the resource files. Which keywords are actually used depends on

75

SHARC Manual 6 Interfaces | 6 Interfaces

Table 6.5: RESP-fitting-related keywords for the resource files. Which keywords are actually used depends on the

interface.

Keyword Description

resp_target Defines the target for the RESP restraint. Default is *zero’, but ‘mulliken’ and ’lowdin’
can also be used.

resp_layers Number of layers, default 4.

resp_first_layer Factor for the radius of the innermost fitting layer. The other factors are computed as
first + ‘/%ym * i for i = 0 to njayers — 1. The actual radius of each fitting layer is the
product of the factors times the VAW radius of the respective atom. Default is 1.4.
Together with the default 4 layers, the layer factors are 1.4, 1.6, 1.8, 2.0 (as, e.g., in
Gaussian).

resp_density Fitting point density in points per A%, Default is 10.

resp_fit_order Integer, 0, 1, or 2 for monopoles-only, monopoles+dipoles, or up to quadrupoles.
Default 2.

resp_grid String defining the spherical quadrature used. Possible are ’lebedev’, ‘random’,
’golden_spiral’, gamess’, and ‘marcus_deserno’. Default is "lebedev’, which is the one
with the highest inherent symmetry.

resp_betas Parameters that define the strength of the restraint for the different fitting orders.
Defaults are 0.0005, 0.0015, 0.003 for monopoles, dipoles, quadrupoles. See [36].

resp_mk_radii Use original Merz—Kollman radii for HCNOSP [100]. Default is to use values from
Ref. [101] for all atoms.

resp_vdw_radii Provide a list of VAW radii for all atoms, in Python syntax. Has precedence over

resp—vdw_radii_symbol.
resp_vdw_radii_symbol Provide a dictionary of VAW radii for all elements, in Python syntax.

76

SHARC Manual 6 Interfaces | 6.1 Do-Nothing Interface

6.1 Do-Nothing Interface

Stub interface that returns all zeros.

The SHARC-Do-Nothing interface is a stub interface that returns zeros for all requested quantities (but unit overlaps
and unity phases). In that sense, it supports every request, except for molecule/density matrices. It is intended as a
developers tool and cannot be used to carry out any actual investigations.

The interface does not have any template or resource options and in fact does not even read either file.

During setup, this interface asks a random question and writes the user’s reply to a file in the relevant directory. This
file does not have any effect.

6.2 QMout Interface

Stub interface that returns constant energies and potential-like couplings, and zeros for other requests, for frozen-nuclei
dynamics.

The SHARC-QMout interface is a stub interface intended for running dynamics with frozen nuclei, i.e., purely electronic
dynamics. As such, it returns constant energies, spin—orbit couplings, dipole moments, and possibly multipolar density
expansions, but otherwise returns zeros (but unit overlaps and unity phases).

Its name stems from the fact that it reads the constant energies, couplings, and other quantities from a QM. out file,
as it is produced by all other interfaces. Note that it ignores all content of this file except for energies, spin—orbit
couplings, dipole moments, and multipolar density expansions. When it is looking for the file, the assumed file name is
QMout. template. The interface has no other options besides the contents of the QMout . template file.

During setup, the interface asks first for the path to a template file. If this path leads to a QM. out file, it is used as is for
all trajectories that are set up. If this path is a directory containing ICOND folders, then the QM. out file for TRAJ_XXXXX
is automatically taken from ICOND_XXXXX. The interface then asks whether the QM. out files should be copied or linked.

77

SHARC Manual 6 Interfaces | 6.3 Analytical PESs Interface

6.3 Analytical PESs Interface

Fast interface for self-coded potential energy surfaces using SymPy.

This interface allows to run dynamics simulations on PESs expressed with analytical functions. The system Hamiltonian
is defined in a diabatic representation, and the interface automatically diagonalizes this Hamiltonian to produce adiabatic
states. If spin—orbit couplings are given, these are treated like in other interfaces (they are not diagonalized away), so
that the interface returns data in the MCH representation.

Since SHARCc4, this interface requires the Python package sympy. This package is used to automatically find the
derivatives of the Hamiltonian matrix elements, so that the derivatives do not have to be coded by hand, like in older
SHARC versions.

The interface needs two additional input files, called ANALYTICAL. template and ANALYTICAL.resources. The former
one contains the definitions of all analytical expressions, the second one contains two optional settings.

In SHARCY, the interface can provide energies, SOCs, gradients, nonadiabatic couplings, overlaps and phases. The
necessary data to compute overlaps with the previous time step are stored in main memory if the interface is in
persistent mode, or in the save directory in non-persistent mode. Additionally, (transition)dipole moments can be
defined.

6.3.1 Parametrization

The interface has to be provided with analytical expressions for all matrix elements of the following matrices in the
diabatic basis:

« Hamiltonian: H
« (Optionally) (Transition) dipole matrices for each polarization direction: M;
« (Optionally) real and imaginary part of the SOC matrix: X

The diabatic Hamiltonian is diagonalized:
H! = WHW (6.1)

Then the following calculations lead to the MCH matrices which are passed to SHARC:

HYCH = g+ wizw (6.2)
oH
(gl(;/ICH) _ (WT—W) (6.3)
Xi axl' aa
1 oH

™CH) - ___ — (wWi—w 6.4

(ap)x,— (Hd)a - (Hd)ﬁ (0X; ap (6.4)
MMCH = wim,w (6.5)
SMCH (1, 1) = W (10) W (t) (6.6)

The MCH Hamiltonian is the diagonalized diabatic Hamiltonian plus the SO matrix transformed into the MCH basis.
The gradients in the MCH basis are obtained by transforming the derivative of the diabatic Hamiltonian (computed
with sympy) into the MCH basis. The nonadiabatic coupling vectors are computed likewise. The dipole matrices are
simply transformed into the MCH basis. The overlap matrix is the overlap of old and new transformation matrix.

6.3.2 Template file: ANALYTICAL.template

The interface-specific input file is called ANALYTICAL.template. It contains the analytical expressions for all matrix
elements mentioned above. All analytical expressions in this file are evaluated considering the atomic coordinates read
from QM. in or passed by the caller.

The file consists of a file header and the file body. The file body consists of variable definition blocks and matrix blocks.
A commented template file is located in $SHARC/. . /examples/SHARC_ANALYTICAL/.

Header The header looks similar to an xyz file:

78

SHARC Manual 6 Interfaces | 6.3 Analytical PESs Interface

2
2
I xI 0 0
Br XBr 0 0

Here, the first line gives the number of atoms and the second line the number of states. Note that this interface ignores
whatever system charge is declared by the caller.

On the remaining lines, each Cartesian component of the atomic coordinates is associated to a variable name, which can
be used in the analytical expressions. If a zero (0) is given instead of a variable name, then the corresponding Cartesian
coordinate is neglected. In the above example, the variable name xI is associated with the x coordinate of the first atom
given in QM. in. The y and z coordinates of the first atom are neglected.

All variable names must be & valid Python identifiers and must not start with an underscore. Hence, all strings starting
with a letter, followed by an arbitrary number of letters, digits and underscores, are valid. It is not allowed to use a
variable name twice.

Note, that the file header also contains the atom labels, which are just used for cross-checking against the atom labels
in QM.in.

The file header must not contain comments, neither at the end of a line nor separate lines. Also, blank lines are not
allowed in the header. After the last line of the header (where the variables for the n,iom-th atom are defined), blank
lines and comments can be used freely (except in matrix blocks).

Variable definition blocks Variable definition blocks can be used to store additional numerical values (beyond the
atomic coordinates) in variables, which can then be used in the equations in the matrix blocks. The most obvious use
for this is of course to define values which will appear several times in the equations.

A variable definition block looks like:

Variables

Al 0.067

gl 0.996 # Trailing comment
Blank line with comment only

R1 4.666

End

Each block starts with the keyword “Variables” and is terminated with “End”. In-between, on each line a variable name
and the corresponding numerical value (separated by blanks) can be given. Note that the naming conventions given
above also apply to variables defined in these blocks.

There can be any number of complete variable definitions blocks in the input file. All blocks are read first, before any
matrix expressions are evaluated. Hence, the relative order of the variable blocks and the matrix blocks does not matter.
Also, note that variable names must not appear twice, so variables cannot be redefined halfway through the file.

Matrix blocks The most important information in the input file are of course contained in the expressions in the
matrix blocks. In general, a matrix block has the following format:

Matrix_Identifier

V11;
V12; V22;
V13; V23; V33;

The first line identifies the type of matrix. Those are valid identifiers:

79

https://docs.python.org/2/reference/lexical_analysis.html#identifiers

SHARC Manual 6 Interfaces | 6.3 Analytical PESs Interface

Hamiltonian Defines the Hamiltonian including the diabatic potential cou-
plings.

Dipole followed by 1, 2 or 3 (Transition) dipole moment matrix for Cartesian direction x, y
or z, respectively.

soc followed by Re or Im Real or Imaginary (respectively) part of the spin-orbit coupling
matrix X.

Since the interface searches the file for these identifiers starting from the top until it is found, for each matrix only
the first block takes effect. Note, that the Hamiltonian must be present. If dipole matrix or SO matrix definitions are
missing, they will be assumed zero.

In the lines after the identifier, the expressions for each matrix element are given. Note the lower triangular format
(all matrices are assumed symmetric, except the imaginary part of the SO matrix, which is assumed antisymmetric).
Matrix elements must be separated by semicolons (so that whitespace can be used inside the expressions), including
all end-of-lines (also the last line). There must be at least as many lines as the number of states (additional lines are
neglected). If any line or matrix element is missing, the interface will abort.

An exemplary block looks like:

Hamiltonian
Alx((1.-exp(gl*(R1-xI+xBr)))=*x*2-1.);
0.0006; 3e-5%(xI-xBr)*x*2;

It is important to understand that the expressions are directly evaluated by sympy, hence all expressions must be valid
Python/sympy expressions which evaluate to numeric (integer or float) values. Only the variables defined above can be
used. Note that exponentiation in Python is **. Mathematical functions from sympy, e.g., 7 these elementary functions,
are available.

6.3.3 Template file: ANALYTICAL.resources

The resource file of SHARC_ANALYTICAL.py knows only one keyword.

The keyword is diagonalize. It is true by default, but using diagonalize false, one can turn off diagonalization, so
that one can run directly in the diabatic basis. Note that this will give wrong results if the off-diagonal elements of the
Hamiltonian are not constant.

6.3.4 During setup

SHARC_ANALYTICAL.py follows the standard initialization procedure during setup.

The first step is to locate the ANALYTICAL. template input file. If a file named ANALYTICAL. template exists in the current
directory, it is suggested as a default. Otherwise, the user is prompted to specify the correct path manually. This is
repeated until a valid file is provided.

Once the template file is confirmed, it is automatically scanned for required keywords depending on the type of
calculation requested. If SOC is among the requested properties (e.g., within setup_traj.py), the template file must
contain a SOC section. Likewise, for dipole-related requests (dm or dmdr), the Dipole section must be present. Once
setup is finished, the provided template file is copied or symlinked into the working directory.

Note that the setup routine does not ask for a resource file. If you require one, you need to create and copy it manually.

80

https://docs.sympy.org/latest/modules/functions/elementary.html

SHARC Manual 6 Interfaces | 6.4 LVC Interface

6.4 LVC Interface

Fast interface for linear and quadratic vibronic coupling models, also with electrostatic embedding.

The purpose of the LVC interface is to allow performing computationally efficient dynamics using a linear vibronic
coupling (LVC) or quadratic vibronic coupling (QVC) model [102]. The relevant equations can be found in Section 8.18.

In SHARCY, the interface can provide energies, SOCs, gradients, nonadiabatic couplings, overlaps, multipolar charges,
and deal with point charges. The necessary data to compute overlaps with the previous time step are stored in main
memory if the interface is in persistent mode, or in the save directory in non-persistent mode.

6.4.1 Input files

Two input files are needed:

vo.txt Contains all information to describe the reference harmonic oscillator Vj: the equilibrium geometry, the
frequencies w;, and an orthogonal matrix containing the normal coordinates Ky;.

Geometry

S 16. 0.00000000 0.00000000 -0.00039079 31.97207180
0 8. 0.00000000 -2.38362453 1.36159121 15.99491464
0 8. 0.00000000 2.38362453 1.36159120 15.99491464
Frequencies

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00234 0.0053 0.0064
Mass-weighted normal modes

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6564 0.0000 0.0000 0.3108 0.0494 0.2004 0.0000 0.0000 -0.6557

Here, the reference geometry is given as element, nuclear charge, Cartesian coordinates (x/y/z, in Bohrs), and mass (in
atomic mass units). The frequencies are given all on one line, in Hartree energy units. The normal mode transformation
matrix is given with one column per normal mode (same order as the frequencies) and with three lines per atom (x/y/z,
same order as in the reference geometry). V0. txt can be created from a MOLDEN file using wigner.py -1.

LVC.template Contains the state-specific information: €;, K("), A](.m’") (m,n) (m,nm)

i Yij o Mmn AL P L(zz;n), as well as (transition)
dipole moments (see Section 8.18). Here, for multiplets most parameters are are shared between the multiplet components,
whereas in the SOC and dipole moment matrices the multiplet components are provided explicitly.

Vo.txt
403
epsilon
7
1 1 0.0000000000
1 2 0.1640045037
1 3 0.1781507393
1 4 0.2500917150
3 1 0.1341247878
3 2 0.1645714941
3 3 0.1700512159
kappa
12
1 2 7 1.19647e-03
2 8 1.21848e-02
lambda

81

SHARC Manual 6 Interfaces | 6.4 LVC Interface

3
1 1 4 9 -1.83185e-02
1 2 3 9 7.32022e-03
3 1 3 9 5.71746e-03
lambda_soc
0
gamma
0
SOC R
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ...
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 -1.086e-04 ...
SO0C I
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ...
0.000e+00 0.000e+00 0.000e+00 1.000e+00 0.000e+00 1.000e-04 ...
DMX R
-7.400e-07 -1.639%9e-01 0.000e+00 3.000e-06 0.000e+00 0.000e+00
-1.639e-01 3.930e-06 0.000e+00 2.400e-05 0.000e+00 0.000e+00
DMX I
DMY R
DMY I
DMZ R
DMZ I

Multipolar Density Fit

72

-0.081 ©0.135 ©0.000 -0.000 -0.114 0.093 0.020 -0.000 0.000 -0.000
-0.138 -0.123 ©0.000 -0.000 0.645 -2.028 1.382 0.000 0.000 -0.000
0.109 -0.015 -0.030 -0.000 -0.137 0.161 -0.023 0.089 0.000 0.000
.109 -0.015 ©0.030 0.000 -0.137 0.161 -0.023 -0.089 -0.000 0.000
0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.297
-0.000 ©0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 2.286
-0.000 ©0.000 ©0.000 0.119 -0.000 0.000 -0.000 -0.000 -0.038 -0.217
0.000 0.000 0.000 -0.119 0.000 0.000 -0.000 0.000 0.038 -0.217

L = = I = = = e

R = e = = = I

W N R O WNRKFEOO
(<)

NNNNRR B R

Only the three first lines are mandatory, but if no other parameters are given, all states will have the same potentials
(the ground state potential).

6.4.2 Resource file

In SHARCY, the interface also got a LVC. resource file. It only knows two keywords.

The first keyword is diagonalize. It is true by default, but using diagonalize false, one can turn off diagonalization,
so that one can run directly in the diabatic basis. Note that this will give wrong gradients/NACs if any non-zero A terms
are present.

The second keyword is do_kabsch. If set to true, the Kabsch algorithm will be used to align the current geometry with
the reference geometry. By default, it is true of point charges are present.

82

SHARC Manual 6 Interfaces | 6.4 LVC Interface

6.4.3 During setup

SHARC_LVC. py follows the standard initialization procedure during setup.

The first step is to locate the LVC. template input file. If a file named LVC. template exists in the current directory, it is
suggested as a default. Otherwise, the user is prompted to specify the correct path manually. This process is repeated
until a valid file is provided.

Once the template file is confirmed, it is automatically scanned for required sections based on the requested properties.
For spin-orbit coupling (soc), either SOC or lambda_soc must appear in the template. If dipole moments are requested
(dm), the file must contain a DM section. Requests involving point_charges or multipolar_fit require the presence of
the Multipolar Density Fit section. If any required section is missing, the setup terminates with an error.

After the template check, the user is asked whether an LVC.resources file is available. If so, the file path must be
specified. If not, the user is prompted whether to enable the Kabsch algorithm, which aligns molecular geometries. If
selected, a simple resource file containing the line do_kabsch true is created automatically in the working directory
during preparation.

As in the analytical interface, the setup routine copies or symlinks all required files into the working directory.

6.4.4 Template File Setup: wigner.py, setup_LVCparam.py, create_LVCparam.py,
modify_LVC_template.py

Reference potential V0.txt is created using the wigner. py script, which is also used for initial condition generation.
Simply call, e.g.

$SHARC/wigner.py -1 <filename.molden>

Note that this best works if all 3N normal modes are present in the file. If the translations and rotations are missing,
the script will add the necessary number of zero-vector modes. If you experience a failure in wigner.py, please try first
to provide a molden file with sufficient numerical precision. It is also advisable to properly symmetrize the relevant
frequency calculation.

Setup for single point calculations To obtain the LVC parameters, two steps are necessary: (i) running quantum
chemistry calculations, and (ii) converting the quantum chemistry output to the LVC parameters.

The first of these steps is carried out with setup_LVCparam. py. It is an interactive script that works very similarly to
the other setup scripts (e.g., setup_init.py, setup_traj.py). The script will ask for the following:

« Path to the V0. txt file,

« Number of states,

« Charge per multiplicity,

« Which interface to use (in principle, all SHARc-interfaces can be used, but only the ab initio interfaces are useful
here),

« Whether spin-orbit couplings should be calculated (only if applicable),

« Whether linear SOC terms should be computed (only if applicable),

« Whether k parameters should be obtained from analytical gradients or numerical differentiation (depends on
availability of analytical gradients),

« Whether to compute intrastate quadratic terms yi(iaa) (other y terms cannot be obtained automatically at this
time) and how they are computed,

« Whether to compute yl.(l.a“) only for selected states (only if applicable),

« Whether A parameters should be obtained from analytical nonadiabatic coupling vectors or numerical differentia-
tion (depends on availability of analytical nonadiabatic coupling vectors),

« Which normal modes to include,

« Which normal modes to consider for quadratic terms yi(l.aa) (only if applicable),

« Which displacement value to use for numerical differentiation (default 0.05 dimensionless mass-frequency scaled
units),

« Whether intruder states should be ignored or not,

« Whether one- or two-sided differentiation should be done,

« Whether multipolar charges should be included for LVC/MM,

83

SHARC Manual 6 Interfaces | 6.4 LVC Interface

« Interface-specific input for the chosen quantum chemistry interface (see in the individual interface’s sections in
Chapter 6).

The script will set up a directory (DSPL_RESULTS) with one subdirectory for each single point calculation. If all terms
are computed analytically, then only the DSPL_000_eq subdirectory will be present. Otherwise, for each chosen normal
mode 1-2 subdirectories (for one-sided or two-sided differentiation) will be present (possibly more if y terms are
requested). Additionally, displacements.log presents the most important settings. In all cases, displacements. json is
also present; this file is crucial to communicate all settings to the read-out script after the single point jobs are finished.

Creating LVC parameter files After all jobs are successfully finished (QM.out file present in each directory), run
create_LVCparam. py inside the DSPL_RESULTS directory. This is a fully automatic script that reads displacements.json
and the QM. out files in the subdirectories. After everything is successfully read, it creates the LVC. template file. This
file can be used to run SHARC-LVC trajectories.

Modifying LVC parameters Sometimes, one wants to remove certain normal modes or diabatic states from an
LVC model, e.g., to investigate the influence of these modes/states. This can be done with the command line tool
modify_LVC_template.py. A tooltip is available with the -h option.

Currently, it is only possible to remove the highest diabatic states in each multiplicity. For example, a template file with
4 singlets and 3 triplets can be reduced to the lowest 2 singlets and 2 triplets. In contrast, any modes can be removed by
providing a selection string. For example, "7~12,14,15~89" selects modes 7-12, 14, and 15-89, i.e., it removes modes
modes 1-6, 13, and any modes after 89.

The script also has the three options --no-transition-multipoles, --no-es2es-transition-multipoles, as well as
--no-es2es-transition-multipoles-for-mult that can be used to remove multipolar charges that represent transition
densities.

84

SHARC Manual 6 Interfaces | 6.5 SPaiNN Interface

6.5 SPaiNN Interface

Fast interface to run machine learning potential energy surface models based on the PaiNN architecture.

The SHARC-SPAINN interface allows to run SHARC simulations with machine learning potentials using SchNetPack
2.0. Neither spin-orbit couplings or overlaps can be computed, but NACs are available. The interface needs two
additional input files, a template file for the quantum chemistry (file name is SPAINN. template) and a resource file
(SPAINN. resources). For more information on how to use SPaiNN visit the &7 SPaiNN documentation.

6.5.1 Template file: SPAINN. template

This file contains the specifications for the machine learning potential prediction. The file only contains a number of
keywords, given in table 6.6.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located in $SHARC/ . ./examples/SHARC_SPAINN/SPAINN.template. We recommend that users start from this template
file and modify it appropriately for their calculations. To install SPaiNN clone the repository from GitHub and install
with pip.

git clone https://github.com/CompPhotoChem/SPaiNN.git
cd SPaiNN
pip install .

Table 6.6: Keywords for the SPAINN. template file.

Keyword Description

cutoff Cutoff radius for the cutoff function. Note: This should match with the cutoff radius used for
training!

nac_key "nacs" or "smooth_nacs".

properties List of properties that will be predicted. E.g. ["energy", "forces", "dipoles”, "nacs"]

6.5.2 Resource file: SPAINN. resources

The file SPAINN. resources contains only the path to the SPaiNN model.

Table 6.7: Keywords for the SPAINN. resources file.
Keyword Description
modelpath Path to the trained SPaiNN model. Note that the model cannot be easily verified by
the interface at the start. You will obtain an error if you request more states than are
in the model or properties that the model cannot predict.

6.5.3 During setup

SHARC_SPAINN. py follows the standard initialization procedure during setup.

The setup begins by locating the SPAINN. template input file. If a file with this name exists in the current directory, the
user is asked whether it should be used. If no such file is present, or the user declines, a valid path must be specified
manually. This process is repeated until a valid file is provided.

Note that the machine learning model that is referenced in the template file will not be validated.

Next, the user is asked whether a SPAINN. resources file is available. If so, the path to this file must be entered, and
the file must exist. If no such file is available, the user is prompted for the location of a trained SPaiNN model via the
modelpath field.

During preparation, the provided template is copied or symlinked into the working directory. If a resource file was
provided during setup, it is also copied or linked. Otherwise, a new SPAINN.resources file is created automatically
containing the modelpath.

85

https://spainn.readthedocs.io/

SHARC Manual 6 Interfaces | 6.6 SCHNARC Interface

6.6 SCHNARC Interface

Fast interface to run machine learning potential energy surface models based on the Schnet and FieldSchnet architectures.

The SHARC-SCHNARC interface allows to run SHARcsimulations with machine learning potentials using SchNetPack 1.0.
While the interface is principally able to deliver NACs and spin-orbit couplings (like previous versions), this functionality
in the current version has not been tested. We therefore recommend to use the time derivative based couplings (coupling
ktdc), also because couplings between different states are notoriously hard to train. Since ML machine learned potentials
do provide a wave function, overlaps cannot be computed. This interface can accept point charges and uses the
FieldSchNet approach to perform a form of electrostatic embedding. The interface needs two additional input files, a
template file for the quantum chemistry (file name is SCHNARC. template) and a resource file (SCHNARC. resources).

To install SchNarc you first should clone 7 SchNetPack 1.0 from Github. You can then clone ¢ SchNarc from Github.
The installation guide provided on the website is for an older SHARC version, so we do not recommend following it.
Instead use pip to install the package. If you want to use electrostatic embedding in order to run QM/MM simulations,
you have to install ¢z FieldSchNet and use the files from ¢ Zenodo substituting the ones from SchNarc.

6.6.1 Template file: SCHNARC. template

This file contains the specifications for the machine learning potential prediction. A fully commented template file—with
all possible options, a comprehensive descriptions, and some practical hints—is located in $SHARC/ . . /examples/SHARC_SCHNARC/SCHNAR
We recommend that users start from this template file and modify it appropriately for their calculations.

6.6.2 Template file: SCHNARC. template

The file SCHNARC. template contains only the keyword modelpath, which is the path to the SchNarc model. This should
ideally be an absolute path.

6.6.3 During setup

SHARC_SCHNARC. py follows the standard initialization procedure during setup.

The setup process begins by identifying the SCHNARC. template file. If this file is found in the current directory, the user
is asked whether it should be used. If not, or if declined, the user must manually provide a valid path to the template
file. This continues until a valid file is confirmed.

The template file has only a single keyword, which is modelpath, which specifies the path to the a pytorch model using
either the SCHNARC or FieldSchNet architecture.

During preparation, the template file is either copied or symlinked into the working directory, depending on the
configuration.

86

https://github.com/atomistic-machine-learning/schnetpack/tree/schnetpack1.0
https://github.com/schnarc/SchNarc
https://github.com/atomistic-machine-learning/field_schnet
https://doi.org/10.5281/zenodo.14536036

SHARC Manual 6 Interfaces | 6.7 OpenMM Interface

6.7 OpenMM Interface

Fast interface for molecular mechanics force fields via the OpenMM package, for one state.

This interface implements molecular mechanics force fields using 2 OpenMM. Given the nature of force fields, this
interface can only provide results for a single state which formally is assumed a singlet. The interface is written to
work with AMBER-style prmtop files.

In SHARC4, the interface can provide energies, dipole moments, gradients, and multipolar charges (although only
monopole terms will be nonzero).

6.7.1 Template file

The template file OPENMM. template only knows one keyword, prmtop, which provides the path to the prmtop file that
defines the system and force field. In principle, any prmtop file generated with tleap or other AMBERTOOLS should be
compatible with the interface, given that the topology is correct. Prmtop files for QM/MM calculations can be created
with setup_from_prmtop.py, see Section 7.12.

6.7.2 Resource file

The resource fileOPENMM. resources knows two keywords. The first is ncpu, which defines the number of CPU cores to
be used. The second is cuda_device, which accepts an integer that defines the CUDA device to be used. If this keyword
is given, OpenMM is switched from the CPU platform to the CUDA platform.

6.7.3 During setup

SHARC_OPENMM. py follows the standard setup procedure used by other interfaces.

The user is prompted to specify the path to the OPENMM. template file. The system will attempt to read the specified file
using its internal parser. If any issue arises (e.g., invalid formatting, missing files, etc.), the parser is reset and the user is
asked again. This process repeats until a valid template is provided.

From the parsed template, the necessary prmtop file is extracted and stored as an extra input file.

Finally, the user is asked whether they have an OPENMM. resources file. If confirmed, they must provide a valid path to
it.

During the preparation phase, all required files (template, prmtop, and optional resources) are either copied or symlinked
into the working directory depending on the configuration.

87

https://openmm.org/

SHARC Manual 6 Interfaces | 6.8 GAUSSIAN Interface

6.8 GAussIAN Interface

Ab initio interface for TD-DFT in Gaussian 16.

The SHARC-GAUSsSIAN interface allows to run SHARC simulations with Gaussian’s TD-DFT functionality. The interface is
compatible with restricted and unrestricted ground states (i.e., with all multiplicities), but not with symmetry. Spin-orbit
couplings cannot be computed, but wave function overlaps from the WFovERLAP code are available (no nonadiabatic
couplings). Dyson norms can also be computed through the WFoveERrLAP code. THEODORE (version 2.0 or higher)
can be used to perform automatic wave function analysis. Furthermore, in SHARC4 the interface can do electrostatic
embedding with point charges (gradients on point charges available). Finally, it can extract and return a PYSCF mol
object (containing the atomic orbital basis set) and corresponding one-particle (state/transition) density matrices, as
well as multipolar fits of these density matrices.

The interface needs two additional input files, a template file for the quantum chemistry (file name is GAUSSIAN. template)
and a resource file (GAUSSIAN. resources). If files QM/GAUSSIAN. chk.init or QM/GAUSSIAN.chk.<job>.init are present,
they are used to provide an initial orbital guess for the SCF calculation of the respective job.

6.8.1 Template file: GAUSSIAN. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid GAUssIAN input
file. The file only contains a number of keywords, given in table 6.8. The actual input for Gaussian will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—
is located in $SHARC/. ./examples/SHARC_GAUSSIAN/GAUSSIAN. template. We recommend that users start from this
template file and modify it appropriately for their calculations.

Table 6.8: Keywords for the GAUSSIAN. template file.

Keyword Description

basis Gives the basis set for all atoms (default def2svp). Note that wave function overlaps are
likely wrong with Pople basis sets and other basis sets with shared SP shells (e.g., STO-3G).

functional followed by one string giving the exchange-correlation functional. Default is PBEPBE.

dispersion Activates dispersion correction. Arguments are written verbatim to GAussiAN input (in
EmpiricalDispersion=()). Default is no dispersion. An example argument would be GD3.

scrf Activates solvation. All arguments (e.g., iefpcm solvent=water) are copied to GAUSSIAN input
(in scrf=()).

grid Followed by a string (e.g., grid finegrid) defining which integration grid and accuracy to use.
For details, see the example template file.

denfit Activates density fitting, which might speed up the computation.

scf Arguments are written verbatim to GAUSSIAN input (in scf=()).

no_tda This keyword deactivates TDA, which the interface requests by default.

td_conv This sets the TD-DFT convergence threshold to 107X Default is 6.

unrestricted_triplets Requests that the triplets are calculated in a separate job from an unrestricted ground state.
Default is to compute triplets as linear response of the restricted singlet ground state.

noneqgsolv Adds noneqsolv to the td=() block.

neglected_gradient String that is "zero’, ’gs’, or ’closest’ (default ’zero’) to control how non-requested gradients are
set.

state_densities Uses density=current for all dipole moments and state densities.

iop Arguments are written verbatim to GAUSSIAN input (in iop=()). Expert option.

keys Arguments are written verbatim to GAUSSIAN input as separate keywords. Expert option.

basis_external Pastes the content of the given file after the geometry in the GaussiaN input file. Also sets the
basis set to gen. Expert option.

paste_input_file Pastes the content of the given file after the external basis block in the GaussiaN input file.

Expert option.

6.8.2 Resource file: GAUSSIAN. resources

The file GAUSSIAN. resources contains mainly paths (to the GAaussiaN executables, to the scratch directory, etc.) and
other resources, plus settings for wfoverlap.x and THEODORE. This file must reside in the same directory where the

88

SHARC Manual 6 Interfaces | 6.8 GAUSSIAN Interface

interface is started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the
order of keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for
certain keywords.

The GaussIaN interface employs essentially all keywords from Tables 6.3, 6.4, and 6.5 (except: ngpu), as it uses
WroveERLAP, THEODORE, as well as the RESP module. Interface-specific keywords are given in Table 6.9. A fully
commented resource file with possible options and descriptions is located in $SHARC/ . . /examples/SHARC_GAUSSIAN/.

Table 6.9: Keywords for the GAUSSIAN. resources file.

Keyword Description

groot Is the path to the GaussIAN installation directory. This directory should contain
the GaussiaN executables, e.g., g09/g16, 19999.exe, etc. Relative and absolute paths,
environment variables and ~ can be used. The interface will set $GAUSS_EXEDIR to
this path.

dry_run Ifsetto true, will not clean the scratchdir, write input files, or run Gaussian calculations.
It will perform overlap, TheoDORE, and RESP calculations, and parse output.

Parallelization GaussIAN usually shows very good parallel scaling for most TD-DFT calculations. However, it is
more efficient to carry out multiple GAussIaN calculations (different multiplicities, multiple gradients) in parallel, each
one using a smaller number of CPUs.

In the SHARC-GAUSSIAN interface, parallelization is controlled by the keywords ncpu, schedule_scaling, and min_cpu.
The first keyword controls the maximum number of CPUs which the interface is allowed to use for all GAUSSIAN runs
simultaneously. The second keyword is the parallel fraction from Amdahl’s Law, see Section 8.3. With a value close to
zero, the interface will try to run all jobs at the same time. With values close to one, jobs will be run sequentially with
the maximum number of cores. Typical values for schedule_scaling are around 0.90 for both GGA functionals and
hybrid functionals, possibly less for very small computations. The third keyword defines how many cores to use at
least for each calculation.

6.8.3 During setup

The GAUSSIAN interface setup begins with the specification of the GAUSSIAN root directory. The script first attempts
to retrieve the path from environment variables ($g16root or $g09root). If not found, it prompts the user to manually
input the path, expanding the path if necessary.

Next, the user is asked to specify a scratch directory for the GAUSSIAN calculations. Note that the path is not validated
by the script, as the calculations may be run on a different machine.

The script will then check for the presence of a valid GAUSSIAN. template file. If a valid file is detected, the user is
prompted to confirm if it should be used. Otherwise, the user must specify the path to a valid template file.

While specifying the template file, the script also checks if additional files are referenced within the template, such as
basis_external or paste_input_file, and adds them to the list of files for setup.

The user is then prompted to provide a restart file (GAUSSIAN chk file) for initial orbitals molecular orbitals. This is
optional.

Finally, the script checks if the user has a GAUSSIAN. resources file. If the user does not have one, the script will ask for
information (number of CPUs, parallel scaling, and memory) in order to generate a new resources file. The interactive
setup of the resource file also allows users to setup the required settings for wave function overlap calculations (path to
wfoverlap.x and wave function truncation threshold) and for TheoDORE wave function analysis (path to TheoDORE,
property list, and fragment list).

6.8.4 Extracting normal modes: GAUSSIAN_freq.py

This script reads a Gaussian output file from a frequency calculation (requires freq=hpmodes) and generates a Molden
file. These files can be visualized or fed into wigner.py and wigner_state_selected.py. The idea of this script is to
provide a higher numerical precision of the normal mode vectors, compared to the alternative of opening a normal
Gaussian output file in Molden and saving it in Molden format.

89

SHARC Manual 6 Interfaces | 6.8 GAUSSIAN Interface

The usage is:

$SHARC/GAUSSIAN_freq.py GAUSSIAN.log

The script takes the output from the Standard orientation section. If you want to use the input orientation, use
NoSymmetry.

90

SHARC Manual 6 Interfaces | 6.9 Orca Interface

6.9 ORcA Interface

Ab initio interface for TD-DFT in ORCA 5 and 6.

The SHARC-ORCA interface allows to run SHARC simulations with Orca’s TD-DFT functionality. The interface is
compatible with restricted and unrestricted ground states (i.e., with all multiplicities), but not with symmetry. Spin-orbit
couplings can be computed and wave function overlaps from the WFOVERLAP code are available (no nonadiabatic
couplings). Dyson norms can also be computed through the WFoveERrLAP code. THEODORE (version 2.0 or higher)
can be used to perform automatic wave function analysis. Furthermore, in SHARC4 the interface can do electrostatic
embedding with point charges (gradients on point charges available). The interface works with Orca 5 and 6.

The interface needs two additional input files, a template file for the quantum chemistry (file name is ORCA. template)
and a resource file (ORCA. resources). If files QM/ORCA.gbw.init or QM/ORCA.gbw.<job>.init are present, they are
used to provide an initial orbital guess for the SCF calculation of the respective job.

6.9.1 Template file: ORCA. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid Orca input
file. The file only contains a number of keywords, given in table 6.10. The actual input for Orca will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_ORCA/ORCA. template. We recommend that users start from this template file
and modify it appropriately for their calculations.

6.9.2 Resource file: ORCA.resources

The file ORCA. resources contains mainly paths (to the ORca executables, to the scratch directory, etc.) and other
resources, plus settings for wfoverlap.x and THEODORE. This file must reside in the same directory where the interface
is started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of
keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain
keywords.

Table 6.10: Keywords for the ORCA. template file.

Keyword Description

basis Gives the basis set for all atoms (default 6-31G).

auxbasis Gives the auxiliary basis set (default: Orca chooses).

basis_per_element Overrides the basis set for the specified element (argument 1: element symbol, argument 2:
basis set). Can be given multiple times.

basis_per_atom Overrides the basis set for the specified atom (argument 1: atom number starting at 1, argument
2: basis set). Can be given multiple times.

ecp_per_element Overrides the ECP for the specified atom (ECP). Can be given multiple times.

functional followed by one string giving the exchange-correlation functional. Default is PBE.

hfexchange Modifies the amount of HF exchange in the functional (give in fraction of 1). Default is whatever
the chosen functional uses.

dispersion Activates dispersion correction. Arguments are written verbatim to Orca input. Default is no
dispersion.

no_tda This keyword deactivates TDA, which the interface requests by default.

unrestricted_triplets Requests that the triplets are calculated in a separate job from an unrestricted ground state.
Default is to compute triplets as linear response of the restricted singlet ground state.

neglected_gradient String that is "zero’, ’gs’, or ’closest’ (default ’zero’) to control how non-requested gradients are
set.

ri Controls the density fitting scheme. Arguments can be, e.g., rijcosx. If not given, Rl is decided
by ORCA defaults.

maxiter Maximum iterations in ORCA SCF. Default 700.

keys Arguments are written verbatim to ORca input as separate keywords. Use this to activate
CPCM, ZORA, set grid sizes, etc. Expert option.

paste_input_file Path to a file whose content is pasted verbatim into the ORCA input. Expert option. We

recommend to use an absolute path here.

91

SHARC Manual 6 Interfaces | 6.9 Orca Interface

The Orca interface employs essentially all keywords from Tables 6.3 (except: ngpu) and 6.4, as it uses WFOVERLAP,
THEODORE. Interface-specific keywords are given in Table 6.11. A fully commented resource file with possible options
and descriptions is located in $SHARC/ . . /examples/SHARC_ORCA/.

Table 6.11: Keywords for the ORCA. resources file.

Keyword Description

orcadir Is the path to the Orca installation directory. This directory should contain exe-
cutables like orca, orca_int, or orca_fragovl. Relative and absolute paths, envi-
ronment variables and ~ can be used. The interface will automatically update the
$LD_LIBRARY_PATH.

dry_run If set to true, will not clean the scratchdir, write input files, or run ORCA calculations.
It will perform overlap, TheoDORE, and RESP calculations, and parse output.

Parallelization Orca usually shows very good parallel scaling for most TD-DFT calculations. In the interface, only
one ORcA input is written for each multiplicity, as all gradients can be computed in one job. Hence, schedule_scaling
has rarely any effect.

6.9.3 During setup

The ORCA interface setup begins with the specification of the ORCA root directory. The script prompts the user to
manually input the path, expanding the path if necessary.

Next, the user is asked to specify a scratch directory for the ORCA calculations. Note that the path is not validated by
the script, as the calculations may be run on a different machine.

The script will then check for the presence of a valid ORCA. template file. If a valid file is detected, the user is prompted
to confirm if it should be used. Otherwise, the user must specify the path to a valid template file. Note that the ORCA
interface’s setup routine will not copy extra input files (e.g., used with paste_input_file), so one should use an absolute
path in the template file.

The user is then prompted to provide a restart file (ORCA gbw file) for initial orbitals molecular orbitals. This is optional.
Finally, the script checks if the user has a ORCA. resources file. If the user does not have one, the script will ask for
information (number of CPUs, parallel scaling, and memory) in order to generate a new resources file. The interactive
setup of the resource file also allows users to setup the required settings for wave function overlap calculations (path to
wfoverlap.x and wave function truncation threshold) and for TheoDORE wave function analysis (path to TheoDORE,
property list, and fragment list).

6.9.4 Extracting normal modes: ORCA_hess_freq.py

This script reads an ORCA Hessian file (e.g., orca.hess) from a frequency calculation and generates a Molden file.
These files can be visualized or fed into wigner.py and wigner_state_selected. py.

The idea of this script is to provide a higher numerical precision of the normal mode vectors, compared to reading them
from ORCA’s standard output. Additionally, .hess files from ORCA are in a consistent format independent of whether
symmetry was used or not. Hence, with ORCA_hess_freq.py, normal modes from frequency calculations with explicit
symmetry can be converted to Molden format and used in SHARc. This is especially beneficial for constructing LVC
models (with setup_LVCparam.py and create_LVCparam. py).

The usage is:

$SHARC/ORCA_hess_freq.py ORCA.hess

92

SHARC Manual 6 Interfaces | 6.10 NWCHEM Interface

6.10 NWCHEM Interface

Ab initio interface for TD-DFT in NWCHEM 7.2.

The SHARC-NWCHEM interface allows to run SHARC simulations with NWcHEM’s TD-DFT functionality. The interface
is compatible with restricted and unrestricted ground states (i.e., with all multiplicities), but not with symmetry. Triplets
have to be computed as response of a triplet ground state. Spin-orbit couplings are not available, but wave function
overlaps from the WFOVERLAP code are available (no nonadiabatic couplings).

The interface needs two additional input files, a template file for the quantum chemistry (file name is NWCHEM. template)
and a resource file (N\WCHEM. resources). Currently, initial MOs cannot be provided.

6.10.1 Template file: NWNCHEM. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid NWCHEM input
file. The file only contains a number of keywords, given in Table 6.12. The actual input for NWCHEM will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_NWCHEM/NWCHEM. template. We recommend that users start from this template
file and modify it appropriately for their calculations.

Table 6.12: Keywords for the NWCHEM. template file.

Keyword Description

basis Gives the basis set for all atoms (default def2-SVP).

library_path Gives the path to the NWChem basis set library.

functional followed by a string defining the exchange-correlation functional, as customary in NWChem.

Default is B3LYP. For CAM-B3LYP is xc xcamb88 1.00 lyp 0.81 vwn_5 0.19 hfexch 1.00.
See the 2 manual.

cam Options for CAM functionals. For CAM-B3LYP is 0.33 cam_alpha 0.19 cam_beta 0.46.

dispersion Activates dispersion correction. Arguments are written verbatim to NWCHEM input. Default is
no dispersion. Use vdw 3 for D3 and vdw 4 for D3B]J.

tda This keyword activates TDA (default is on). Use tda false to turn it off.

cosmo Use to activate COSMO implicit solvation. Give a float with the dielectric constant as argument.
Note that COSMO is not fully supported for TD-DFT (only for ground state).

grid Options for integration grid. Default is as in NWChem

maxiter Maximum iterations in SCF. Default as in NWChem.

spherical Force spherical basis sets (needed for wave function overlaps). No argument.

forcecartesian Force Cartesian basis sets (overlaps do not work).

6.10.2 Resource file: NWCHEM. resources

The file NWCHEM. resources contains mainly paths (to the NWCHEM executables, to the scratch directory, etc.) and other
resources, plus settings for wfoverlap.x. This file must reside in the same directory where the interface is started. It
uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of keywords is
arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain keywords.

The NWCHEM interface employs essentially all keywords from Tables 6.3 (except: ngpu) and the WrovERLAP-related
keywords from 6.4. Interface-specific keywords are given in Table 6.13. A fully commented resource file with possible
options and descriptions is located in $SHARC/ . . /examples/SHARC_NWCHEM/.

Table 6.13: Keywords for the NWCHEM. resources file.

Keyword Description

nwchem Is the path to the NWCHEM binary executable. Relative and absolute paths, environ-
ment variables and ~ can be used.

dry_run If set to true, will not clean the scratchdir, write input files, or run NWChem calcula-
tions. It will perform overlap calculations and parse output.

93

https://nwchemgit.github.io/Density-Functional-Theory-for-Molecules.html

SHARC Manual 6 Interfaces | 6.10 NWCHEM Interface

6.10.3 During setup

The NWChem interface setup begins with the specification of the NWChem binary executable. The script prompts the
user to manually input the path.

Next, the user is asked to specify a scratch directory for the NWChem calculations. Note that the path is not validated
by the script, as the calculations may be run on a different machine.

The script will then ask for an NWCHEM. template file. Note that the setup routine does not perform any checking on
this file.

The setup routines do not allow copying initial orbital files for NWChem.

Finally, the script checks if the user has a NWCHEM. resources file. If the user does not have one, the script will ask for
information (number of CPUs and memory) in order to generate a new resources file. The interactive setup of the
resource file also allows users to setup the required settings for wave function overlap calculations (path to wfoverlap.x
and wave function truncation threshold).

94

SHARC Manual 6 Interfaces | 6.11 Turbomole Interface

6.11 Turbomole Interface

Ab initio interface for Turbomole’s CC2 and ADC(2) methods.
Note: This interface was called SHARC_RICC2.py in SHARC2 and SHARC3, but was renamed in SHARC4.

The SHARC-TURBOMOLE interface can be used to conduct excited-state dynamics based on TurBoMOLE’s CC2 and ADC(2)
methods. It can do both restricted and unrestricted ground states, so all multiplicities are available. The interface
uses the programs define, dscf and ricc2. For spin-orbit couplings, no ORca installation is needed anymore, but a
TURBOMOLE version is required that supports computation of the spin-orbit integrals. Only ADC(2) can be used to
calculate spin-orbit couplings, but not CC2 (hence, it is not recommended to perform CC2 calculations with both singlet
and triplet states). Even with ADC(2), only singlet-triplet SOCs are obtained, but no triplet-triplet SOCs; So-triplet
SOCs are also missing currently. THEODORE (version 2.0 and higher) can be used to perform automatic wave function
analysis. Wavefunction overlaps and Dyson norms are calculated using the WFOVERLAP code.

The interface needs two additional input files, a template file for the quantum chemistry (file name is TURBOMOLE . template)
and a general input file (TURBOMOLE. resources). If a file QM/mos.init is are present, it is used to provide an initial
orbital guess for the SCF calculation.

6.11.1 Template file: TURBOMOLE. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid TURBOMOLE
input file. The file only contains a number of keywords, given in table 6.14. The actual input for TurRBoMOLE will
be generated automatically through define. A fully commented template file with all possible options is located in
$SHARC/ . . /examples/SHARC_TURBOMOLE/.

Table 6.14: Keywords for the TURBOMOLE . template file.

Keyword Description

basis The basis set used. The interface will convert this string to the correct case for
TURBOMOLE.

auxbasis The auxiliary basis set used in. If no auxbasis is given, the interface will let define
decide on a suitable auxbasis.

basislib Path to external basis set library. Can be used to employ custom basis sets.

method Followed by a string, which is either “CC2” or “ADC(2)” (case insensitive), defining

the level of theory. Default is “ADC(2)”.

douglas-kroll Activates the use of the scalar-relativistic DK Hamiltonian of 2nd order. Default (if
no keyword is given) is to use the non-relativistic Hamiltonian.

spin-scaling Followed by a string, which is either “none”, “scs” or “sos”. Using these options,
spin-component scaling can be activated. Under certain restrictions (no SOC, no
transition dipole moments, no SMP), “lt-sos” can be used to perform cheaper “sos”

calculations.
scf Followed by a string which is either “dscf” or “ridft”. Using this option, the SCF
program can be chosen. Note that currently, there is no advantage of using “ridft”.
frozen Followed by an integer giving the number of frozen core orbitals in the ricc2 calcula-

tions. Default is to use frozen core orbitals and let define decide on the number. If
frozen core is not wanted, use frozen 0 in the template.

dipolelevel Followed by an integer which is either 0, 1, or 2. Controls which dipole moment
calculations are skipped by the interface.

External basis set libary

If users want to employ their own basis sets, they can create a basis set library directory with the required files, and use
the basislib keyword to tell the interface to use this directory. The basislib keyword cannot be used together with
the auxbasis keyword.

The specified directory must contain basen/ and cbasen/ subdirectories. These must contain one file per element,
containing the desired basis set parameters. The files in cbhasen/ must auxiliary basis sets of the same name as the basis
sets in basen/. See the TURBOMOLE directory structure to see how the directories and files need to be prepared.

95

SHARC Manual 6 Interfaces | 6.11 Turbomole Interface

6.11.2 Resource file: TURBOMOLE. resources

The file TURBOMOLE. resources contains mainly paths (to the TURBOMOLE and ORcA executables, to the scratch directory,
etc.). This file must reside in the same directory where the interface is started. It uses a simple “keyword argument”
syntax. Comments using # and blank lines are possible, the order of keywords is arbitrary. Lines with unknown
keywords are ignored, since the interface just searches the file for certain keywords.

The TurBOMOLE interface employs essentially all keywords from Tables 6.3 (except: ngpu) and 6.4, as it uses WFOVERLAP,
THEODORE. Interface-specific keywords are given in Table 6.15. A fully commented resource file with possible options
and descriptions is located in $SHARC/ . . /examples/SHARC_TURBOMOLE/.

Table 6.15: Keywords for the TURBOMOLE . resources file.

Keyword Description

turbodir Is the path to the TURBOMOLE installation directory. This directory should contain
subdirectories like bin/, basen/, chasen/, or scripts/. Relative and absolute paths,
environment variables and ~ can be used. The interface will set $TURBODIR to this path,
and will set the $PATH correctly (using TURBOMOLE’s sysname tool. If this keyword
is not present in RICC2. resources, the interface will use the environment variable
$TURBODIR, if it is set.

dry_run If set to true, will not clean the scratchdir, write input files, or run Turbomole calcula-
tions. It will perform overlap and TheoDORE calculations, and parse output.

Note that the interface sets all environment variables necessary to run TURBOMOLE (e.g., $PATH) automatically, based on
the input from TURBOMOLE . resources and QM. in.

For parallel calculations, the interface will call the SMP executables of TurRBoMOLE and WFOVERLAP.

Note that the dipolelevel keyword can have significant impact on the calculation time. Generally, in response methods
like CC2 and ADC(2), extra computational effort is required for the calculation of state and transition dipole moments
. However, dipole moments have only influence in the dynamics simulations if a laser field is present. Using the
dipolelevel keyword, it is possible to deactivate dipole moment calculations if they are not required. There are three
different settings for dipolelevel:

. dipolelevel=0: The interface will return only dipole moments which can be calculated at no cost (state dipole
moments of states where a gradient is calculated; excited-excited transition dipole moments if SOCs are calculated)

« dipolelevel=1: In addition, the interface will calculate transition dipole moments between S, and excited singlet
states. Use at least this level for the initial condition setup (setup_init.py takes care of this).

« dipolelevel=2: The interface will calculate all state and transition dipole moments

If only energies and dipole moments are calculated, dipolelevel=1 is only slightly more expensive than dipolelevel=0,
while dipolelevel=2 increases computation time more strongly. However, the computation time also depends on
whether or not spin-orbit couplings and gradients are calculated.

6.11.3 During setup

The TURBOMOLE interface setup begins with checking for the presence of a valid TURBOMOLE. template file. If a valid
file is detected, the user is prompted to confirm if it should be used. Otherwise, the user must specify the path to a valid
template file.

Then, the user is asked to provide a resource file. If the user does not have one, the script will ask for information (path
to TURBOMOLE, scratch directory, number of CPUs, parallel scaling, and memory) in order to generate a new resources
file. The interactive setup of the resource file also allows users to setup the required settings for wave function overlap
calculations (path to wfoverlap.x and wave function truncation threshold) and for TheoDORE wave function analysis
(path to TheoDORE, property list, and fragment list).

96

SHARC Manual 6 Interfaces | 6.12 OPENMoLcas Interface

6.12 OPENMoLCAS Interface

Ab initio interface for OPENMoLcas’ RASSCE, (X)MS-CASPT2, and PDFT methods.

The SHARC-OPENMoLCAS interface can be used to conduct excited-state dynamics based on OpENMoLrcas’ CASSCEF,
MS-CASPT2, XMS-CASPT2, MC-PDFT, XMS-PDFT, or CMS-PDFT methods. For all methods, RASSCF wave functions
can also be used. Gradients are available for CASSCF, RASSCF, and (X)MS-CASPT?2 (consider using SHARC_NUMDIFF . py
otherwise). Currently, SHARC is tested to work with OpENMOLCAS 24. The newest versions of Morcas might also work,
but no guarantee is given. Note that within this Manual, MoLcas and OPENMOLCAS are used synonymously, because
from SHARC’s viewpoint, they only differ in the driver program (pymolcas or molcas.exe). The support for MC-PDFT,
XMS-PDFT, or CMS-PDFT is currently to be regarded as experimental, with some features not available or not working
properly.

The interface uses the modules GATEWAY, SEWARD (integrals), RASSCF (wave function, energies), RASSI (transition
dipole moments, spin-orbit couplings, overlaps, Dyson norms), MCLR, ALASKA (gradients), and WFA (wave function
analysis). Cholesky decomposition is always enforced by the interface and cannot be turned off. The CASPT2 and
MCPDFT modules are used for their respective energy methods. For CASSCF, RASSCF, and (X)MS-CASPT2, analytical
nonadiabatic coupling vectors are available. Wave function analysis can be performed through the WFA module, using
the keywords for TheoDORE that are used in other interfaces. The interface allows to include point charges (gradients
and nonadiabatic couplings on these point charges are available). Multipolar density fits and delivery of molecule
object/density matrices is implemented. Note that OPENMoLCAS cannot average over states of different multiplicities;
hence, the multiplicities are always computed in separate jobs which all share the same CAS settings.

The interface needs two additional input files, a template file for the quantum chemistry (file name is MOLCAS . template)
and a resource file (MOLCAS.resources). If the interface finds files with the name QM/MOLCAS.<i>.JobIph.init or
QM/MOLCAS.<i>.RasOrb.init, they are used as initial wave function files, where <i> is the multiplicity.

6.12.1 Template file: MOLCAS. template

This file contains the specifications for the wave function. Note that this is not a valid OpENMoLcas input file. No
sections like $GATEWAY, etc., can be used. The file only contains a number of keywords, given in table 6.16. The actual
input files are automatically generated.

A fully commented template file with all possible options is located in $SHARC/ . . /examples/SHARC_MOLCAS/.

Simple template files can be set up with the tool molcas_input.py.

6.12.2 Resource file: MOLCAS.resources

The file MOLCAS. resources contains mainly paths (to the OPENMoLcAs executables, to the scratch directory, etc.).
This file must reside in the same directory where the interface is started. It uses a simple “keyword argument” syntax.
Comments using # and blank lines are possible, the order of keywords is arbitrary. Lines with unknown keywords are
ignored, since the interface just searches the file for certain keywords.

The OpENMoLcas interface employs essentially all keywords from Tables 6.3 (except: ngpu), 6.4 (only theodir,
theodore_prop and theodore_fragment) for WFA, and 6.5 for RESP. Interface-specific keywords are given in Table 6.17. A
fully commented resource file for this interface with all possible options is located in $SHARC/ . . /examples/SHARC_MOLCAS/.

Note that the interface sets all environment variables necessary to run OpENMoLcas (e.g., $MOLCAS, $MOLCASMEM,
$WorkDir ,$Project) automatically, based on the input from MOLCAS. resources and QM. in.

Some explanations on parallelization: In SHARc4, the interface has been completely redesigned. The interface cannot
do numerical gradients anymore (use SHARC_NUMDIFF.py), and the parallelization schemes of the old interface are not
available anymore. Instead, there are two possible modes to run parallel calculations with the new SHARC-OPENMoLCAS
interface. In the first (default) mode, every individual OPENMoLcAs job is run with 1 core, but if several multiplicities,
or multiple gradients/nonadiabatic coupling vectors are requested, then these will be run in parallel (first all energy
calculations in parallel, then all vectors in parallel). At most ncpu jobs will be run in parallel, which might lead to
idle CPUs, especially in the energy calculations. In the second parallelization mode (used through mpi_parallel), all
OPENMoOLCAS jobs are run with ncpu cores, one job after the other. It is not possible to mix these modes, as in other
interfaces, because changing the number of CPU cores in OPENMoLcas would require rerunning SEWARD (which
distributes the integrals over ncpu files). The second parallelization mode avoids idle CPU cores, but parallel speed
up/efficiency should be evaluated before running large projects to avoid wasting CPU time.

97

cholesky_accu

gradaccudefault
gradaccumax

iterations
rasscf_thrs

pcmset

pcmstate

the number of frozen orbitals.

Sets the Cholesky threshold. Note that Cholesky decomposition is always requested
by the interface and cannot be turned off.

(float) Default accuracy for CP-MCSCF.

(float) Worst acceptable accuracy for CP-MCSCF. This is used if MCLR does not
converge—the interface will try to rerun the calculation with a looser convergence
criterion in MCLR, in order to avoid a crashed trajectory. Note that this might lead
to violations of conservation of total energy, as gradients might be inaccurate with
looser CP-MCSCF convergence.

(two floats) Maximum number of iterations in RASSCF and in orbital optimization.
(three floats) Specify convergence thresholds for: energy, orbital rotation matrix, and
energy gradient, as in the RASSCF input.

Activates the PCM mode. Three arguments follow: the solvent (a string, default
“water”), the AARE value (a float, default 0.4, optional), the RMIN value (a float, default
1.0, optional). Check OPENMoLcas manual for details.

Defines the state for which the PCM charges will be optimized. Followed by two
numbers: multiplicity (1=singlet, ...) and state (1=lowest state of that multiplicity).
Default is the first state according to the state request.

SHARC Manual 6 Interfaces | 6.12 OpENMoLcas Interface
Table 6.16: Keywords for the MOLCAS . template file.

Keyword Description

basis The basis set used. Note that some basis sets (e.g., Pople basis sets) do not work prop-
erly, since the spin-orbit integrals cannot be calculated. Note that textscMolcas will
automatically employ Douglas-Kroll-Hess or other relativistic options appropriate
for the chosen basis set.

baslib Can be used to provide the path to a custom basis set library (analogous to the baslib
keyword in OPENMoOLCAS).

nactel Number of active electrons for CASSCF, assuming a neutral molecule. The actual
number of active electrons is computed based on the charge per multiplicity received
from the caller or QM. in file.

ras2 Number of active orbitals for CASSCF.

rasl Maximum number of holes in RAS1 in a RASSCF calculation (identical for all multi-
plicities).

ras3 Maximum number of electrons in RAS3 in a RASSCF calculation (identical for all
multiplicities).

inactive Number of inactive orbitals.

roots Followed by a list of integers, giving the number of states per multiplicity in the
state-averaging procedure.

method Followed by a string, which is one of “CASSCF”, “CASPT2”, “MS-CASPT2”, “XMS-
PDFT”, or “CMS-PDFT” (case insensitive), defining the level of theory. Default is
“CASSCF”.

functional Followed by a string, which is one of “t:PBE”, “ft:PBE”, “t:BLYP”, “ft:BLYP”, “t:revPBE”,
“ft:revPBE”, “t:LSDA”, or “ft:LSDA” (case insensitive), defining the functionals used in
PDFT.

ipea Followed by a float giving the IP-EA shift for CASPT2 (see OPENMoLcas manual for
more information). The default is 0.25, as in OPENMOLCAS.

imaginary Followed by a float giving the imaginary level shift for CASPT2 (see OPENMoLcAS
manual for more information). The default is 0.0, as in OPENMOLCAS.

frozen Number of frozen orbitals for CASPT2. Default is -1, which lets OpENMoLcas choose

98

SHARC Manual 6 Interfaces | 6.12 OPENMoLcas Interface

Table 6.17: Keywords for the MOLCAS. resources file.
Keyword Description
molcas Is the path to the OPENMoLcas installation. This directory should contain subdi-
rectories like bin/, basis_library/, data/, or lib/. Relative and absolute paths,
environment variables and ~ can be used. The interface will set $MOLCAS to this path.
If this keyword is not present in MOLCAS. resources, the interface will use the envi-
ronment variable $MOLCAS, if it is set.

driver Path to the MoLcas/OPENMOLCAS driver (molcas.exe or pymolcas).

dry_run If set to true, will not clean the scratchdir, write input files, or run OPENMoLcCAS
calculations. It will perform overlap, TheoDORE, and RESP calculations, and parse
output.

mpi_parallel Uses MPI parallel OpENMoLcas runs. The number of cores is dynamically chosen
based on the available cores and the number of tasks (energies, gradients, displace-
ments).

6.12.3 During setup

The Molcas interface setup begins by prompting you to specify the path to the Molcas executable (via an environment
variable or explicit path) and a scratch directory for temporary integral files. These locations will be used during the
calculation and must be valid on the machine where you run SHARC.

Next, the setup checks for a MOLCAS . template file in the current directory. If one is found, you will be asked whether to
use it; otherwise you must supply the path to a valid MOLCAS . template file. This template should contain all required
input directives needed for a CASSCF calculation, including basis sets, CASSCF parameters, and state-averaging settings.

You are then asked to enter the number of CPUs to be used per trajectory and the total RAM (in MB) that Molcas may
consume. These values will be written to MOLCAS. resources and govern the parallelization and memory allocation of
your jobs.

For initial wavefunction guesses, the interface allows to choose whether to supply JobIph or RasOrb files. Subsequently,
file paths for initial orbitals for each requested multiplicity need to be given. If you opt not to provide guess files, a
warning reminds you that CASSCF convergence may be slow or unstable without proper starting MOs.

Finally, if a wave function analysis via libwfa was requested, the setup will display a list of valid wave function
descriptors (e.g., Om, PR, POS, COH, MC, etc.; note that this list is somewhat shorter than for the TDDFT interfaces)
and ask you to select which to compute. You will then define fragments by entering atom-index lists (one fragment per
line, ending with end).

6.12.4 Template file generator: molcas_input.py

This is a small interactive script to generate template files for the SHARC-OPENMoLcas interface. It simply queries the
user for some input parameters and then writes the file MOLCAS. template, which can be used to run SHARC simulations
with the SHARC-OPENMoLcaAs interface. The input generator can also be used to write proper OPENMoLcas input files
for single-point calculations and optimizations/frequency calculations on CASSCF and (MS-)CASPT?2 level of theory.

Type of calculation Choose to either perform a single-point calculation or a minimum optimization (including
optionally frequency calculation), or to generate a template file. For the template generation, no geometry file is needed,
but the script looks for a MOLCAS. input in the same directory and allows to copy the settings.

For single-point calculations, optimizations and frequency calculations, files in MOLDEN format are created (containing
the orbitals, optimization steps and normal modes, respectively). The file MOLCAS. freq.molden can be used to generate
initial conditions with wigner.py.

Geometry file The geometry file is only used to calculate the nuclear charge.
Charge This is the overall charge of the molecule. This number is used with the nuclear charge to calculate the

number of electrons and from there the number of inactive orbitals and active electrons.

99

SHARC Manual 6 Interfaces | 6.12 OPENMoLcas Interface

Method Choose either CASSCF or CASPT2. Multi-state CASPT2 can be requested later.
Basis set This is simply a string, which is not checked by the script to be a valid basis set of the OpENMoLcas library.

Number of active electrons and orbitals These settings are necessary for the definition of the CASSCF wave
function. The number of inactive orbitals is automatically calculated from the total number of electrons and the number
of active electrons.

States for state-averaging For each multiplicity, the number of states for the state-averaging procedure must be
equal or larger than the number of states used in the dynamics.

Further settings Depending on the run type and method, the script might ask further questions regarding the root
to optimize, CASPT?2 settings (whether to do multi-state CASPT2, IPEA shift, imaginary level shift), or whether a
spin-orbit RASSI should be performed (for input file generation only).

100

SHARC Manual 6 Interfaces | 6.13 MNDO Interface

6.13 MNDO Interface

Ab initio interface to run OM2/MRCI calculations using the MNDO code.

The SHARC-MNDO interface allows to run SHARC simulations with MNDO’s OM2 (and ODM2) Hamiltonian, using
SCF or floating-occupation SCF orbitals and GUGA-based MRCISD. The interface is compatible with restricted and
restricted open-shell ground states. Nonadiabatic couplings are available as well as wave function overlaps from the
WFovERLAP code. The SHARC-MNDO interface furthermore allows to do electrostatic embedding, with gradients and
nonadiabatic coupling vectors on the point charges being available.

The interface needs two additional input files, a template file for the quantum chemistry (file name is MNDO . template)
and a resource file (MNDO. resources).

6.13.1 Template file: MNDO. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid MNDO input
file. The file only contains a number of keywords, given in table 6.18. The actual input for MNDO will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_MNDO/MNDO . template. We recommend that users start from this template file
and modify it appropriately for their calculations.

6.13.2 Resource file: MNDO. resources

The file MNDO. resources contains mainly paths (to the MNDO executables, to the scratch directory, etc.) and other
resources, plus settings for wfoverlap.x. This file must reside in the same directory where the interface is started. It
uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of keywords is
arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain keywords.

Table 6.18: Keywords for the MNDO. template file.
Keyword Description
hamiltonian (string) This keyword changes the Hamiltonian between OM2 and ODM2. Options: OM2,
ODM2. This keyword is required.

rohf (int) Controls the use of restricted open-shell Hartree-Fock procedure. 0 is restricted RHF, 1 is
ROHF. Default value is 0.

fomo (int) Switch for floating occupation molecular orbital procedure. 0 turns off, 1 turns on. Default
value is 0.

kitscf (int) Controls the maximum number of SCF iterations. Default value is 5000.

icil (int) Controls the number of occupied orbitals. This keyword is required.

ici2 (int) Controls the number of unoccupied orbitals. This keyword is required.

act_orbs (list of int) List of the indices of the orbitals in the active space, starting from 1. Number of

entries has to be icil + ici2. Example: act_orbs 3 4 6. Default value is an empty list. Hint:
This is only necessary if you want specific orbitals in your active space, similar to CASSCF
calculations. In order to ensure that the orbitals stay the same over a simulation use orbital
mapping (imomap). If you simply want to select the n highest occupied and m lowest unoccupied
orbitals in your active space use icil and ici2 without act_orbs.

imomap (int) To control orbital tracking during trajecories. 0 turns it off, 1 turns it on. Hint: should
only be used for molecules that do not twist around a 7-bond. Attention: Do not use orbital
mapping together with overlap calculations, this causes severe problems in the dynamics!
Default value is 0.

nciref (int) Controls the number of references configurations. Maximum allowed value 20. Default
value is 1.
mciref (int) Definition of the reference occupations. = 0 Stardard definition. = 1 Starting from the

reference occupations corresponding to mciref=0, add further references so that their fraction
in all CI roots is at least 85%, and repeat the CI calculation once. Default value is 0.

levexc (int) Maximum excitation level relative to any of the reference configurations. From 1 (singlet)
to 6 (sextet). Default value is 2 (doublet).

101

SHARC Manual 6 Interfaces | 6.13 MNDO Interface

The MNDO interface employs the keywords scratchdir, savedir, retain and delay from Tables 6.3 and all keywords
from 6.4 for WFovERLAPS. Interface-specific keywords are given in Table 6.19. A fully commented resource file for this
interface with all possible options is located in $SHARC/ . . /examples/SHARC_MNDO/MNDO. resources.

6.13.3 During setup

SHARC_MNDO . py follows the standard initialization procedure during setup. The user is asked for two files. First, the
MNDO. template needs to be provided. In the second question, the user is asked for a MNDO. resources file.

If no resources file was prepared before, the setup routine will help in the construction of this file. In order, the user will
get asked for the path to the MNDO directory (mndodir), then for the scratchdir, and then for the available memory
(memory). If overlaps were selected during setup, also the path to the wave function overlap code is asked for.

Table 6.19: Keywords for the MNDO. resources file.

Keyword Description

mndodir Is the path to the MNDO installation directory. This directory should contain the
executable mndo2020. Relative and absolute paths, environment variables and ~ can
be used. The interface will automatically update the $LD_LIBRARY_PATH.

neglected_gradient Decides how not-requested gradients are reported back (Options: zero: default, not-
requested gradients are zero; gs: not-requested gradients are equal to ground state
gradient; closest: not-requested gradients are equal to closest-energy requested
gradient).

102

SHARC Manual 6 Interfaces | 6.14 MOPAC-PI Interface

6.14 MOPAC-PI Interface

Ab initio interface for semi-empirical FOMO-CI simulations using MOPAC-PI, optionally with QM/MM using TINKER.

The SHARC-MOPAC-PI interface allows to run SHARC simulations with MOPAC-PI’s semiempirical Hamiltonians (e.g.
AM1, PM3, PM6). The interface is compatible with the floating occupation molecular orbital-configuration interaction
(FOMO-CI) method. Gradients and nonadiabatic couplings are available, as well as wave function overlaps calculated
by MOPAC-PI itself (rather than by WFOVERLAP).

The SHARC-MOPAC-PI interface furthermore allows to perform QM/MM dynamics, using TINKER for the MM part. Note
that this QM/MM does not work via the hybrid SHARC_QMMM. py interface, but via a QM/MM implementation directly
integrated into MOPAC-PL

The interface needs two additional input files, a template file for the quantum chemistry (file name is MOPACPI . template)
and a resource file (MOPACPI.resources). There is also an option to use different parameters for the semiempirical
hamiltonians (reparametrization) and to use additional potentials on certain bonds or dihedrals. These additional param-
eters are handled by the ext_param file. In the case of QM/MM calculations, three more input files are needed: a TINKER
force field file (e.g., oplsaa.prm), MOPACPI_tnk.key where additional atomtypes can be defined, and MOPACPI_tnk.xyz
which contains the connectivity and force field IDs per atom.

6.14.1 Template file: MOPACPI. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid MOPAC-PI
input file. The file only contains a number of keywords, given in table 6.20. The actual input for MOPAC-PI will be
generated automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_MOPACPI/MOPACPI.template. For QM/MM calculations, a second example tem-
plate (along with the QM/MM-specific files) is located at $SHARC/ . . /examples/SHARC_MOPACPI_Tinker/MOPACPI.template.
We recommend that users start from this template file and modify it appropriately for their calculations.

Table 6.20: Keywords for the MOPACPI. template file.

Keyword Description

ham (string) Controls the Hamiltonian used. Options: MNDO, AM1, PM3, RM1, PM6, and PM7. The
default keyword is AM1.

numb_elec (int) Controls the number of electrons in the active space. This keyword is required.

numb_orb (int) Controls the number of orbitals in the active space. This keyword is required.

flocc (float) Floating occupation parameter. Default value is 0.1.

meci (int) Number of CI vectors to be printed. Default value is 20.

mxroot (int) maximum number of CI vectors calculated by MECI. The default value is 20.

add_pot (bool) Controls the additional external potential that can be added in the ext_param file and

external_par

described in below. Options: True, False. Default value is False.
(int) controls the number of external parameters for the semiempirical Hamiltonian. Theses
parameters can be added in the ext_param file as shown below. The ext_paranm file has to be
added if external_par is provided and the value bigger than 0.

micros (int) Number entries (microstates) to define the active space of configuration interaction
calculations. Definition of the microstates can be included in the ext_param file as a lists of 0
and 1.

gmmm Controls the number of external point charges for QM/MM calculations.

link_atom_pos

link_atoms

force_field

(list of int) List of the index (starting from 1) of the of the atoms involved in the linkbonds.

Example: link_atom_pos 1 22

(list of string) Controls the kind of linkbonds used for QM/MM calculations. Example:

link_atoms Hx12.0 Hx12.0. For the QM calculations atoms with index 1 and 22 (as defined in
link_atom_pos are replaced by hydrogens of mass 12.

(string) Name of the Tinker force-field file. The file has to be in the same folder as the
MOPACPI. rescources and MOPACPI.template files.

103

SHARC Manual 6 Interfaces | 6.14 MOPAC-PI Interface

6.14.2 Resource file: MOPACPI.resources

The file MOPACPI. resources contains mainly paths (to the MOPAC-PI executables, to the scratch directory, etc.). This
file must reside in the same directory where the interface is started. It uses a simple “keyword argument” syntax.
Comments using # and blank lines are possible, the order of keywords is arbitrary. Lines with unknown keywords are
ignored, since the interface just searches the file for certain keywords.

The MOPAC-PI interface employs the keywords scratchdir, savedir, retain and delay from Table 6.3. Interface-specific
keywords are given in Table 6.21. A fully commented resource file for this interface with all possible options is located
in $SHARC/. ./examples/SHARC_MOPACPI/.

6.14.3 Reparametrized Hamiltonians, definition of microstates and additional potentials:
ext_param

The file ext_param contains additional parameters for MOPAC-PI. This file must reside in the same directory where
the interface is started. When using the three possible sets of parameters, the exact syntax shown below needs to
be followed. Parameters for the reparametrized Hamiltonians need to be preceeded by EXTERNAL PARAMETERS. The
definition of the microstates needs to be preceeded by MICROS. And if a additional potential is used the definition of the
needs to start with ADDED POTENTIAL, followed by a comment line, and needs to end with END ADDED POTENTIAL.

EXTERNAL PARAMETERS

Uss C -49.5362424932
UPP C -33.7229206876
BETST C -13.7975775576
FN34 Hx 2.92552463
PQNS Hx 2.0

MICROS

11111110000001111111600000
111111010000011111160100000

11111110000000111111000001

ADDED POTENTIAL

AZOPOT FENIL

45 56 44 20 -0.3828085961 82.1722609695 13.4165638641
46 47 18 4 0.09497 -0.66

END ADDED POTENTIAL

The full example is given in $SHARC/ . . /examples/SHARC_MOPACPI_Tinker/.

Table 6.21: Keywords for the MOPACPI. resources file.

Keyword Description

mopacpidir Is the path to the MOPACPI installation directory. This directory should contain the
executable mopacpi. Relative and absolute paths, environment variables and ~ can be
used. The interface will automatically update the $LD_LIBRARY_PATH.

gmmm_table Followed by the path to the connection table file, in SHARC-QM/MM format.

gmmm_ff_file Followed by the path to the force field file, in AMBER95 format for TINKER.

neglected_gradient Decides how not-requested gradients are reported back (Options: zero: default, not-
requested gradients are zero; gs: not-requested gradients are equal to ground state
gradient; closest: not-requested gradients are equal to closest-energy requested
gradient).

104

SHARC Manual 6 Interfaces | 6.14 MOPAC-PI Interface

6.14.4 QM/MM force field files

In total threee files need to be provided to run QM/MM calculations.

- oplsaaa.prm
* MOPACPI_tnk.xyz
» MOPACPI_tnk.key

These force field files should be found in the QM directory.
6.14.5 QM/MM connection table file: MOPACPI_tnk.xyz
This file defines which atoms are in the QM or MM region, the atom types (for TINKER), and the connectivity. Note that

the SHARC-MOPAC-PI interface uses newly developed routines to setup QM/MM calculations and communicate with
TINKER.

A sample looks like:

6056

1 27.179361 30.197594 28.975494 981 3 11 19 0
2 C 27.955915 27.560778 30.953823 981 4 13 23 0
3C 27.179033 31.217045 28.059326 981 1 21 24 0
4 C 27.971155 26.196959 30.972338 981 2 20 25 0
5C 24.798410 30.211231 28.888300 981 6 19 26 0
6 C 24.813580 31.242962 27.972143 981 5 8 21 0
7 C 31.083271 33.473904 29.885555 981 10 27 28 29
8 F 23.663391 31.744644 27.488258 984 6 0 0

90 29.496525 29.714893 28.482552 983 11 16 0 0

The full example is given in $SHARC/ . ./examples/SHARC_MOPACPI_Tinker/.

6.14.6 QM/MM force field file: e.g. oplsaa.prm

This file defines the force field used for the MM part of the calculation. Note that the path to this file needs to be set in
the MOPACPI.template file.

An example is given in $SHARC/ . . /examples/SHARC_MOPACPI_Tinker/.

6.14.7 QM/MM additional force field definition file: MOPACPI_tnk.key

This file defines additional atom types and Coulomb, as well as Lennard-Jones terms.

An example is given in $SHARC/ . . /examples/SHARC_MOPACPI_Tinker/.

6.14.8 During setup

During setup, SHARC_MOPACPI.py will ask for a template file (MOPACPI.template) and in the following question, if
external parameters for a reparameterization of the Hamiltonian or additional potentials are needed, the path to
ext_params needs to be give as well. Afterwards the user is asked for a MOPACPI. resources file. If no resources file can
be provided SHARC will help in the construction of this file. For QM/MM calculations the three files described in 6.14.4
need to be provided too. For the construction of these three files we currently have no pipeline, it is completely up to
the user to make these files.

105

SHARC Manual 6 Interfaces | 6.15 LEGACY Interface

6.15 LEGACY Interface

An interface that provides backwards compatibility of SHARC4 with SHARC3-style interfaces.

SHARC4 contains very extensive changes to the previously existing interface infrastructure, due to the switch to object-
oriented, inherited interface classes and the addition of nestable hybrid interfaces. These changes made it necessary to
rewrite or extensively modify the existing interfaces. Currently, not all previous interfaces were converted to the new
interface infrastructure. In order to use those SHARC3-style interfaces within SHARC4, we provide SHARC_LEGACY . py.
SHARC_LEGACY . py is a somewhat untypical mixture of an ab initio interface (it calls external software via a shell call)
and a hybrid interface (it calls another interface).

Energies, spin—-orbit couplings, dipole moments, gradients, nonadiabatic couplings, overlaps, Dyson norms, and
TheoDORE descriptors are available. Electrostatic embedding (i.e., QM/MM), multipolar density representations, and
density matrices are not available. With SHARC_LEGACY . py, the following five interfaces can be used: SHARC_AMS_ADF . py,
SHARC_COLUMBUS . py, SHARC_BAGEL . py, SHARC_MOLPRO. py, and SHARC_PYSCF.py. SHARC_LEGACY.py here takes care of
(i) providing the setup routines for these interfaces, so that they can be used with the updated setup_x. py scripts, (ii)
the updated time step logic of SHARC4, and (iii) providing a legal importable and callable interface that can be used as
child interface for hybrids like SHARC_NUMDIFF . py.

SHARC_LEGACY . py needs two input files, called LEGACY . template and LEGACY. resources. Note that the interface cannot

access or affect the settings of the chosen child interface. For the documentation of their input, see the respective
sections.

6.15.1 Template file: LEGACY.template

This file contains the specification of the chosen legacy child interface and the path to the directory containing the
input files for the legacy child. The possible keywords are given in Table 6.22.

Table 6.22: Keywords for the LEGACY. template file.

Keyword Description

child_program Selects the legacy child. Can be one of ams_adf, columbus, bagel, molpro, pyscf (not case
sensitive). No default.

child_dir Defines the path to the directory containing the child’s interface-specific files.

The folders $SHARC/ . . /examples/SHARC_LEGACY_x provide example inputs for each of the five legacy interfaces.

6.15.2 Resource file: LEGACY.resources

This file currently has only one keyword, as documented in Table 6.23.

Table 6.23: Keywords for the LEGACY. resources file.
Keyword Description
scratchdir The directory to run the child inside. Do not use the same as the scratchdir for the child. Default
is to run it in $(pwd) /SCRATCH.

6.15.3 During setup

During setup, SHARC_LEGACY . py uses specific routines for each of the legacy interfaces, see below.

106

SHARC Manual 6 Interfaces | 6.16 AMS—ADF Interface

6.16 AMS-ADF Interface

Legacy ab initio interface for TD-DFT with the ADF engine of the Amsterdam Modeling Suite (AMS).

The SHARC-AMS-ADF interface SHARC_AMS_ADF . py allows to run SHARC simulations with ADF’s TD-DFT functionality.
The interface is compatible with restricted and unrestricted ground states, but not with symmetry. Spin-orbit couplings
are obtained with the perturbative ZORA formalism, and wave function overlaps from the WFOVERLAP code are available
(but no nonadiabatic couplings). Dyson norms can also be computed through the WFoverLAP code. THEODORE (version
2.0 and higher) can be used to perform automatic wave function analysis. The previous QM/MM capabilities of the
SHARC-AMS-ADF interface are not available anymore, due to significant restructuring of QM/MM within AMS. QM/MM
is also not possible via SHARC4’s capabilities, because legacy interfaces cannot handle point charges.

The interface needs two additional input files, a template file for the quantum chemistry (file name is AMS_ADF . template)
and a resource file (AMS_ADF. resources). If files QM/AMS_ADF . t21.<job>.init are present, they are used to provide an
initial orbital guess for the SCF calculation of the respective job.

The interface automatically uses Python code provided with AMS to allow reading of ADF’s binary output files. Only
AMS2020 or newer is supported, as in older versions ADF was not available through the AMS driver.

The SHARC-AMS-ADF interface is a legacy interface, usable in SHARc4 through SHARC_LEGACY . py, in particular consid-
ering the setup routines.

6.16.1 Template file: AMS_ADF. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid AMS input
file. The file only contains a number of keywords, given in table 6.24. The actual input for AMS will be generated
automatically through the interface. In order to enable many functionalities of AMS/ADF and to allow fine-tuning of
the performance for large calculations, the template has a relatively large number of keywords.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located in $SHARC/ . . /examples/SHARC_AMS_ADF/AMS_ADF . template. We recommend that users start from this template
file and modify it appropriately for their calculations.

6.16.2 Resource file: AMS_ADF.resources

The file AMS_ADF . resources contains mainly paths (to the AMS executables, to the scratch directory, etc.) and other
resources, plus settings for wfoverlap.x and THEODORE. This file must reside in the same directory where the interface
is started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of
keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain
keywords.

The AMS-ADF interface employs essentially all keywords from Tables 6.3 (except: ngpu), as well as WFOVERLAP and
TuHEODORE keywords from Table 6.4. Interface-specific keywords are given in Table 6.25. A fully commented resource
file with all possible options and comprehensive descriptions is located in $SHARC/ . . /examples/SHARC_AMS_ADF/.

Parallelization ADF usually shows very good parallel scaling for most calculations. However, it is more efficient to
carry out multiple ADF calculations (different multiplicities, multiple gradients) in parallel, each one using a smaller
number of CPUs.

In the SHARC-AMS-ADF interface, parallelization is controlled by the keywords ncpu and schedule_scaling. The first
keyword controls the maximum number of CPUs which the interface is allowed to use for all ADF runs simultaneously.
The second keyword is the parallel fraction from Amdahl’s Law, see Section 8.3. With a value close to zero, the interface
will try to run all jobs at the same time. With values close to one, jobs will be run sequentially with the maximum
number of cores. Typical values for schedule_scaling are 0.95 for GGA functionals, 0.75 for hybrid functionals, and
0.90 for hybrid functions in combination with the rihartreefock option.

Note that multiple gradients can be computed in a single ADF run, so that there will be multiple jobs to schedule only if
including several multiplicities (beyond singlet plus triplet). If only a single multiplicity is computed (or singlets plus
triplets), then the schedule_scaling keyword does not have any effect.

107

basis_per_element
define_fragment
functional
functional_xcfun
dispersion

relativistic

charge

totalenergy

cosmo
cosmo_neql

grid
grid_per_atom
fit
fit_per_atom
exactdensity

rihartreefock

rihf_per_atom
linearscaling

cpks_eps
occupations
scf_iterations
no_tda
fullkernel
paddingstates
dvd_vectors

dvd_tolerance
unrestricted_triplets

modifyexcitations

Followed by an elemental symbol (e.g., "Fe", "H.1") and then by a path to the desired ADF basis
set file. Files with frozen core should not be used.

Followed by an elemental symbol (e.g., "Fe", "H.1") and then by a list of atom numbers which
should belong to this atom type.

Followed by two strings. First argument gives the type of functional (LDA, GGA, hybrid),
second argument gives the functional (VWN, BP86, B3LYP, ...).

Enables functional evaluation with the XCFun library within ADF.

If present, is written verbatim to ADF input with all arguments.

If not given, perform a nonrelativistic calculation. Otherwise, copy the line verbatim to the
ADF input.

Sets the total charge of the system. Can be either followed by a single integer (then the interface
will automatically assign the charges to the multiplicities) or by one charge per multiplicity.
Note that as a legacy interface, SHARC or parent interfaces cannot control the charges
directly, so they have to be defined in the template file.

Activates the computation of total energies (by default, ADF computes binding energies). Does
not work for relativistic calculations.

Followed by a string giving a solvent. Activates COSMO (no gradients possible).

Activates non-equilibrium solvation, which is needed for vertical excitation calculations. Is
followed by a float giving the square of the refractive index of the solvent.

Followed by two strings (e.g., beckegrid normal or integration 4.0) defining which integra-
tion grid and accuracy to use. For details, see the example template file.

Followed by a string (e.g., basic, normal, good) and a list of the atoms which should have the
given integration accuracy. Can be used multiple times with different qualities.

Followed by two strings (e.g., zZlmfit normal or stofit) defining which Coulomb integration
method and accuracy to use. For details, see the example template file.

Works like grid_per_atom, but for the Coulomb method accuracy.

Enables the exactdensity keyword in the ADF input.

Followed by a quality keyword (e.g., basic, normal, good). If not present, the old HF exchange
routines in ADF are used.

Works like grid_per_atom, but for the RI Hartree Fock method.

Followed by an integer (between 0 and 99), which controls whether certain terms are neglected
in ADF.

Followed by a float (default 0.0001) giving the convergence threshold in the CPKS equations
for excited-state gradients.

If present, the foll line is copied verbatim to the ADF input.

Followed by the maximum number of SCF iterations (default: 100)

This keyword deactivates TDA, which the interface requests by default.

Uses the full (non-ALDA) kernel in TD-DFT. Not compatible with gradients, and automatically
activates functional_xcfun.

Followed by a list of integers, which give the number of extra states to compute by ADF, but
which are neglected in the output. Should not be changed between time steps, as this will break
ADF’s restart routines.

Number of Davidson vectors. Default: min(40,nstates+40).

Energy convergence criterion for the excited states (in Hartree).

Requests that the triplets are calculated in a separate job from an unrestricted ground state
(no spin-orbit couplings available). Default is to compute triplets as linear response of the
restricted singlet ground state.

Followed by an integer, indicating that excitation should only be possible from the first n MOs.
Can be used to compute core-excitation states (for X-Ray spectra).

SHARC Manual 6 Interfaces | 6.16 AMS—ADF Interface
Table 6.24: Keywords for the AMS_ADF . template file.
Keyword Description
basis Gives the basis set for all atoms (default SZ).
basis_path gives the path to the basis library of ADF (~ and $ can be used).

108

SHARC Manual 6 Interfaces | 6.16 AMS—ADF Interface

Table 6.25: Keywords for the AMS_ADF. resources file.
Keyword Description
adfhome Is the path to the ADF installation. Relative and absolute paths, environment variables
and ~ can be used. The interface will set $ADFHOME to this path, and will also set
$ADFBIN to $ADFHOME/bin/.

scmlicense Is the path to the ADF license file. Relative and absolute paths, environment variables
and ~ can be used.
scm_tmpdir Path to the ADF-internal scratch directory. Usually, this is set at installation, but can

be overridden here. Should not exist and must not be identical to scratchdir.

neglected_gradient Decides how not-requested gradients are reported back (Options: zero: default, not-
requested gradients are zero; gs: not-requested gradients are equal to ground state
gradient; closest: not-requested gradients are equal to closest-energy requested
gradient).

6.16.3 During setup

If you want to setup trajectories for SHARC_AMS_ADF . py, you have to select in the respective setup script the SHARC_LEGACY . py
legacy frontend interface. This is because SHARC_AMS_ADF . py is not yet converted to SHARc4 format and thus does not
have its own setup routines. The setup routines are instead in SHARC_LEGACY . py.

After selecting SHARC_LEGACY . py, you will directly get prompted for which of the five legacy interfaces you want to
use. Select SHARC_AMS_ADF . py. Later during setup, the setup dialogue for SHARC_AMS_ADF . py will be carried out.

During the setup dialogue, you are first queried whether you want to setup $AMSHOME and $SCMLICENSE from the
amsrc.sh file or give the paths manually. Then you are asked for the path to the template file. The template file needs
to contain at least the basis set, functional, and charge. Note that, as a non-SHARC4 interface, SHARC_AMS_ADF . py does
not receive the desired charge from the SHARC driver, but reads it from the template file. Make sure that the charge in
the template file and in the dynamics input is consistent.

Subsequently, the setup queries for the initial MO files (.t21 or . rkf files). For DFT-based trajectories, initial MO files
are not strictly necessary, but might speed up the first time step.

Finally, the setup dialogue asks for the information for the resource file. It queries for the number of CPU cores and the
parallel scaling. Memory usage cannot be controlled by SHARC_AMS_ADF . py.

If wave function overlaps are needed, the code queries for the path to the overlap executable, the wave function
truncation threshold, and the memory limit.

If TheoDORE wave function analysis was selected, it also asks for the path to TheoDORE, the descriptors, and the
fragmentation scheme.

109

SHARC Manual 6 Interfaces | 6.16 AMS—ADF Interface

6.16.4 Frequencies converter: AMS_ADF_freq.py

The small script AMS_ADF_freq.py can be used to convert the standard output or the adf. rkf file created by an ADF
frequency calculation. The usage is very simple:

$SHARC/AMS_ADF_freq.py ADF.out
or:

$SHARC/AMS_ADF_freq.py adf.rkf

The script detects automatically the file format. Note that in ADF, the infrared intensities are only accessible from the
standard output, so use this for IR spectrum generation. However, the data in adf. rkf has a higher numeric precision, so
it is recommended to convert the adf. rkf file if no intensities are needed. In any case, a file called <filename>.molden
is written, containing the frequencies and normal modes. This file can then be used with wigner.py.

110

SHARC Manual 6 Interfaces | 6.17 COLUMBUS Interface

6.17 COLUMBUS Interface

Legacy ab initio interface for RASSCF and MRCISD calculations in the COLUMBUS package.

The SHARC-CoLUMBUS interface allows to run SHARC dynamics based on CorumBus’ CASSCF, RASSCF and MRCI wave
functions. The interface is compatible to CoLumBUS calculations utilizing the CoLumBUs-MoLcas interface (SEWARD
integrals and ALAsSKA gradients), or using the DALTON integral code distributed with CorumBus. Using SEWARD integrals,
spin-orbit couplings can be calculated, but no nonadiabatic couplings (only overlaps can thus be used). Using DaLTON
integrals, spin-orbit couplings are not possible, but nonadiabatic couplings can be calculated. The CASSCF step can be
done with either CoLumBus’ mescf code (all features available) or with Morcas’ rasscf code (faster, but no gradients
possible). The interface utilizes the WFOVERLAP program to calculate the overlap matrices. The interface can also
calculate Dyson norms between neutral and ionic wave functions using the WFoverLAP code. QM/MM is not possible
via SHARC4’s capabilities, because legacy interfaces cannot handle point charges.

The interface needs as additional input the file QM/COLUMBUS . resources and a template directory containing all input
files needed for the CorumBuUs calculations. Initial MOs can be given in the file QM/mocoef_mc.init. For multiple
jobs, initial MOs can be given as QM/mocoef_mc.init.<job>. For runs with rasscf, initial MOs have to be given as
molcas.RasOrb.init or molcas.RasOrb.init.<job>.

The Suarc-CoLuMmBUS interface is a legacy interface, usable in SHARc4 through SHARC_LEGACY . py, in particular consid-
ering the setup routines.

6.17.1 Template input

The interface does not generate the full CorumBus input on-the-fly. Instead, the interface uses an existing set of input
files and performs only necessary modifications (e.g., the number of states). The set of input files must be provided by
the user. Please see the 7 CoLumBUs online documentation and, most importantly, the 7 Corumsus SOCI tutorial for a
documentation of the necessary input. The SHARc tutorial also has a section about generating the required CoLumBus
input file collection. An example template directory is located in $SHARC/. . /examples/SHARC_COLUMBUS/.

Generally, the input consists of a directory with one subdirectory with input for each multiplicity (singlets, doublets,
triplets, ...). However, even-electron wave functions of different multiplicities can be computed together in the same
job if spin-orbit couplings are desired. Independent multiple-DRT inputs (ISC keyword) are also acceptable. Note that
symmetry is not allowed when using the interface.

Note that as a legacy interface, SHARC or parent interfaces cannot control the molecular charge per
multiplicity directly, so you need to prepare all CoLumBUs input with the correct charges in mind.

The path to the template directory must be given in COLUMBUS . resources, along with the other resources settings.

Integral input The interface is able to use input for calculations using SEWARD or DALTON integrals. If you want
to calculate SOCs, you have to use SEWARD and have to include the AMFI keyword in the integral input. If you use
Darton, SOCs are not available, but it is possible to compute nonadiabatic couplings.

It is important to make sure that the order of atoms in the template input files and in the SHARC input is consistent.

It is necessary to prepare all template subdirectories with the same integral code and the same AO basis set.

MCSCF input The MCSCF section can use any desired state-averaging scheme, since the number of states in MCSCF
is independent of the number of states in the MRCI module. However, frozen core orbitals in the MCSCF step are not
possible (since otherwise gradients cannot be computed). Prepare the MCSCF input for CI gradients. It is advisable to
use very tight MCSCF convergence criteria.

If gradients are not needed, you can also manually prepare a MoLcas RASSCF input in molcas. input, in order to use
Moticas RASSCF instead of CoLumBus MCSCF (see molcas_rasscf keyword).

MRCI input Either prepare a single-DRT input without SOCI (to cover a single multiplicity), a single-DRT input
with SOCI and a sufficient maximum multiplicity for spin-orbit couplings or an independent multiple-DRT input (as,
e.g., for ISC optimizations). Make sure that all multiplicities are covered with all input directories.

In the MRCI input, make sure to use sequential ciudg. Also take care to setup gradient input on MRCI level.

111

https://columbus-program-system.gitlab.io/columbus/doc.html
https://columbus-program-system.gitlab.io/columbus/tutorial-SO.pdf

SHARC Manual 6 Interfaces | 6.17 COLUMBUS Interface

Job control Setup a single-point calculation with the following steps:

« SCF

+ MCSCF

« MR-CISD (serial operation) or SO-CI coupled to non-rel CI (for SOCI DRT inputs)
« one-electron properties for all methods

« transition moments for MR-CISD

« nonadiabatic couplings (and/or gradients)

Request first transition moments and interstate couplings (or alternatively full nonadiabatic couplings if Dalton integrals
are used) in the following dialogues. Analysis in internal coordinates and intersection slope analysis are not required.

6.17.2 Resource file: COLUMBUS. resources

The CoLumBUSs interface employs essentially all keywords from Tables 6.3 (except: ngpu), as well as WFOVERLAP
keywords from Table 6.4. Interface-specific keywords are given in Table 6.26. A fully commented resource file with all
possible options is located in $SHARC/ . . /examples/SHARC_COLUMBUS/.

Table 6.26: Keywords for the COLUMBUS . resources file.

Keyword Description

columbus Path to the CoLumBUS main directory. This directory should contain executables
like runc, mescf.x, cidrt.x, or ciudg.x. Relative and absolute paths, environment
variables and ~ can be used.

molcas Path to the MoLcAs main directory. Relative and absolute paths, environment variables
and ~ can be used. This path is only used to get the AO overlaps for overlap/Dyson
calculations (since in this case the interface calls MoLcas explicitly). Otherwise
CorumBus will use the path to MoLcas specified during the installation of CoLumBus.

runc Path to the runc script for CoLumBuUSs execution. Default is $COLUMBUS/runc. This
keyword is intended for users who like to modify runc.

wfoverlap Path to WFovERLAP. Relative and absolute paths, environment variables and ~ can be
used. Only necessary if overlaps or Dyson norms are calculated.

integrals Followed by a string which is either seward or dalton. Chooses the integral program
for CorumBuUs. Note that with DarToN integrals SOC is not available. Default is
seward.

molcas_rasscf Use Morcas’ RASSCF program instead of CoLumBus’ MCSCF program. Needs a
properly prepared CoLuMBUS input (&RASSCF section in molcas.input). Note that
gradients are not available in this mode.

template Is followed by the path to the directory containing the template subdirectories. Rela-
tive and absolute paths, environment variables and ~ can be used. See also 6.17.3.

DIR See 6.17.3.

MOCOEF See 6.17.3.

6.17.3 Template setup

The template directory contains several subdirectories with input for different multiplicities. An example is given
in figure 6.2. In COLUMBUS. resources, the user has to associate each multiplicity to a subdirectory. The line “DIR 1
Sing_Trip” would make the interface use the input files from the subdirectory Sing_Trip when calculating singlet
states (the 1 refers to singlet calculations). All calculations using a particular input subdirectory are called a job.

Additionally, the user must specify which job(s) provide the MO coefficients (e.g., the calculation for doublet states
could be based on the same MOs as the singlet and triplet calculation). The line “MOCOEF Doub_Quar Sing_Trip” would
tell the interface to do a MCSCEF calculation in the Sing_Trip job, and reuse the MOs when doing the Doub_Quar job
without reoptimizing the MOs.

112

SHARC Manual 6 Interfaces | 6.17 COLUMBUS Interface

— Mult...

Figure 6.2: Example directory structure of the CoLumsus template directory

6.17.4 During setup

If you want to set up trajectories for SHARC_COLUMBUS.py, you have to select in the respective setup script the
SHARC_LEGACY . py legacy frontend interface. This is because SHARC_COLUMBUS . py is not yet converted to the SHARC4
format and does not have its own setup routines. The setup routines are instead in SHARC_LEGACY . py.

After selecting SHARC_LEGACY . py, you will directly be prompted for which of the five legacy interfaces you want to use.
Select SHARC_COLUMBUS . py. Later during setup, the setup dialogue for SHARC_COLUMBUS . py will be carried out.

During the setup dialogue, you are first queried for the path to the COLUMBUS installation. You can accept the path
from the $COLUMBUS environment variable or enter one manually. Then you are asked for the scratch directory, where
COLUMBUS will store temporary files. This directory will be deleted after the calculation.

Next, the setup prompts for the path to the COLUMBUS template directory. The template directory must contain at
least one subdirectory for each multiplicity that will be simulated. Each subdirectory must contain all required input
files (control.run, mcscfin, tranin, propin, cidrtin, ciudgin, and optionally cidrtin.=* for multiple DRTs). The
script will attempt to match each multiplicity to one of the provided subdirectories automatically. If necessary, you can
manually assign which subdirectory to use for which multiplicity.

Afterward, the script asks for the mapping of mocoef (MO coefficient) files across multiplicities. Each job (multiplicity-
specific subdirectory) can reuse the mocoef file from another job. In this way, you can, e.g., base all multiplicities’ MRCI
computations on the singlet MOs.

If desired, you can choose to copy the entire template directory into each trajectory folder. By default, it is only linked.
Note that copying will produce a large number of files and directories, especially with many trajectories. Note that, as a
non-SHARc4 interface, the charge given in the template file is not checked against the charges in the dynamics input.
Users must make sure that these are consistent.

You are then asked whether you have an initial MO guess file (e.g., mocoef_mc.init). While optional, it is strongly
recommended to provide one, as CASSCF calculations can otherwise become unstable or very slow.

Finally, you are prompted to enter the amount of memory (in MB) to be made available to COLUMBUS.

If wave function overlaps are needed, the script asks for the path to the overlap executable, the determinant screening
threshold, and the number of frozen core orbitals. If Dyson orbital analysis is also selected, the number of doubly
occupied orbitals must be provided.

113

SHARC Manual 6 Interfaces | 6.18 BAGEL Interface

6.18 BAGEL Interface

Legacy ab initio interface for multi-reference methods in the BAGEL package.

The SHARC-BAGEL interface allows to run SHARC simulations with BAGEL’s CASSCF, SS-CASPT2, MS-CASPT?2, and
XMS-CASPT?2 functionalities. The interface is compatible with all multiplicities, but not with symmetry. Note that
separate active spaces are used for each multiplicity. BAGEL features analytical gradients and nonadiabatic couplings for
all of these methods, but no spin-orbit coupings. Wave function overlaps and Dyson norms can be obtained from the
WFovERLAP code. QM/MM is not possible, as legacy interfaces cannot handle point charges.

Note that BAGEL does not allow extracting the AO overlap matrix that is required for overlap and Dyson norm
calculations; hence, the SHARC-BAGEL interface computes the AO overlaps through PYSCF. Also note that, currently, it
is not recommended to work with MS-CASPT?2 gradients and XMS-CASPT2 should always be preferred.

The interface needs two additional input files, a template file for the quantum chemistry (file name is BAGEL . template)
and a resource file (BAGEL. resources). If files QM/archive.<mult>.init are present, they are used to provide an initial
orbital guess for the CASSCF calculation of the respective multiplicity.

Note that as a legacy interface, SHARC or parent interfaces cannot control the molecular charge per
multiplicity directly, so you need to prepare all BAGEL input with the correct charges in mind.

Note that when running BAGEL, it might be necessary for the user to set $LD_LIBRARY_PATH appropriately, so that all
relevant libraries (boost, fabric, ...) can be found.

6.18.1 Template file: BAGEL. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid BAGEL input
file. The file only contains a number of keywords, given in table 6.27. The actual input for BAGEL will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_BAGEL/BAGEL.template. We recommend that users start from this template file
and modify it appropriately for their calculations.

Table 6.27: Keywords for the BAGEL . template file.

Keyword Description

basis Gives the basis set for all atoms (default svp). It is advisable to always specify a basis set file
with absolute path.

df_basis Gives the auxiliary basis set (default: svp-jkfit). It is advisable to always specify a DF basis set
file with absolute path.

dkh Activates the (scalar-relativistic) Douglas-Kroll-Hess Hamiltonian.

nact Number of active orbitals.

nclosed Number of closed-shell orbitals.

nstate Number of state-averaging states per multiplicity.

method Can be casscf, caspt2, ms-caspt2, or xms-caspt2.

shift Level shift for CASPT2 (default: 0.0, give float in Hartree).

shift_imag Switches from real to imaginary level shift (use shift to specify the magnitude).

orthogonal_basis

Switches on the orthogonal_basis option of BAGEL. Is activated automatically for imaginary
level shifts.

msmr Switches on multi-state-multi-reference treatment in CASPT2. Default is single-state-single-
reference (SS-SR).

maxiter Iteration limit for energy calculations (SCF, PT2). Default 500. A too high value can slow down
the calculation unnecessarily.

maxziter Iteration limit for Z-vector calculations (gradients, NACME). Default 100. A too high value can
slow down the calculation unnecessarily.

charge Sets the total charge of the system. Can be either followed by a single integer (then the interface
will automatically assign the charges to the multiplicities) or by one charge per multiplicity.

frozen Number of frozen core orbitals for CASPT2 steps. Default is -1, which lets BAGEL automatically

decide.

114

SHARC Manual 6 Interfaces | 6.18 BAGEL Interface

6.18.2 Resource file: BAGEL. resources

The file BAGEL. resources contains mainly paths (to the BAGEL executables, to the scratch directory, etc.) and other
resources, plus settings relevant for wfoverlap.x. This file must reside in the same directory where the interface is
started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of
keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain
keywords.

The BAGEL interface employs essentially all keywords from Tables 6.3 (except: ngpu), as well as WFoverLAP keywords
from Table 6.4. Interface-specific keywords are given in Table 6.28. A fully commented resource file with all possible
options and comprehensive descriptions is located in $SHARC/ . . /examples/SHARC_BAGEL/.

Table 6.28: Keywords for the BAGEL. resources file.

Keyword Description

bagel Is the path to the BAGEL installation directory. This directory should contain subdirec-
tories bin/ and lib/. Relative and absolute paths, environment variables and ~ can
be used. The interface will automatically update the $LD_LIBRARY_PATH.

mpi_parallel If given, the interface will call BAGEL with mpirun -n NCPU, otherwise it will use
OpenMP.

dipolelevel Followed by an integer which is either 0, 1, or 2. Controls which dipole moment
calculations are skipped by the interface.

Note that the dipolelevel keyword can have significant impact on the calculation time. Generally, in CASPT2
calculations, extra computational effort is required for the calculation of state and transition dipole moments. However,
dipole moments have only influence in the dynamics simulations if a laser field is present. Using the dipolelevel
keyword, it is possible to deactivate dipole moment calculations if they are not required. There are three different
settings for dipolelevel:

« dipolelevel=0: The interface will return only dipole moments which can be calculated at no cost (state dipole
moments of states where a gradient is calculated; transition dipole moments if nonadiabatic couplings are
calculated)

« dipolelevel=1: In addition, the interface will calculate transition dipole moments between Sy and excited singlet
states. Use at least this level for the initial condition setup (setup_init.py takes care of this).

« dipolelevel=2: The interface will calculate all state and transition dipole moments

If only energies and dipole moments are calculated, dipolelevel=1 is only slightly more expensive than dipolelevel=0,
while dipolelevel=2 increases computation time more strongly. However, the computation time also depends on
whether or not nonadiabatic couplings and gradients are calculated.

Parallelization The parallel scaling behavior of BAGEL heavily depends on the system (number of atoms, active
space, frozen core, ...) and on the parallelization mode (MPI or OpenMP). Hence, it is advisable that the optimal settings
(number of cores, parallelization mode) are tested before starting dynamics projects. Note that the interface can only
trivially parallelize BAGEL calculations across several independent multiplicities, but not across multiple gradient or
nonadiabatic coupling calculations.

6.18.3 During setup

If you want to set up trajectories for SHARC_BAGEL . py, you have to select in the respective setup script the SHARC_LEGACY . py
legacy frontend interface. This is because SHARC_BAGEL. py is not yet converted to the SHARC4 format and does not
have its own setup routines. The setup routines are instead in SHARC_LEGACY . py.

After selecting SHARC_LEGACY . py, you will directly be prompted for which of the five legacy interfaces you want to use.
Select SHARC_BAGEL . py. Later during setup, the setup dialogue for SHARC_BAGEL . py will be carried out.

During the setup dialogue, you are first queried for the path to the BAGEL installation. Then you are asked for the
scratch directory, where BAGEL will store temporary files. This directory will be deleted after the calculation.

Next, the setup prompts for the path to the BAGEL template. The file is checked for completeness. It must contain at
least the basis set, the density fitting basis, and the number of active and inactive orbitals. The file also has to contain
information about the number of states for state-averaging.

115

SHARC Manual 6 Interfaces | 6.18 BAGEL Interface

Next, the setup dialogue asks for the dipole level (see above).

Then, the user is asked to set up the initial orbitals. While optional, it is strongly recommended to provide one, as
CASSCEF calculations can otherwise become unstable or very slow.

You are then asked for the number of CPU cores and whether to use MPI parallelization. It is not possible to control the
memory used by BAGEL. In BAGEL, MPI parallelization is more efficient than OpenMP.

If wave function overlaps are needed, the script asks for the path to the overlap executable and the memory for the
overlap code. There is no wave function truncation threshold, because CASSCF wave functions are very efficiently
computed with wfoverlap.x. If Dyson orbital analysis is also selected, the number of doubly occupied orbitals must be
provided.

116

SHARC Manual 6 Interfaces | 6.19 MOLPRO Interface

6.19 MOLPRO Interface

Legacy ab initio interface for CASSCF in the MoLPRO package.

The SHARC-MoLPRO interface allows to run SHARC dynamics with MoLpro’s CASSCF wave functions. RASSCF is
not supported, since on RASSCF level state-averaging over different multiplicities is not possible. The interface
uses MoLPRO’s CI program in order to calculate transition dipole moments and spin-orbit couplings. Gradients and
nonadiabatic coupling vectors are calculated using MoLPRO’s ALASKA code. In the new version of the interface, overlaps
are calculated using the WFoveRLAP code. Wavefunction phases between the CASSCF and MRCI wave functions are
automatically adjusted. The interface can trivially parallelize the computation of gradients and coupling vectors over
several processors. Execution of parallel MoLPRo binaries is currently not supported.

Important note: It appears that in some cases the sign of the nonadiabatic coupling vectors randomly changes along a
trajectory ran with MoLPRO, and that it is not possible to identify this sign change from the MO and CI coefficients.
Hence, propagation with coupling nacdr is currently discouraged for the SHARC-MoLPRO interface. Alternative
possibilities to run SHARC-CASSCF dynamics with nonadiabatic coupling vectors are given by the MoLcas (section 6.12)
and BAGEL (section 6.18) interfaces.

The SHARC-MoLPRoO interface needs two additional input files, which should be present in QM/. Those input files are
MOLPRO. resources, which contains, e.g., the paths to MoLPro and the scratch directory, and MOLPRO. template, which
is a keyword-argument input file specifying the CASSCF level of theory. If QM/wf.init is present, it will be used as a
Movprro wave function file containing the initial MOs. For calculations with several “jobs” (see below), initial orbitals
can also given as QM/wf.<job>.init.

Note that as a legacy interface, SHARC or parent interfaces cannot control the molecular charge per
multiplicity directly, so you need to prepare all MoLPRoO input with the correct charges in mind.

6.19.1 Template file: MOLPRO. template

The template file is a keyword-argument list file, similar to the template files of most other interfaces. A fully commented
template file with all possible options is located in $SHARC/ . . /examples/SHARC_MOLPRO/.

For simple cases, an example for the template file looks like this:

basis def2-svp

dkho 2 # Douglas-Kroll second order
occ 14

closed 10

nelec 24

roots 40 3

rootpad 101

This specifies a SA(4S+3T)-CASSCF(4,4)/def2-SVP calculation for 24 electrons. Note the rootpad keyword, which adds
one singlet and one triplet with zero weight to the state-averaging (so technically this is a SA(55+4T) calculation, but the
results are the same as SA(45+3T)). These zero-weight states are sometimes useful to improve convergence of CASSCF.
The interface can also be used to perform several independent CASSCF calculations for different multiplicities (e.g., one
CASSCEF for the neutral states and another one for the ionic states). In this case, each independent CASSCF calculation
is called a “job”. In the template, most settings can be modified independently for each job. An example is given here:

In this way, users can employ custom basis sets
basis_external /path/to/basisset # no spaces in path allowed
dkho 2

job 1 for singlet+triplet; job 2 for doublets
jobs 1 2 1

occ 14 13 # for job 1 and 2
closed 11 10 # for job 1 and 2

117

SHARC Manual 6 Interfaces | 6.19 MOLPRO Interface

nelec 24 23 24 # for job 1
nelec 24 23 24 # for job 2
roots 403 # for job' 1
roots 020 # for job 2
rootpad 101 # for job1l
rootpad 020 # for job 2

This template specifies two jobs, where job 1 should be used to compute singlet and triplet states, and job 2 used for
doublet states. Job 1 is a SA(45+3T)-CASSCF(2,3) computation, with singlets and triplets each having 24 electrons. Job 2
is a SA(2D)-CASSCEF(3,3) computation, with 23 electrons. Note how for different jobs it is possible to have different
active spaces and state-averaging schemes. However, keep in mind that all states of a given multiplicity are always
calculated in the same job (e.g., it is not possible to have one job for S, and another job for S; and S5).

It is also possible to do a mixed input, for example having two jobs, but only giving one number after occ or closed.
The interface provides comprehensive error messages during the template check.

Also note the basis_external keyword. It provides a file, whose content is used in the basis set definition (it is inserted
verbatim into basis={. ..} in the MorPRoO input). It is possible to use the generated input from the 7 Basis Set Exchange
Library, but the basis={ and } need to be deleted from the file.

Remember that molpro_input.py cannot create multi-job templates or templates with the basis_external keyword.

6.19.2 Resource file: MOLPRO. resources

The interface requires some additional information beyond the content of QM. in. This information is given in the file
MOLPRO. resources, which must reside in the directory where the interface is started. This file uses a simple “keyword
argument” syntax. Comments using # and blank lines are possible, the order of keywords is arbitrary. Lines with
unknown keywords are ignored, since the interface just searches the file for certain keywords.

The Movpro interface employs essentially all keywords from Tables 6.3 (except: ngpu), as well as WFovERrLAP keywords
from Table 6.4. Interface-specific keywords are given in Table 6.29. A fully commented resource file for this interface
with all possible options is located in $SHARC/ . . /examples/SHARC_MOLPRO

Mandatory keywords are the paths to MoLPRO, the scratch directory, and to the WFovERLAP executable (the latter for
overlap, Dyson, or NACDR calculations).

Table 6.29: Keywords for the MOLPRO. resources input file.

Keyword Description

molpro Is followed by a string giving the path to the MorLpPro directory. This directory
should contain the executable molpro.exe. Relative and absolute paths, environment
variables and ~ can be used.

molpro_arguments Put all command line options for MoLPRO that you want to use, except -W -I -d,
because those are set by the interface. In this way, you can run MoLPRo in parallel
(on top of running independent jobs in parallel), but note that the ncpu keyword does
not take this into account.

Parallel execution of MOLPRO In the new version of the SHARC-MoLPRO interface, calculations of multiple
independent active spaces (“jobs”), of several gradients, and of several nonadiabatic coupling vectors are automatically
parallelized over the given number of CPU cores.

Note that MovrpRro calls can also be parallelized via the molpro_arguments key in the resource file.

6.19.3 Error checking

The interface is written such that the output of Morrro is checked for commonly occuring errors, mostly bad
convergence in the MCSCF or CP-MCSCF parts. In these cases, the input is adjusted and MoLpPro restarted. This will

118

https://bse.pnl.gov/bse/portal
https://bse.pnl.gov/bse/portal

SHARC Manual 6 Interfaces | 6.19 MOLPRO Interface

be done until all calculations are finished or an unrecoverable error is detected. The interface will try to solve the
following error messages:

EXCESSIVE GRADIENT IN ClI This error message can occur in the MCSCF part. The calculation is restarted with a
P-space threshold (see MoLPRO manual) of 1. If the error remains, the threshold is quadrupled until the calculation
converges or the threshold is above 100.

NO CONVERGENCE IN REFERENCE CI The error occurs in the CI part. The calculation is restarted with a
P-space threshold (see MoLPRO manual) of 1. If the error remains, the threshold is quadrupled until the calculation
converges or the threshold is above 100.

NO CONVERGENCE OF CP-MCSCF This error occurs when solving the linear equations needed for the calculation
of MCSCF gradients or nonadiabatic coupling vectors. In this case, the interface finds in the output the value of closest
convergence and restarts the calculation with the value found as the new convergence criterion. This ensures that the
CP-MCSCEF calculation converges, albeit with lower accuracy for this gradient for this time step.

This error check is controlled by two keywords in the MOLPRO. resources file. The interface first tries to converge
the CP-MCSCEF calculation to gradaccudefault. If this fails, it tries to converge to the best value possible within 900
iterations. gradaccumax defines the worst accuracy accepted by the interface. If a CP-MCSCF calculation cannot be
converged below gradaccumax then the interface exits with an error, leading to the abortion of the trajectory.

6.19.4 Things to keep in mind

Initial orbital guess For CASSCEF calculations it is always a good idea to start from converged MOs from a nearby
geometry. For the first time step, if a file QM/wf.init is present, the SHARC-MoLPRO interface will take this file
for the starting orbitals. In case of multi-job calculations, separate initial orbitals can be provided with files called
QM/wf.<job>.init, where <job> is an integer. In subsequent calculations, the MOs from the previous step will be used
(unless the always_orb_init keyword is used).

Basis sets In order to employ user-defined basis sets, in the template the keyword basis_external, followed by a
filename, can be used. The interface will then take the content of this file and insert it as basis set definition in the
Morrro input files (i.e., it will add in the input basis={ <content of the file> }. Note that the filename must not
contain spaces.

6.19.5 During setup

If you want to set up trajectories for SHARC_MOLPRO. py, you have to select in the respective setup script the SHARC_LEGACY . py
legacy frontend interface. After selecting SHARC_LEGACY . py, choose SHARC_MOLPRO. py. Later during setup, the setup
dialogue for SHARC_MOLPRO. py will be carried out.

During the setup dialogue, you are first queried for the path to the MOLPRO executable. Shell variables and ~ can be
used and will be expanded when the interface is started.

Next, you are asked for the scratch directory, where MOLPRO will store temporary files. This directory will be deleted
after the calculation, and its validity cannot be checked by the script since you may run the calculations on a different
machine.

Then the setup prompts for the path to the MOLPRO. template file. This file is checked for the following keywords:
basis, closed, occ, nelec, and roots. If a file named MOLPRO. template exists in the working directory and passes this
check, you may choose to use it; otherwise, you will be prompted to provide a valid template filename.

Next, the setup dialogue asks for an initial wavefunction guess. You will be asked whether you have a MOLPRO
wavefunction file (e.g. wf. init); if so, you must supply its path. If not, a warning is issued reminding you that CASSCF
calculations may run very long or yield incorrect results without proper starting MOs.

You are then asked to specify the amount of memory available to MOLPRO (in MB) and the number of CPUs to be used
by each trajectory. If wave function overlaps are needed, you will also be prompted for the path to the wfoverlap.x
executable. Note that the MOLPRO interface computes wave function overlaps not only when they are explicitly
requested, but also when nonadiabatic coupling vectors are requested, in order to match the wave function phases of

119

SHARC Manual 6 Interfaces | 6.19 MOLPRO Interface

the CASSCF wave function (from which the nonadiabatic couplings are computed) and the wave function in the MRCI
module (which computes spin-orbit couplings and dipole moments).

Finally, default values for gradient accuracy thresholds (molpro.gradaccudefault, molpro.gradaccumax), number of
core orbitals (molpro.ncore), and number of doubly occupied orbitals (molpro.ndocc) are set automatically.

During job preparation, the setup routines write a MOLPRO. resources file into the job directory, containing: the molpro
executable path, the scratchdir and savedir locations, gradient accuracy defaults (gradaccudefault, gradaccumax),
memory and ncpu settings, and optionally the wfoverlap executable path.

6.19.6 Molpro input generator: molpro_input.py

In order to quickly setup simple inputs for MOLPRO, the SHARC suite contains a small script called molpro_input.py.
It can be used to setup single point calculations, optimizations and frequency calculations on the HF, DFT, MP2 and
CASSCEF level of theory. Of course, MoLPRO has far more capabilities, but these are not covered by molpro_input.py.
However, molpro_input.py can also prepare template files which are compatible with the SHARc-MoLPRo interface
(MOLPRO. template file).

The script interactively asks the user to specify the calculation and afterwards writes an input file and optionally a run
script.

Input

Type of calculation Choose to either perform a single-point calculation or a minimum optimization (including
optionally frequency calculation), to generate a template file, or an optimization of a state crossing. For the template
generation, no geometry file is needed, but the script looks for a MOLPRO. input in the same directory and allows to
copy the settings.

For single-point calculations, optimizations and frequency calculations, files in MOLDEN format called geom.molden,
opt.molden or freq.molden, respectively, are created (containing the orbitals, optimization steps and normal modes,
respectively). The file freq.molden can be used to generate initial conditions with wigner.py.

Geometry Specify the geometry file in xyz format. Number of atoms and total nuclear charge is detected automatically.
After the user inputs the total charge, the number of electrons is calculated automatically.

In the case of the generation of a template file, instead only the number of electrons is required.

Non-default atomic masses If a frequency calculation is requested, the user may modify the mass of specific atoms
(e.g. to investigate isotopic effects). In the following menu, the user can add or remove atoms with their mass to a list
containing all atoms with non-default masses. Each atom is referred to by its number as in the geometry file. Using the
command show the user can display the list of atoms with non-default masses. Typing end confirms the list.

Note that when using the produced MoLDEN file later with wigner.py, the user has to enter the same non-default
masses again, since the MoLDEN file does not contain the masses and wigner.py has no way to retrieve these numbers.

Level of theory Supported are Hartree-Fock (HF), density functional theory (DFT), Mgller-Plesset perturbation theory
(MP2), equation-of-motion coupled-cluster with singles and doubles (EOM-CCSD) and CASSCF (either single-state or
state-averaged). All methods (except EOM-CCSD) are compatible with odd-electron wave functions (molpro_input.py
will use the corresponding UHF, UMP2 and UKS keywords in the input file, if necessary).

For template generation, state-average CASSCF is automatically chosen. All methods (except EOM-CCSD) can be
combined with optimizations and frequency calculations, however, the frequency calculation is much more efficient
with HF or SS-CASSCF.

DFT functional For DFT calculations, enter a functional and choose whether dispersion correction should be applied.
Note that the functional is just a string which is not checked by molpro_input. py.

Basis set The basis set is just a string which is not checked by molpro_input.py.

120

SHARC Manual 6 Interfaces | 6.19 MOLPRO Interface

CASSCEF settings For CASSCF calculations, enter the number of active electrons and orbitals.

For SS-CASSCEF, only the multiplicity needs to be specified. For SA-CASSCEF, specify the number of states per multiplicity
to be included. Note that MorpPRro allows to average over states with different numbers of electrons. This feature is not
supported in molpro_input.py. However, the user can generate a closely-matching input and simply add the missing
states to the CASSCF block manually.

For optimizations at SA-CASSCF level, the state to be optimized has to be given. For crossing point optimizations, two
states need to be entered. The script automatically detects whether a conical intersection or a crossing between states
of different multiplicity is requested and sets up the input accordingly.

EOM-CCSD settings EOM-CCSD calculations allow to calculate relatively accurate excited-state energies and
oscillator strengths from a Hartree-Fock reference, but only for singlet excited states.

The user has to specify the number of states to be calculated. If only one state is requested, the script will setup a
regular ground state CCSD calculation, while for more than one states, an EOM-CCSD calculation is setup. Note that
the calculation of transition properties takes twice as long as the energy calculation itself.

Memory Enter the amount of memory for MoLpRro. Note that values smaller than 50 MB are ignored, and 50 MB are
used in this case.

Run script If requested, the script also generates a simple Bash script (run_molpro.sh) to directly execute MoLPRoO.
The user has to enter the path to MoLpRro and the path to a suitable (fast) scratch directory.

Note that the scratch directory will be deleted after the calculation, only the wave function file wf will be copied back
to the main directory.

121

SHARC Manual 6 Interfaces | 6.20 PySCF Interface

6.20 PySCF Interface

Legacy ab initio interface for running CASSCF and PFDT calculations with PySCF.

The SHARC-PYSCF interface allows to run SHARC dynamics with an implementation of state-averaged CASSCF and
PDFT in PYSCF. The interface can compute energies, dipole moment matrices, gradients, and nonadiabatic coupling
vectors. Spin—orbit couplings, wave function overlaps, or other advanced features are not available. The interface
can only compute singlet states currently. The interface supports some parallelism, as provided by PYSCF’s OpenMP
capabilities, but note that the number of used cores cannot be strictly controlled (some parts of the calculation will use
all available cores).

The PDFT implementation requires the installation of & PySCF Forge. With this implementation, the variants MC-PDFT
(multi-configurational pair DFT), CMS-PDFT (compressed state multistate PDFT), and L-PDFT (linearized PDFT) are
available. See the iz Documentation for details and references.

The SHARC-PYSCF interface needs two additional input files, which should be present in QM/. Those input files are
PYSCF. resources, which contains, e.g., the paths to PYSCF and the scratch directory, and PYSCF.template, which is a
keyword-argument input file specifying the level of theory. If QM/pyscf.init.chk is present, it will be used for the
initial MOs.

Note that as a legacy interface, SHARC or parent interfaces cannot control the molecular charge per
multiplicity directly, so you need to prepare all PYSCF input with the correct charges in mind.

6.20.1 Template file: PYSCF. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid BAGEL input
file. The file only contains a number of keywords, given in table 6.30. The actual input for BAGEL will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_PYSCF/PYSCF.template. We recommend that users start from this template file
and modify it appropriately for their calculations.

6.20.2 Resource file: PYSCF.resources

The file PYSCF. resources contains mainly paths (to the PYSCF executables, to the scratch directory, etc.) and other
resources, plus settings relevant for wfoverlap.x. This file must reside in the same directory where the interface is
started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of
keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain
keywords.

The PYSCF interface employs keywords from Tables 6.3 (scratchdir, savedir, memory, ncpu, always_guess, always_orb_init).
There are no other interface-specific keywords. A fully commented resource file with all possible options and compre-
hensive descriptions is located in $SHARC/ . . /examples/SHARC_PYSCF/.

6.20.3 During setup

If you want to set up trajectories for SHARC_PYSCF . py, you have to select in the respective setup script the SHARC_LEGACY . py
legacy frontend interface. After selecting SHARC_LEGACY . py, immediately choose SHARC_PYSCF.py. The setup dialogue
for SHARC_PYSCF.py will then be carried out later during the setup script.

During the setup dialogue, you are first prompted for the scratch directory. This directory will be used to store the
PySCF temporary files and will be deleted after the calculation. Since you may run the calculation on a different machine,
the script cannot verify whether the path is valid, nor will it expand shell variables or ~ during setup (these will be
expanded during interface run time).

Next, you are asked for the path to the PYSCF.template file. If a file named PYSCF. template exists in your working
directory, you will be offered to use it; otherwise, you must specify a valid template filename. This file should contain
whatever input directives you require for your PySCF calculation, as the interface will generate the remainder of the
input automatically.

You will then be queried about an initial wavefunction guess. If you have a previous checkpoint file with MOs, you can
supply its path; the file will be copied as pyscf.init.chk into the job directory. If you choose not to provide a guess, a

122

https://github.com/pyscf/pyscf-forge
https://github.com/pyscf/pyscf-forge/tree/master/doc/mcpdft

pdft-functional
ncas

nelecas

roots

charge

grids-level
conv-tol
conv-tol-grad
max-stepsize
max-cycle-macro
max-cycle-micro
ah-level-shift
ah-conv-tol
ah-max-cycle
ah-lindep
ah-start-tol
ah-start-cycle
fix-spin-shift

grad-max-cycle

verbose

(string) Any one of "tpbe" or "ftpbe". Default is T-PBE.

(int) Number of active orbitals. This keyword is mandatory, not giving it results in an error.
(int) Numer of active electrons. This keyword is mandatory, not giving it results in an error.
(int) Number of states for state-averaging. This keyword is mandatory, not giving it results in
an error.

(int) Total molecular charge. Default is zero. From the charge and nelecas, the number of
inactive electrons is determined (this must be even). Note that for a legacy interface, SHARC
or parent interfaces cannot control the molecular charge per multiplicity directly, so
the charge must be given in the template.

(int) A number specifying the DFT quadrature, between 2 and 6. Default is 4.

(float) Convergence criterion for CASSCF solver. Default 1e-7.

(float) Convergence criterion for CASSCF solver. Default 1e-4.

(float) Step size for CASSCF solver. Default 0.02.

(int) Maximum number of macro cycles. Default 50.

(int) Maximum number of micro cycles. Default 4.

(float) Setting for the AH solver of PYSCF. Default 1e-8.

(float) Setting for the AH solver of PYSCF. Default 1e-12.

(int) Setting for the AH solver of PYSCF. Default 30.

(float) Setting for the AH solver of PYSCF. Default 1e-14.

(float) Setting for the AH solver of PYSCF. Default 2.5.

(int) Setting for the AH solver of PYSCF. Default 3.

(float) Necessary shift when using the PYSCF-internal CASSCF solver. Default 0.2. Not used if
pyscf-forge is installed.

(int) Maximum number of cycles in the coupled-perturbed equations needed for gradients.
Default 50.

(int) Print level of the PYSCF output. Default is 3, which gives only sparse output of results.
Use 4-6 to obtain more output. The output file PySCF_<job>.log will be located in the di-
rectory where the interface runs (this might be located in the scratch directory assigned to
SHARC_LEGACY . py).

SHARC Manual 6 Interfaces | 6.20 PySCF Interface
Table 6.30: Keywords for the PYSCF. template file.
Keyword Description
basis (string) Any string that PYSCF recognizes as a basis set. This keyword is mandatory, not giving
it results in an error.
method (string) Any one of "cassct”, "l-pdft", "mc-pdft", or "cms-pdft". Default is CASSCF.

123

SHARC Manual 6 Interfaces | 6.20 PySCF Interface

warning reminds you that CASSCF calculations may run very slowly or yield incorrect results without a proper starting
wavefunction.

Finally, you must specify the amount of memory (in MB) that PySCF may use. Currently, the number of CPU cores
cannot be set during setup.

When the job is prepared, a file named PYSCF.resources is written into the job directory containing the scratch
directory and memory settings. The specified PYSCF. template is copied into the directory, and—if provided—the initial
wavefunction file is also placed there.

124

SHARC Manual 6 Interfaces | 6.21 ASE Database Interface

6.21 ASE Database Interface

Single child hybrid interface that stores data into an ASE database.

The SHARC-ASE_DB (7 Atomic Simulation Environment) interface is a single-child hybrid interface that intercepts data
from its child interface and stores it into an ASE database. During interception the data will not be changed and is then
directly passed to a parent interface or the SHARC driver. This interface is particularly useful to generate datasets for
training machine learning models.

Available features The SHARC-ASE_DB interface provides exactly the same set of features as the chosen child
interface, without any restrictions.

6.21.1 Template file: ASE_DB. template

The ASE_DB.template file is written in yaml format. Table 6.31 lists the existing keywords. A fully commented template
file for this interface with all possible options is located in $SHARC/ . . /examples/SHARC_ASE_DB/.

Table 6.31: Keywords for the ASE_DB. template input file.

Keyword Description

reference Specifies the reference SHARC interface that is used to generate the data. Is a dictio-
nary that contains three keys, "interface" contains the name of the child interface being
used, followed by a list "args” that contains arguments which are used to instantiate
the child interface, and "kwargs" that contains a dictionary of keyword arguments
which are used to instantiate the child interface.

props_to_save Isa list with the names of the properties to be stored in the ASE database.

ase_file Name or path of the ASE database file, if the file already exists the data will be
appended.
format Specifies the format of the stored data. There are two options, "sharc" which leaves

the data as is, and "spainn" which converts the data into a format SPaiNN uses.
output_steps Save every nth step to the database.

6.21.2 During setup

As a hybrid interface, there are some peculiarities when doing a setup with SHARC_ASE_DB. py. To use SHARC_ASE_DB. py
with any child interface, during setup select SHARC_ASE_DB. py. Immediately after, you will get prompted to provide the
ASE_DB. template file, which contain the information of which child interface is desired. The ASE_DB interface will
then instantiate its child, in order to access the child’s feature set and itself returning its feature set to the setup script.
Note that if the child interface is another hybrid interface, then you will get asked for that interface’s template file as
well, until all interfaces of the call tree are specified. The details depend slightly on which hybrid interface you use.

The situation is different if SHARC_ASE_DB. py is not the topmost interface in the call tree. In that case, the template file
of the calling hybrid interface has to specify the ASE_DB interface as a child.

After selecting the interface and its child(ren), at a later point the setup script will start the interface-specific setup
dialogue. However, SHARC_ASE_DB. py itself does not require any settings itself and directly delegates to the child’s
interface-specific setup dialogue. Pay attention to the Setting up child interface notice.

125

https://wiki.fysik.dtu.dk/ase/index.html

SHARC Manual 6 Interfaces | 6.22 Umbrella Sampling Interface

6.22 Umbrella Sampling Interface

Single-child hybrid interface to add various harmonic restraints to a molecule.

The SHARC-umbrella sampling interface allows adding harmonic restraints to any other calculation. Restraints are
possible for distances, angles, dihedrals, and energy gaps. Multiple restraints are possible. The sum of all restrain
energies is added uniformly to all state energies, and their gradients are added uniformly to all state gradients, for those
gradients that were requested by the caller.

If pytorch is installed, it will be used to compute the energies and gradients of all geometrical restraints (distances,
angles, dihedrals), but not for energy gaps. If pytorch is not installed, all restraints are nonetheless available through
a custom implementation of energies and forces. For energy gap restraints, the gradient of both involved states will
be added to the set of requested states received from the caller (or of all involved states if more than one energy gap
restraint is used).

Available features The SHARC-umbrella sampling interface provides exactly the same set of features as the chosen
child interface, without any restrictions.

6.22.1 Template file: UMBRELLA. template

The interface requires three files in total: a template file in standard SHARC syntax, the restraint file, and the resources
file. Table 6.32 provides the keys for the template file.

Table 6.32: Keywords for the UMBRELLA. template file.

Keyword Description
restraint_file (string) Path to the file containing the restraint specifications. See below for the format of this
file.

child-program (string) Name of the child interface. For interface SHARC_<name> . py, provide the <name> part
here. It will be automatically made uppercase. This keyword is required.

child-dir (string) Relative path to the folder containing the input files for the child interface. Default is
<NAME>/.

6.22.2 Restraints file

The restraints file specifies the restraints to add to the potential energy of all states. The file contains one line per
restraint, in the following way:

r 300. kcal/mol angstrom 1.4 angstrom 1 2

a 800. cm-1 degree 90.0 degree 123

d 75. kj/mol radian 0.0 radian 1234
de 4.6 per eV 0.3 eV 12

Here, column 1 specifies the type of restraint. The keywords are case-insensitive. There can be as many lines/restraints
as desired, of any type of restraint.

Column 2 specifies the numerical value of the force constant k used in the harmonic restraint. In principle, this force
constant is internally used in terms of units of Hartree energy, Bohr radius, and radians. To simplify their input,
columns 3 and 4 can be used to provide units. In the example, the force constants are 300 kcal/mol/A, 800 cm_l/degree,
75kJ/mol/radian, and 4.6 eV~!. Here, each unit keyword defines a factor, and the numerical value in column 2 is
multiplied by the factor from column 3 and divided by the factor from column 4. The keywords eh, bohr, radian, one,
and per are aliases for a factor of 1. Other possible keywords are kcal/mol, kj/mol, eV, angstrom, and degree, with the
respective conversion factors. All keywords are case-insensitive.

Columns 5 and 6 specify the position of the minimum of the harmonic restraint, called the reference value below in the
equations. The keywords in column 6 act as multiplicative factors to the numerical value, and all the same keywords
can be used. The keywords in column 6 do not need to be the same as in column 4.

126

SHARC Manual 6 Interfaces | 6.22 Umbrella Sampling Interface

Columns 7 and further ones specify the indices of the atoms or states that are involved in the restraints. Indices for
atoms and for states both start at 1. For bonds, two indices must be given, and the restraint is invariant under switching
of the two indices. For angles, three indices must be given, where the second index defines the apex atom. For dihedrals,
four indices must be given, in the order in which they are connected. For energy gaps, two indices must be given, where
the second index will be used as the upper state (see equation below, a positive reference energy gap will force the
second state to be above the first state). This choice is made so that "negative" gaps can be sampled, e.g., if one of the
states is a singlet and one is a triplet. Note that the state indices follow standard SHARC state indexing (in the MCH
representation, which is the representation that the interfaces work in).

The following energy expressions are used:

ki
Evond :%(Rij - Rf;f 2: (6.7)
kijk ref \2
Eangle ZT(aijk — ;)" (6.8)
kijki
Egihedral =% (dijkr = d;;,i;)z, (6.9)
kap
Eenergy gap :%(Eﬁ - Eq — AE)”. (6.10)

Here, i, j, k, and [are atom indices, & and f are state indices (f is assumed to be the upper state), k is a force constant,
and "ref" indicates the chosen center of the bias potential.

6.22.3 Resource file: UMBRELLA. resources

The resource file has only one keyword, as given in Table 6.33.

Table 6.33: Keywords for the UMBRELLA. resources file.
Keyword Description
scratchdir (string) Path to the scratch directory. This will be used to override the scratch directory of the
child, as is customary for hybrid interfaces (likewise, if SHARC_UMBRELLA. py is called from a
hybrid parent interface, then the scratchdir from UMBRELLA. resources will be ignored).

6.22.4 During setup

As ahybrid interface, there are some peculiarities when doing a setup with SHARC_UMBRELLA. py. To use SHARC_UMBRELLA. py,
select it directly in your setup script. Immediately, you will be prompted for the path to your UMBRELLA. template
file, which tells the interface which child QMin program to invoke (plus other details). If your child is itself a hybrid
interface, you will then be asked for that interface’s own template file, and so on down the call tree.

After reading the template, you will be asked if you already have an UMBRELLA. resources file. If so, supply its path
here; otherwise it will remain absent (but SHARC_UMBRELLA. py does not have many resource options).

Next you will see a Setting up child interface notice. At this point, SHARC_UMBRELLA.py hands off to the child
interface’s own setup dialogue.

127

SHARC Manual 6 Interfaces | 6.23 Numerical Differentiation Interface

6.23 Numerical Differentiation Interface

Single-child hybrid interface (with clones of the same child) for finite differences numerical gradients and nonadiabatic
coupling vectors.

The SHARC-numerical differentiation interface can compute gradients, nonadiabatic coupling vectors, dipole moment
derivatives, and spin-orbit coupling derivatives for any other interface that can provide energies, wave function
overlaps, dipole moments, and spin-orbit couplings, respectively. Currently, the interface is based on central differences
evaluated in Cartesian coordinates, using uniform displacements for all atoms and directions. The interface can do the
derivatives in two different ways (numdiff_representation), either using the adiabatic quantities directly, or using
wave function overlaps to diabatize the quantities and computing their derivatives. The latter option is slightly more
expensive but more numerically stable if electronic state crossings occur close to the reference geometry.

For ease of reference, we provide the essential equations here. Adiabatic central differences are evaluated as:
OF _ F(R+6R) — F(R-6R)
oR 26R ’

(6.11)

where F is a matrix element of the Hamiltonian, overlap, or dipole matrices. For the quad-step central differences, the
equation is instead:

OF —F(R+26R) +8F(R+ 6R) — 8F(R - SR) + F(R — 26R)

6.12
oR 126R ()
For diabatic central differences, the equation is:
9F (S(R, R+ 6R)F(R+ 6R)S(R + OR, R)) = (S(R,R = 6R)F(R = SR)S(R = 6R, R) s
ap ap
= s 6.13
oR 206R (6.13)

where the entire Hamiltonian or dipole matrices F are transformed before computing the derivative. In the diabatic
mode, the nonadiabatic couplings are computed as the energy-gap-scaled off-diagonal elements of the derivatives of the
diabatic Hamiltonian (i.e., &= 21):

s AF 9R):
P) 1
(v .

- (S(R, R — SR)H(R - SR)S(R — R, R)
ﬁ'qjﬁ> " Hpp(R) — Hau(R) 26R

(S(R, R+ SR)H(R + SR)S(R + SR, R))
ap

(6.14)

As an important note, currently, SHARC_NUMDIFF .py will not accept any hybrid interface as its child (i.e., those derived
from the SHARC_HYBRID.py base class. This restriction might change in future versions. Also note that fast child
interfaces will generally be run in non-persistent mode (i.e., with file I/O). Hence, numerical differences of fast interfaces
will be slower than expected. These restrictions arise because SHARC_NUMDIFF.py manipulates the save directory of its
child, but hybrid children would have an unpredictable save directory structure and fast interfaces in persistent mode
do not write save directories.

Available features The SHARC-numerical differentiation interface provides features that depend on the features
of the child as well as on the numdiff_representation and whitelist options (more details below). Briefly, if the
child can provide energies, then SHARC_NUMDIFF.py can provide gradients. If the child provides energies and overlaps,
SHARC_NUMDIFF.py can provide nonadiabatic coupling vectors. If the child provides dipole moments or spin—orbit
couplings, their respective derivatives are available from SHARC_NUMDIFF.py. If numdiff_representation is set to
diabatic, then all four types of derivatives all require overlaps from the child. If any of the four quantities would also
be available from the child directly, then whitelist can be used to use the quantities from the child rather than from
numerical differentiation. Any request besides gradients, nonadiabatic coupling vectors, dipole moment derivatives,
and spin—-orbit coupling derivatives is completely delegated to the child interface (for the reference geometry). Hence,
the feature set of SHARC_NUMDIFF.py is the feature set of the child, plus those derivatives that can be computed. Note
that SHARC_NUMDIFF.py does not accept point charges, so it cannot serve as QM interface in QM/MM calculations.

6.23.1 Template file: NUMDIFF.template

The interface requires two input files. The possible options for the template file are given in Table 6.34. The file follows
standard keyword argument syntax, as in other interfaces.

128

SHARC Manual 6 Interfaces | 6.23 Numerical Differentiation Interface

Table 6.34: Keywords for the NUMDIFF. template file.
Keyword Description

gm-program (string) Name of the child interface. For interface SHARC_<name> . py, provide the <name> part
here. It will be automatically made uppercase. Note that SHARC_NUMDIFF.py formally uses
multiple children, but they are clones (all share the same settings), so only one child needs to
be specified. This keyword is required.

gm-dir (string) Relative path to the folder containing the input files for the child interface. This
keyword is required.
numdiff_method (string) Specifies the numerical differentiation scheme. Currently, options are central-diff

(the default) and central-quad. The default uses two displacements per degree of freedom,
the second option uses twice as much. See Equations (6.11) and (6.12).

numdiff_representation (string) Specifies the electronic representation for differentiating. Currently, options are
adiabatic (the default) and diabatic. The first option uses the adiabatic quantities of the
displaced geometries directly, whereas the second option diabatizes them using the overlaps
between reference geometry and displaced geometry. This adds the cost of overlap calculations
at all displacements, but leads to more accurate derivatives. See Equation (6.13).

numdiff_stepsize (float) The numerical Cartesian displacement in Bohrs. Default is 0.01. For central-quad,
additional displacements of twice that value are done.
whitelist (one or more strings) The requests specified here are delegated to the reference child, if it can

provide them. Possible options are grad, nacdr, dmdr, and socdr. Note that an empty list is not
possible, if you do not want any white-listed requests, remove the whitelist command.

6.23.2 Resource file: NUMDIFF.resources

The resource file has only few keywords, as given in Table 6.35.

A few remarks on how the children are run. In all cases, the reference child is run first. By default, it uses whatever
number of CPU cores is specified in its resource file. If use_all_cores_for_ref is true, the reference child will use all
CPU cores available to SHARC_NUMDIFF.py instead. After the reference child is finished, SHARC_NUMDIFF.py evaluates
whether displacement calculations have to be carried out, depending on (i) the current requests, (ii) the whitelist, and
(iii) the available features of the child. If grad, nacdr, dndr, or socdr are requested and not white-listed and available
from the child, they will be computed numerically. Only then the displaced children will be set up and run, distributed
over the number of CPU cores available to SHARC_NUMDIFF.py. Each displaced child will use as many CPU cores as
specified in the child’s resource file.

Table 6.35: Keywords for the NUMDIFF. resources file.

Keyword Description

scratchdir (string) Path to the scratch directory. This will be used to host the scratch directories of
all children (reference and displacements), i.e., SHARC_NUMDIFF . py will overwrite the scratch
directories of all children (likewise, if SHARC_NUMDIFF . py is called from a hybrid parent interface,
then the scratchdir from NUMDIFF.resources will be ignored).

ncpu (int) The number of CPU cores used to run the calculation of the reference and displaced
children. Note that the reference child is always run first. Only the displacement children are
run in parallel.

use_all_cores_for_ref (bool) Use all CPU cores as available to SHARC_NUMDIFF.py for the reference child.

6.23.3 During setup

As a hybrid interface, there are some peculiarities when doing a setup with SHARC_NUMDIFF.py. To use it, select
SHARC_NUMDIFF.py directly in your setup script. You will then immediately be prompted for the path to your NUMDIFF.template
file, which tells the interface which underlying QM program to invoke and how to perform the numerical differentiation.

SHARC_NUMDIFF.py will then instantiate its child and query it for its feature set. Based on that feature set and the
settings in the template file, the SHARC_NUMDIFF.py interface automatically composes its own feature set, which is
returned to the setup script.

129

SHARC Manual 6 Interfaces | 6.23 Numerical Differentiation Interface

At a later point during setup, the interface-specific setup dialogue is started. SHARC_NUMDIFF . py will ask for the number
of CPU cores and the scratch directory to be used. Subsequently, the interface-specific setup dialogue of the child is
launched (indicated by Setting up QM-interface).

130

SHARC Manual 6 Interfaces | 6.24 QM/MM Interface

6.24 QM/MM Interface

Multi-child hybrid interface for QM/MM calculations using electrostatic embedding and link atoms.
The SHARC-QM/MM interface implements

Egmmm = Egm(QM; MMpc) — Eym (QM’) + Enm (QM” + MM). (6.15)

Here, Egm(QM; MMpc) is the QM energy of the QM region, including its interaction with the MM point charges.
Exm(QM’ + MM) is the MM energy of the full system, with QM region point charges set to zero. Eyxi (QM’) is the MM
energy of the QM region alone, also with QM region point charges set to zero. Setting the QM region point charges
to zero at the MM level prevents double-counting Coulomb interactions, which are already accounted for in the QM
calculation.

Within the interface, the three energy contributions from Equation (6.15) are computed in three independent calls to
three child interfaces. These are called the QM, MMS, and MML children, in the order given in the equation.

The interface also supports link atoms, i.e., bonds between a QM and an MM atom. To make this work, the connectivity
table has to be included in the QMMM. table input file (see below). The link atom scheme[103] is treated as follows in the
QM calculation. All QM atoms are kept, all MM atoms bonded to QM atoms are replaced by hydrogen. The position of
the hydrogen (cap) atoms is defined by the positions of the QM and bonded MM atoms, so the cap atoms do not provide
independent degrees of freedom. The point charge of the bonded MM atom is set to zero, its charge is distributed evenly
over all its bonding partners that are MM atoms.

Available features The SHARC-QM/MM interface provides features that depend on the features of the QM and MM
child interfaces. For electrostatic embedding (which is currently the only option), the QM interface must have the
point_charges feature, i.e., it needs to be able to receive point charges and include them in the QM calculation. Likewise,
the MM interface needs to have the multipolar_fit feature, i.e., it needs to be able to provide partial charges/multipoles
for the MM state. If these features are available, then the QM/MM interface will provide energies and/or gradients if
they are available from both the QM and MM interfaces. All other features are inherited from the QM interface. The
QOM/MM interface does not provide the point_charges feature, so it is currently not possible to do nested QM/QM/MM
or QM/MM/MM calculations.

6.24.1 Template file: QMMM. template

The interface requires two input files. The possible options for the template file are given in Table 6.36. The file follows
standard keyword argument syntax, as in other interfaces.

Table 6.36: Keywords for the QMMM. template file.

Keyword Description

gmmm_table (string) Path to the QMMM. tab'le file containing the connectivity and QM/MM type information.
See Section 6.24.3.

gm-program (string) Name of the QM child interface. For interface SHARC_<name>.py, provide the <name>
part here. It will be automatically made uppercase. This keyword is required.

mm-program (string) Name of the MM child interface. Note that the MML and MMS children use the same
interface class. This keyword is required.

embedding (string) Selects the type of embedding. Currently, only subtractive is allowed (the default).

gm-dir (string) Relative path to the folder containing the input files for the QM child interface. This
keyword is required.

mml-dir (string) Relative path to the folder containing the input files for the MML child interface. Default
is MML.

mms -dir (string) Relative path to the folder containing the input files for the MMS child interface. Default
is MMS.

mm_dipole (bool) If false (the default), then the dipole moments returned by the QM/MM interface are
those of the QM interface. If true, then the dipole moment induced by the distribution of MM
charges is added to the diagonal of the dipole matrix.

6.24.2 Resource file: QMMM. resources

This file is currently not used.

131

SHARC Manual 6 Interfaces | 6.24 QM/MM Interface

6.24.3 Connectivity and QM/MM type file: QMMM. table

This file specifies the connectivity/topology of the system and assigns each atom to either the QM or MM region. An
example file is shown here.

qm
qm
qm
qm
qm
qm
mm
mm
mm
mm
mm
mm
mm
mm
mm
mm

567

8 910

N N~NDABANNRE

11 12 13

== e
o © o

15 16
14
14

I T O I T T O I T O I T O I O O

The file specifies a OHC-CH,—CH,—CH, + H, O system (butanal plus one water), where the OHC-CH,, group is in the
OM region.

6.24.4 During setup

As ahybrid interface, there are some peculiarities when doing a setup with SHARC_QMMM. py. To use it, select SHARC_QMMM. py
directly in your setup script. You will then immediately be prompted for the path to your QMMM. template file, which
tells the interface which underlying QM and MM interfaces to invoke.

SHARC_QMMM. py will then instantiate its children and query them for their feature set. Based on these feature sets, the
SHARC_QMMM. py interface automatically composes its own feature set, which is returned to the setup script.

At a later point during setup, the interface-specific setup dialogue is started. SHARC_QMMM. py will ask for a resource
file, which will be copied if given. Subsequently, the interface-specific setup dialogues of the children are launched se-
quentially (indicated by Setting up QM-interface, Setting up MML-interface (whole system), and for subtractive
QM/MM schemes also Setting up MMS-interface (qm system)).

132

SHARC Manual 6 Interfaces | 6.25 ECI Interface

6.25 ECI Interface

Multi-child hybrid interface for excitonic Hartree—Fock and excitonic configuration interaction (EHF/ECI) calculations.

The SHARC-ECI interface (SHARC_ECI.py) implements the ab-initio exciton-like theory for the efficient calculation of
ground and excited electronic states of multichromophoric systems, described in the references [104] and [105].

6.25.1 Theory and implementation

The ECI method works as follows, in roughly three steps. These steps assume that the multichromophoric system is
divided into fragments (also called chromophores or sites) that share no atoms (i.e., disjoint fragments).

Site-state calculations

In the first step, SHARC_ECI. py conducts a single-point calculation (so-called site state calculations, SSCs) of the desired
number of states (of various multiplicities and charges) for each individual site, with embedding point charges placed
on the positions of the nuclei of all other sites. This gives the set of so-called site states. One feature of the ECI method
is that it is agnostic of the precise electronic-structure ansatz used in the SSC, i.e., the site states can be calculated with
any level of theory. Hence, SHARC_ECI . py performs the SSCs via its SSC children—(some of) the ab-initio interfaces of
SHARC.

Building the ECI basis

In the second step, SHARC_ECI.py constructs the so-called excitonic basis—a basis of antisymmetrized products of the
site states. Herein, unlike in conventional exciton models, one can have antisymmetrized products of different kinds—the
product of all site ground states (GS product), the products where a single site is in an excited state and all others in
the ground state (local excitations, LEs), and the products with an arbitrary number of excited site states (multilocal
excitations, MLEs: double-local excitations, DLEs; triple-local excitations, TLEs; ...). Which type of the products will be
included in the basis is controlled by specifying the ECI expansion (EHF, ECIS, ECISD,...), where the GS product plays
role of excitonic "HF configuration", LEs play role of excitonic "singles", DLEs of excitonic "doubles", etc. Note that
this does not mean that, e.g., all LEs are electronically singly-excited configurations. If the excited site state present
in an LE is a doubly-excited state itself, the LE will be a doubly-excited configuration (but still an excitonic "single").
Also, this does not mean that the products are individual Slater determinants, but rather correlated configurations, if
the site states themselves are. In this sense, the excitonic basis in ECI is nominally build in the analogous way the CI
basis is build: the ground site states are multiplied to give the GS product, and then all desired (M)LEs are generated by
exchanging a certain number (one for LEs, two for DLEs) of ground site states in the GS product with excited site states
provided for particular fragments in the SSC.

However, the ECI interface is not restricted only to the GS product as the "aufbau" one (i.e., the one on which
ground-to-excited site state replacements will be done to create LEs and MLEs), but it allows the definition of multiple
aufbau site states per fragment, which then give rise to multiple aufbau products, in an each-by-each-multiplication
fashion. Moreover, different aufbau site states of a single fragment can even have different charges (e.g. Sy of neutral
fragment, and D, of fragment’s cation). Even excited site states can be defined as aufbau site states. The (M)LEs are
then created by replacing a certain number of aufbau site states from each aufbau product with non-aufbau site states
of the same charge but not necessarily of the same multiplicity. For example, in a two-chromophoric system, if only the
So site states of both fragments are defined as the aufbau site states, only the |SSp) product will be the aufbau product
(in this case matching with the GS product). Then, if each chromophore has Sy, T, Dg, Dy, D;' and D] non-aufbau site
states provided in the SSCs, and the ECIS expansion is requested, the constructed non-aufbau products will be: |S;So),
|SoS1), |T1So) and |SeT;). The charge-transfer (CT) products |D5'Dg > and ‘Dg DB’) will not be constructed, as this would
require changing the fragments’ charges. These products can be constructed by setting all Sy, D{ and Dy site states as
the aufbau ones for both fragments. In this case, the aufbau products will be [SySo), |SOD3>, |SOD(;>, |D6“SO>, |DaSO>,
‘Dng > and |Dg Dg). Depending on the specified full-system charge, the interface will take either only |S¢Sy), ’Dng >
and |D5Dg> for charge 0, or |SOD3> and |D380> for charge 1, or |SOD(;> and |D(;SO> for charge —1. Then, for charge 0
and an ECIS expansion, the |SoSo) aufbau product will give [S1So), |SoS1), |T1So) and |SeT;) LEs, the |D6’D5> will give
[D*D;) and [D;D;) LEs, while |D; D}) will give [D; D}) and [D; DY) LEs.

Note that the products (both aufbau or non-aufbau) actually contain the site states with well-defined site-specific
S and Mg value. In this sense, \Dng > above is not a single product but rather a symbolic representation of a set of

133

SHARC Manual 6 Interfaces | 6.25 ECI Interface

four products, having four combinations of Mg values of the two doublet site states: (+1/2, +1/2), (+1/2, —1/2), (=/2, +1/2)
and (—'/2, —'/2). After all products are generated, the interface will take only those having the total Ms value equal to
the S value of the specified full-system multiplicity (0 for singlets, /2 for doublets, 1 for triplets, etc.). For example, for

full-system singlet spin, the interface will take |D;D;> products only with (+1/2, —'/2) and (='/2, +'/2) combinations of
Mg values, while for triplets it will take only (+1/2, +!/2). Similarly, for full-system triplet spin, only |T{Sy) with T; site
state having Mg = 1 will be taken, etc. However, such products are not necessarily eigenfunctions of the full-system
spin. For example, for singlet spin, |S;So) LE is a singlet configuration, but |D3Dg > with either (+!/2, =1/2) or (=1/2, +1/2)
is not. In this case, the singlet function is a linear combination \/% [(+'/2, =1/2) = (=1/2, +1/2)]. The less obvious example

would be |D3T1>, which for the full-system doublet spin is a linear combination % [\/3(—1/2, +1) — V3(1/2, 0)]. These
spin-adapted products are called excitonic configuration state functions (ECSFs) and the interface will generate them
automatically by diagonalization of the full-system spin operator. The raw antisymmetrized products are then referred
to as excitonic Slater determinants (ESDs), in analogy with the CI method and Slater determinants.

Construction of the ECI Hamiltonian

In the third step, the ECI Hamiltonian matrix of the full system is evaluated for each multiplicity (and Mg = S) in
the excitonic basis of ESDs. This is done within the strong orthogonality assumption (SOA). To construct the ECI
Hamiltonian, one needs only two "ingredients" from the each site: the site energies and the site density matrices, which
are obtained from the SSC children. It is important to note that the couplings between the ESDs where the two site
states of a fragment differ in the charge are currently neglected, as the underlying theory is under development. An
example for this would be the couplings between an LE and a CT product, e.g., (SISO|I:I |D5’D5 > The Hamiltonian is
then rotated to the basis of ECSFs, and the full-system states are obtained by diagonalization of the ECI Hamiltonian for
each full-system multiplicity.

EHF embedding

Importantly, before the SSCs, SHARC_ECI.py can determine the optimal embedding point charges of all atoms of all
fragments via the excitonic Hartree-Fock (EHF) method [104]. The EHF algorithm involves iterative ground-state
calculations on each fragment with the ground-state RESP point charges of other all fragments placed in the surroundings,
followed by the RESP fit of the obtained ground-state densities, until all RESP charges stop changing. The ground-state
calculations and the RESP fits are done via the EHF children of SHARC_ECI. py.

Such obtained charges should minimize the energy of the GS product, just like the optimal orbitals in HF minimize the
energy of a Slater determinant. However, SHARC_ECI . py also has some other options to utilize non-optimal embedding
charges in various ways, in order to reduce computational cost (see below in Section 6.25.3).

Note that the EHF part of the SHARC_ECI. py run will not calculate the EHF energy of the system, but will only find
the optimal embedding charges (i.e., despite its name, it is an excitonic analogue of SCF rather than HF). The EHF
energy will be calculated later when building the ECI Hamiltonian.

Available features The SHARC_ECI.py currently provides only the h, dm, mol and point_charges features. It requires
from its EHF children only the multipolar_fit and point_charges. From the SSC children, it always requires the h,
mol, density_matrices and point_charges features, regardless of the requests given to it.

Limitations

The current theoretical framework and implementation entail a few consequences:

« Despite the ECI method being agnostic to the SSC ansatz, the site states can currently only be calculated on
CIS/TD-DFT level with Gaussian or on CASSCF level with OpenMolcas, since only SHARC_GAUSSIAN.py and
SHARC_MOLCAS . py have the density_matrices feature.

+ In order for the method to work accurately, sites can interact strongly but should not be too close in space
(e.g., covalently bonded), as this will break the SOA. The method is supposed to work well for supramolecular
aggregates, metal complexes with no low-lying metal-centered excitations, and other similar systems.

« Regardless of the system, the method will not diverge in the region of overlapping sites, due to the SOA. Thus, the
method should not currently be used to perform scans (that include close-site region), optimizations, or molecular
dynamics. It is currently primarily intended for the spectroscopic calculations on the systems described in the
previous bullet.

134

SHARC Manual 6 Interfaces | 6.25 ECI Interface

« Even if the sites might be sufficiently far apart, some of the calculated site states might penetrate the regions of
other sites (e.g., Rydberg states) and thus break SOA. Hence, SHARC_ECI . py will expel those site states prior to
the construction of the ECI basis [104].

We intent to overcome these limitations in future releases of SHARC.

6.25.2 QM directory of ECI interface

The QM directory of SHARC_ECI. py has to contain a template file (Section 6.25.3), a resources file (Section 6.25.4), and
a directory per child containing its input files. As mentioned above, SHARC_ECI.py has two types of children—EHF
and SSC children. An EHF child is an interface used to calculate the ground state of a single fragment for a single
full-system charge during the EHF procedure. An SSC child is an interface used to calculate all the (ground and excited)
site states for a single fragment and a single charge for a single full-system charge.

All fragments are given a label in ECI.template (see Section 6.25.3). The names of the QM directories of the EHF
children have to be <label>_embedding_Z<Z>, where <Z> is the full-system charge. The names of the QM directories of
the SSC children have to be <label>_z<z>_7Z<Z>, where <z> is the fragment charge and <Z> is again the full-system
charge. The template file, the resources file and the structure of the standard output of SHARC_ECI . py will be illustrated
in following subsections on an example of an ECI calculation of 6 neutral singlet and 6 neutral triplet states of a
system containing two BODIPY chromophores connected via C-H- - - F hydrogen bond. Donor is labeled BD and
the acceptor BA, while the site states are calculated on TD-wB97xD/def2svp level with SHARC_GAUSSIAN.py. The
example can be found in $SHARC/. ./examples/SHARC_ECI. Since in this case we calculate only full-system neutral
states while having site states of BD with charges 0 and 1 and site states of BA with charges 0 and —1 (see below in
Section 6.25.3), the QM directory of SHARC_ECI . py in this case contains BD_embedding_z0, BA_embedding_z0, BD_z0_Z0,
BD_z1_Z0, BA_z0_Z0 and BA_z-1_20 children QM subdirectories. Also, since each child is a SHARC-GAUSSIAN interface
(also see in Section 6.25.3), each of these subdirectories contains the only two input files of SHARC_GAUSSIAN. py:
GAUSSIAN.template and GAUSSIAN. resources.

6.25.3 Template file: ECI.template
The example below shows a template file of SHARC_ECI. py in yaml format for the aforementioned BD-BA system.

fragments:
BD:
atoms: 0-20
aufbau_site_states: [{Z: O, M: 1, N: 1},{Z: 1, M: 2, N: 1}]
EHF:
interface : GAUSSIAN
embedding_site_state:
0: {Z: 0, M: 1, N: 1}
guess: true
write: true
max_cycles: 10
forced: false
tQ: 0.01
SSC:
interface: GAUSSIAN
data: w
states:
0: [2, 0, 1]
1: [0, 1, 0]
BA:
atoms: 21-41
aufbau_site_states: [{Z: 0, M: 1, N: 1}, {Z: -1, M: 2, N: 1}]
EHF:

interface : GAUSSIAN
embedding_site_state:
0: {Z: 0, M: 1, N: 1}

135

SHARC Manual 6 Interfaces | 6.25 ECI Interface

guess: true
write: true
max_cycles: 10
forced: false

tQ: 0.01
SSC:
interface: GAUSSIAN
data: w
states:
0: [2, 0, 1]
-1: [0, 1, 0]
calculation:
t0: 0.90

RI:
active: true
Jauxbasis: def2svpjkfit
Kauxbasis: def2svpjkfit
tS: l.e-4
tC: 1l.e-3
chunksize: -1
excitonic_basis:

ECI:
0: true
1: all
2: all
active_integrals:
J:
'(0,0)": [[BD, BA]]
'(0,1)": [[BD, BA]]
'(0,2)": [[BD, BA]]
K:
'(0,0)": [[BD, BA]]
'(0,1)": [[BD, BA]]
'(0,2)": [[BD, BA]]

The top-level dictionary allows only two keys, fragments and calculation. The fragments is mandatory (no default
value), while calculation is not mandatory (see below for the defaults).

The yaml file is generally organized as a hierarchical dictionary. The following paragraphs specify the syntax and
functionality of all the relevant keys.

fragments The fragments dictionary has to have as many items as there are fragments in the system (in this example
case, two). The minimal number of fragments is one. The key for each fragment is an arbitrary label of the fragment
(in this case, BD and BA). Note that every fragment must have a unique label. The dictionary given for each fragment
specifies everything related to this fragment in the context of the entire ECI calculation.

fragments: <label> For each fragment, the following entries must be present: atoms, aufbau_site_states, EHF, and
SSC.

fragments: <label>: atoms The atoms entry specifies the atoms of the full system that belong to this fragment, and
is mandatory. It can be given as a range (e.g., 0-20), or a comma-delimited sequence (e.g., 0,2,5,13), or a combination
of the two (e.g., 0-10,15,17,20-22). The indexation is with respect to the atom ordering given in the QM. in object of
the SHARC-ECI interface, and starts with zero.

fragments: <label>: aufbau_site_states The aufbau_site_states is an arbitrarily long list of aufbau site states of
a fragment, and is mandatory. Each aufbau site state in the list is given as a dictionary with keys: Z - the charge of
the state, M — the multiplicity of the state, and N — the ordinal number of the state within a given charge-multiplicity

136

SHARC Manual 6 Interfaces | 6.25 ECI Interface

manifold, starting from 1. In the example, BD has the first neutral singlet, {Z:0, M:1, N:1}, and the first cationic
doublet, {Z:1, M:2, N:1}, site states as the aufbau ones, i.e.,, Sy and Dj. On the other hand, BA has Sy and D;.

fragments: <label>: EHF The EHF dictionary defines the entire treatment of the fragment in the EHF procedure:

The interface entry (in the example, both fragments use GAUSSIAN) specifies the SHARC interface to be used as an
EHF child for this fragment, i.e., to perform the single-point calculation of the fragment and the RESP fit in each EHF
cycle. We remind that an EHF child can be any interface that supports multipolar—_fit and point_charges features.
Specifying the interface is mandatory (no default).

The embedding_site_state specifies the state of the fragment that needs to be calculated in each EHF cycle and whose
state density is to be used in the RESP fit. Users have to specify one embedding site state for each full-system charge.
In the example, both BD and BA use the S, as the embedding site state for full-system charge 0. Since 0 is the only
full-system charge specified, only the full-system states of this charge can be calculated with this template file. If one
wants to obtain the EHF charges that will minimize the energy of the GS product(s), the embedding site states should
be set to the sites’ ground states. If, however, one sets S state of one fragment and S; state of the other fragment as
the embedding site states, obtained charges will minimize the energy of the |SyS;) LE product. Such a choice would
effectively perform a “excitonic ASCF” instead of an EHF calculation, and the current implementation allows this.

The guess is boolean specifying whether the interface should try to read the RESP charges from a file with the path
<label>_embedding_Z<Z>/QM.out and use them as the guess charges in EHF for the fragment. If set to true, but the
reading of the file fails or if the file does not contain the RESP charges of the embedding_site_state, the interface will
assign the guess embedding charge for each atom of the fragment to zero and will only raise warning. If it is set to
false, the interface will not attempt to read any guess charges but will set them to zeros. The default value is true.

The write is boolean specifying whether the interface should write the final EHF charges of a fragment to a file with
the path <label>_embedding_Z<Z>/QM.out. The default is true.

The tQ keyword sets the threshold for the convergence of the change of the atomic RESP charges of the fragment. A
fragment is considered converged in EHF if the RESP charges of all of its atoms are changing below tQ. Default is 0.001.

The forced specifies whether the fragment is forced to converge. Note that ECI can accommodate arbitrary point
charges as embedding charges, so RESP charges of not every fragment have to be fully converged in order for the
ECI calculation to give good results. The default is true. Using false can be used, e.g., to work with fixed embedding
charges.

The max—cycles is the maximum number of EHF cycles in which the RESP charges will be updated for this fragment.
After this number of EHF cycles is exceeded, if forced is false, the interface will stop performing single-point
calculations and RESP fits of this fragment in all following EHF cycles, and will simply keep its RESP charges to the last
ones. If for any fragment forced is true and the max_cycles is exceeded before its convergence, the ECI interface will
raise error. The default is 26.

fragments: <label>: SSC The SSC dictionary specifies the treatment of the fragment in the context of the site-state
calculations:

The interface, just like in EHF, specifies the SHARC interface that is used to calculate the site states of the fragment.
These interface calls currently will have only h, density_matrices and mole requests, so eligible interfaces here are
any that accommodate those and point_charges as features. It is mandatory (no default).

The data is a string specifying whether the interface should write the site-state data to or/and read the site-state data
from <label>_z<z>_Z<Z>/QM.out file. If the value contains r, the interface will attempt to read the site-state data from
the file, and if this fails, unlike in the EHF’s guess, the interface will raise an error. If it succeeds, the interface will not
calculate the site states for the fragment but will use the read data. If the value does not contain r, SHARC_ECI . py will
call the interface to perform the SSC for the fragment. Independently, if the value contains w, interface will write
(either read or calculated) data to <label>_z<z>_Z<Z>/QM.out file. This key can be useful to calculate the site states in
the first call of the interface and dump the data to QM.out files (with w given to each fragment), and then only read
them in any future call of SHARC_ECI.py (with r given to each fragment) while, e.g., benchmarking anything specified
in calculation dictionary (see below, e.g., ECI expansion, different thresholds, auxiliary basis set for R, etc.). Also,
it can be useful if one wants to add a few more site states to a single fragment (so one must repeat the SSC for that
fragment) but use already calculated site state set of other fragments. The default is w.

The states specifies which site states for the fragment need to be calculated. Its keys are the charges of the fragment,
while the values are the lists of the number of the site states per multiplicity, just like the states entry in a QM. in file or
in the input file of the SHARC drivers. In the example above, BD will have only the first two singlet (Sy and S;) and the

137

SHARC Manual 6 Interfaces | 6.25 ECI Interface

first triplet (T;) site states of the charge 0, and Dj site state of the charge 1. On the other hand, BA will have Sy, S; and
T; site states of the charge 8 and D site state of the charge -1. Note that all aufbau_site_states of a fragment have
to be included in the states, or an error will be raised. This, however, does not hold for the embedding_site_states
of the fragment, although in practice will probably be the case. Currently it is not possible to skip some states within a
charge-multiplicy manifold, e.g., one cannot have neutral Sy, S; and Ss site states on a fragment (skipping S;). Also,
note that the given numbers of site states per charge-multiplicity manifold of a fragment are used identically for all
full-system charges. Hypothetically, one could use a completely different set of site states for each different full-system
charge, but then these ECI calculations would not be done on an equal footing. (Using different site states for different
full-system charges would be similar to using different basis sets for a neutral molecule and its cation; here one sees the
analogy between site states in ECI and orbitals in CI). However, also note that, just like neutral and cationic molecular
orbitals will be different functions after respective HF calculations, the site states of a fragment also might be physically
different states for different full-system charges, due to the different embedding_site_states of other fragments for
different full-system charges in the respective EHF calculations. It is mandatory (no default).

calculation The calculation dictionary specifies all options that are not specific to related to specific fragments in
the ECI calculation. It has keys t0, RI, excitonic_basis and active_integrals.

calculation: tO The t0 is the threshold for the inter-site overlap integrals, designed to automatically track the site
states that lead to the breakdown of SOA. For the details see Chapter 3.2.2 in Ref. 104. Default is 0.95.

calculation: RI TheRI entry specifies the setup of using the Rl approximation in the calculation of the ECI Hamiltonian
matrix:

The active entry is a boolean specifying whether the Rl is used or not. The theory of RI-ECI is presented in Ref. 105.
Default is true, and we strongly encourage using the R, since the algorithm without it is implemented only as a proof
of concept and is very memory demanding already for medium-size fragments.

The Jauxbasis and Kauxbasis entries specify the auxiliary basis sets used in the RI-ECI calculation of the J and K
terms. The basis set has to be available in PySCF package (in particular, in the module https://pyscf.org/_modules/
pyscf/gto/basis.html). Default for both is augccpvdzri.

The tS and tC entries are the thresholds for the prescreening of the inter-site three-centric two-electron exchange
integrals. Check Ref. 105 for details. Default for tS is 0.0001 and for tC is 8.001. In our experience, the default values are
sufficient to obtain accurate state energies. In systems with weak interactions, and especially if the system is symmetric
and the full-system states should reflect this symmetry, we recommend to significantly tighten both thresholds.

The chunksize is an integer specifying the number of partial densities of the first fragment in a pair that will be
contracted with the Cholesky factors simultaneously. This usually defines the peak in the memory usage in the building
of the ECI Hamiltonian. In particular, it controls the size of the biggest intermediate, that is of the size N[fartN /’:ONEON&}(
(see discussion after Equation (8) in Ref. 105) by splitting the first dimension of the tensor in chunks of the chunksize
size. For example, if one has two identical fragments, each having N, 11\:0 = Ngo = 300 while the auxiliary basis set of the
dimer has NX¢ = 3000, the tensor takes up 2.16 GB per partial density. If one has around 20 GB at disposal, but has 30
different partial densities on the fragment F, not the entire tensor can be stored at once, as it would weight 64.8 GB. In
this case, one can set chunksize=8 and 8 densities will be contracted at time, taking 17.28 GB. The entire contraction is
then done in 4 chunks, with the first three chunks having 8 densities and the last one having 6 remaining densities
(8 X 34 6 = 30). Setting chunksize=-1 corresponds to performing the contraction in one chunk (in this example being

equivalent to chunksize=30) and is the default.

calculation: excitonic_basis The excitonic_basis dictionary specifies what excitonic basis is going to be build
from the calculated site states. Currently, it only has a single key, ECI. The entire excitonic_basis dictionary can be
omitted, in which case it defaults to the default of its key ECI (see below).

calculation: excitonic_basis: ECI The ECI is a dictionary that specifies the ECI basis that is going to be build. Its
keys are integers starting from 0 to the number of fragments. These keys represent the antisymmetrized products in
the sense of their excitation rank (0 — the aufbau product(s), 1 — LEs, 2 - DLEs, etc.).

The 08 entry can have only values true and false, specifying whether the aufbau product(s) will be present in the final
ECI basis.

138

https://pyscf.org/_modules/pyscf/gto/basis.html
https://pyscf.org/_modules/pyscf/gto/basis.html

SHARC Manual 6 Interfaces | 6.25 ECI Interface

Each other key F > 0 can have values all, false, or a list of F-membered subsets of fragment labels. If all, then all
products of the rank F will be generated. If false, no product of the rank F will be generated. If a list of fragment
subsets is given, only F-ranked products where the excitations are found on the fragments from any of the subsets will
be generated.

For example, if 1: [[BD]] is given in this example, only LEs with the excitation on BD will be generated (no LEs with
the excitation on BA). For this system, 1: [[BD], [BA] is equivalent to 1: all. The highest excitation rank for this
system is 2, since there are two fragments. Only possible values here are 2: all,2: [[BD, BA]l,and 2: false,
where the first two are equivalent. Note that the ordering of the fragments within a subset is irrelevant (e.g., [BD, BA]
and [BA,BD] are the same). If any excitation rank is not specified within the ECI dictionary, the defaults are 0: true,
1: all,andF: false for F > 1, which defines the ECIS expansion. If the entire ECI is not specified, it defaults to a
dictionary with default values for each key (i.e., again to the ECIS).

calculation: active_integrals The active_integrals dictionary specifies the type of the two-site integrals that
will be computed when building the ECI Hamiltonian. There are two classes of integrals: Coulomb and exchange
two-site integrals, marked with the entries J and K. Both of them are given as a dictionary with tuples ' (0,0)’, ' (0,1)"’
and '(0,2)’ as keys. As can be seen, the first entry in each tuple is exclusively 0, and is a placeholder for future
development (considering charge transfer couplings). The second entry can be 0, 1 or 2. The tuple ’ (0,0) ’ symbolizes
the two-site integrals contributing to the matrix elements with zero differences in the site states (fragment-wise), i.e.,
the diagonal matrix elements. These integrals are always (Coulomb or exchange) integrals between two state densities.
The tuple ’ (0,1) ' symbolizes the two-site integrals contributing to the matrix elements with one site-state difference,
such as GS-LE couplings, same-site LE-LE couplings, a subset of LE-DLE couplings, a subset of DLE-DLE couplings, etc.
These integrals are always evaluated between one state density and one transition density. Similarly, the tuple ' (0,2)’
symbolizes the two-site integrals contributing to the matrix elements with two site-state differences, such as GS-DLE
couplings, different-site LE-LE couplings, a subset of LE-DLE couplings, a subset of DLE-DLE couplings, etc. These
integrals are always computed between two transition densities.

For each type of the integrals, one can give values all, false or a list of fragment pairs, where all/false specifies that
all/no integrals of the kind will be calculated. If the list of the fragment pairs is given (like in the example, e.g., ' (0,1) ":
[[BD,BA] 1), only the integrals between the fragments in the pairs will be calculated. This is useful if the user knows
that a certain pairs of fragments are too far away so that the interfragment exchange can be neglected.

The default for each type of the integrals is all. One can also specify J: all immediately, which is equivalent to J:
’(0,0)’: all, ’(0,1)': all, ’'(0,2)’: all. The analogous stands for J: false, and also applies to K equally.
If omitted, J: all and K: all are defaults.

Also, all or false can be immediately given to active_integrals entry. The first is equivalent to J: all, K: all
and specifies that all two-site integrals (of any type and kind) required by ECI theory should be computed. The
later is equivalent to J: false, K: false and specifies that no two-site integral will be calculated. This gives the
non-interacting picture, i.e., the full-system energies will be only the sums of the site energies.

As a special example, the Frenkel exciton model that does not include two-site exchange, the interaction energy on the
diagonal matrix elements, as well as the same-site LE-LE couplings, is specified by

active_integrals:

J:
'(0,0)’: false
'(0,1)': false
'(0,2)": all
K: false

6.25.4 Resources file: ECI.resources

Resources file of ECI interface is a yaml file having keys: scratchdir, ncpu and sitejobs.

ncpu: 40
scratchdir: SCRATCH
sitejobs: [[BA,0]1, [BA,-11, [BD,0], [BD,1] 1]

139

SHARC Manual 6 Interfaces | 6.25 ECI Interface

Inside specified scratchdir, the interface will create the scratchdirs of all its EHF and SSC children, with the hardcoded
names <scratchdir>/<label>_embedding_zZ<Z> and <scratchdir>/<label>_z<z>_Z<Z>, i.e. the scratchdirs given
in children’s resources files will be ignored.

On the other hand, the ECI interface does not interfere with the ncpu value of its children, i.e., the user has to specify
these for both ECI and each child’s interface in a consistent and efficient way. In the BD-BA example, 40 cores are given
to SHARC_ECI.py and, since we have two equally-sized fragments BD and BA treated with the same level of theory, we
set ncpu: 20 in both Bx_embedding_z0/GAUSSIAN. resources, so that the two EHF children are launched in parallel.
Regarding the SSC children in the example, BD and BA both have Sy, S;, T; neutral site states, and Dg and Dy site
states respectively. Assuming that the neutral calculation on a fragment is roughly four times more expensive than the
calculation of DJ, i.e., D, we give 16 cores to each BD_z0_Z0 and BA_z0_Z0, while BD_z1_Z0 and BA_z-1_Z0 are given 4
cores each. In this way, all four SSC children will be launched in parallel and will finish approximately in the same time.

The sitejobs is a list of SSC children defining the order they will be launched during SSC. Using this keyword and ncpu
of individual children, users can make their own scheduling of the SSC. In the upper example, any order of SSC children
given in sitejobs would result in launching all four children simultaneously because four ncpu given in respective
GAUSSIAN. resources sum up exactly to 40.

Let us emphasize that the ECI interface itself does not have any keyword defining the limit of its overall memory usage.
In other words, it will try to allocate as much memory as it needs. Nevertheless, as discussed in Section 6.25.3, user can
control the probable memory peak of the ECI calculation with calculation: RI: chunksize keyword. Also, note
that the RESP fit in ab-initio interfaces (like SHARC_GAUSSIAN. py) in EHF can be very memory demanding, so for a
larger number of fragments (or fragments with many basis functions) one will have to launch not all EHF children at
the same time, but rather in chunks, giving more CPUs to each child.

6.25.5 Standard output of SHARC_ECI.py

Apart from the standard output printed by corresponding base classes (SHARC_INTERFACE.py and SHARC_HYBRID. py),

SHARC_ECI . py prints its own formatted output as it goes through its run function, to enable user to follow the progress.

While the output printed during EHF and SSC is pretty simple and understandable by itself (see $SHARC/ . . /examples/SHARC_ECI/QM. Lo
the loggings produced during the excitonic part of an ECI calculation are commented and explained here.

This part of loggings starts with a simple title and the basic self-explanatory infos of the ECI calculation:

Excitonic part of the ECI calculation

BASIC INFOS OF THE CALCULATION:

The number of CPUs for NumPY and PySCF set up to 40
Multiplicities to be calculated: [1, 3]
ECI level:
GS: True
LE: [[BD], [BAl]
DLE: [[BD, BA]]

This is followed by a simple info about the sites and the site states:

BASIC INFOS OF THE SITES:

Site: BD
Atoms: N N © © © © C C € € C
RESP charges: -0.05455 -0.04286 -0.02586 -0.24813 -0.16312 0.05665 -0.11178 0.03569 -0.16726 -0.23580 -0.02365
Site states: S0_(0)"~(0) S1_(0)"~(0) Tl (-1)~(0) T1_(0)"(0) Tl (+1)7(0) DO_(-1/2)"~(1+) DO_(+1/2)"(1+)
Site energies: -680.54580417 -680.41734691 -680.48556468 -680.48556468 -680.48556468 -680.26156327 -680.26156327
Num. of el.: 98.00000001 98.00000001 97.99999998 97.99999998 97.99999998 97. 97.
Alpha: 49.00000001 49.00000001 47.99999998 48.99999999 50.00000043 49. 49.
Beta: 49.00000001 49. i 50. 48.99999999 48. 41 48. 48.
Site: BA
Atoms: N N © © © © © © © © ©
RESP charges: 0.02019 -0.01494 -0.05860 -0.22107 -0.17489 0.00786 -0.08828 0.02863 -0.16114 -0.23276 -0.01928

140

SHARC Manual 6 Interfaces | 6.25 ECI Interface

Site states: S0_(0)"~(0) S1_(0)"~(0) Tl (-1)"(0) T1_(0)"(0) T1_(+1)7~(0) DO_(-1/2)"(1-) DO_(+1/2)"(1-)

Site energies: -680.54624350 -680.41830441 -680.48648910 -680.48648910 -680.48648910 -680.61761335 -680.61761335

Num. of el.: 97.99999999 97.99999999 97.99999999 97.99999999 97.99999999 98.99999999 98.99999999
Alpha: 48.99999999 49.00000000 47.99999998 48.99999999 50.00000068 49. 49.

Beta: 48.99999999 49. 50. 1 48. 48. 66 48.99999999 48.99999999

Here, for each site, the first table represents the atomic symbols and the corresponding embedding charges that were
obtained from the EHF. The second table shows the site states, their energies (as obtained from the SSC children) and
the number of electrons (total, alpha and beta), calculated from the state densities obtained from the children. This is
convenient to check, to see whether the generation of the density matrices and the rotation of the basis set to the PySCF
convention went well. Note that, when using SHARC_GAUSSIAN.py as an SSC child, to obtain correct number of alpha
and beta electrons for the triplet site states one has to specify wfthres greater than 1 in the GAUSSIAN. resources of
the child.

The symbols of the site states contain letter(s) for multiplicity (S, D, T, Q, and then corresponding Roman numbers V, VI,
VIL,...), followed by an ordinal number of the state (N-1 for the ground-state multiplicity and N for other multiplicities),
followed by the Mg value in the subscript and the site charge in the superscript.

Then follows the section dedicated to the generation of the excitonic basis:
CONSTRUCTION OF THE ECI BASIS:

Aufbau ESDs (# =5):
[BD~(0) : SO_(0) | BA™(0) : SO_(0) 1

[BD~(1+) : DO_(-1/2) | BA~(1-) : DO_(-1/2) 1
[BD~(1+) : DO_(-1/2) | BA™(1-) : DO_(+1/2)]
[BD~(1+) : DO_(+1/2) | BA™(1-) : DO_(-1/2)]
[BD™(1+) : DO_(+1/2) | BA~(1-) : DO_(+1/2) 1

Number of aufbau and excited ESDs before overlap criterion: 29
Overlap criterion:
(Fragment,charge) pair: (BD,0), (BA,0):

The best complement overlap: 1 - < T1_(+1) | S0_(0) >
No site-state pair need to be expelled!

0.9946171197256403

(Fragment,charge) pair: (BD,0), (BA,-1):
The best complement overlap: 1 - < SO_(0) | DO_(-1/2) > = 0.9942053512401284
No site-state pair need to be expelled!

(Fragment,charge) pair: (BD,1), (BA,0):
The best complement overlap: 1 - < DO_(-1/2) | SO_(0) >
No site-state pair need to be expelled!

0.9955291827037946

(Fragment,charge) pair: (BD,1), (BA,-1)
The best complement overlap: 1 - < DO_(-1/2) | DO_(-1/2) > = 0.9951728369089206
No site-state pair need to be expelled!

Number of aufbau and excited ESDs after overlap criterion: 29

First, the interface prints the list of all aufbau ESDs having correct full-system charge. Each ESD is represented as an
Nfrog-long list of the site states, separated by vertical bars (|). Each site state is represented by fragment label and its
charge in the superscript (e.g., BA*(1-)), separated by : from the state symbol without the charge (e.g., DO_(+1/2)).
Then, the interface construct all excited ESDs (LEs, DLEs,...) and reports the total number of ESDs. Then it applies the
overlap criterion for each site pair and eventually expels some ESDs from the ECI basis. For each (fragment, charge) pair,
the max. complement overlap of the site states is printed, as well as the site-state pairs for which relative complement
overlap is lower than t0*max0 (in the example, there were no site-state pairs violating the SOA).

Further, the results of the spin adaptation are printed:

Spin adaptation for multiplicity 1:
Found 13 ESDs with MS = 0.0
Constructed 6 ECSFs spanned by 9 ESDs:

141

SHARC Manual 6 Interfaces | 6.25 ECI Interface

(0) =
1.000000[BD~(0) : SO_(0) | BA~(0) : SO_(0)]

(BD~(1+) : DO | BA®(1-) : DO) =
-0.707107[BD~(1+) : DO_(-1/2) | BA®(1-) : DO_(+1/2) 1]
0.707107[BD™(1+) : DO_(+1/2) | BA~(1-) : DO_(-1/2) 1

(BD™(0) : S1) =
1.000000[BD™(0) : S1_(0) | BA™(0) : SO_(0)]

(BA®(0) : S1) =
1.000000[BD~(0) : SO_(0) | BA®(0) : S1_(0)]

(BD*(0) : S1 | BA®(0) : S1) =
1.000000[BD~(0) : S1_(0) | BA™(O) : S1_(0)]

(BD*(0) : T1 | BA®(O) : T1) =
0.577350[BD™(0) : T1_(-1) | BAN(0) : T1_(+1) 1
-0.577350[BD~(0) : T1_(0) | BA™(0) : T1_(0)]
0.577350[BD™(0) : T1_(+1) | BA™(0) : T1_(-1) 1

Spin adaptation for multiplicity 3:
Found 7 ESDs with MS = 1.0
Constructed 6 ECSFs spanned by 7 ESDs:

(BD~(1+) : DO | BA®(1-) : DO) =
1.000000[BD™(1+) : DO_(+1/2) | BA™(1-) : DO_(+1/2) 1

(BD™(0) : T1) =
1.000000[BD™(0) : T1_(+1) | BA™(0) : SO_(0)]

(BA%(0) : T1) =
1.000000[BD~(0) : SO_(0) | BA™(0) : T1_(+1) 1]

(BD*(0) : S1 | BA®(O) : T1) =
1.000000[BD~(0) : S1.(0) | BA~(O) : T1 (+1)]

(BD*(0) : T1 | BA®(O) : T1) =
-0.707107[BD~(0) : T1_(0) | BA™(0) : T1_(+1)]
0.707107[BD™(0) : T1_(+1) | BA™(0) : T1_(0)]

(BD™(0) : T1 | BA®(0) : S1) =
1.000000[BD~(0) : T1_(+1) | BA™(OG) : S1_(0) 1]

Time spent in constructing the ECI basis (sec) = 0.261

For each multiplicity, the number of ECSFs constructed by a number of ESDs is reported. Then each ECSF is printed in
the basis of ESDs. The symbol of an ECSF is a tuple of the site states separated by |. Each site state has the framgnet
label and its charge, separated by : from the label of the state without Mg, symbolizing the the ECSFs are not necessarily
the eigenstates of the site-specific S, operator (but are the eigenstates of the full-system S, and $2). As can be seen,
the symbols of ECSFs do not contain labels all site states, but only of those that differ from the first state given in the
aufbau_site_state list of each fragment. In BD-BA example, both fragments have Sy site state as the first aufbau one
(second aufbau site states are D} and D respectively), hence the symbol of the ECSF corresponding to ! [SoSy) should
not have any site state printed. For this reason, this ECSF is labeled as (0). The ECSFs corresponding to LEs will then
have a single site state printed, DLEs, two site states, etc. The CT products (with respect to the site charges of the first
aufbau site states) then have both donor and acceptor site state emphasized in the symbol of ECSF (e.g., (BD~(1+)
DO | BA~(1-) : DO) in the example). In this example, the printed ECSFs are GS product ! [S,S), ! [DiD;) CT
product, ! |S;S¢) LE on BD, ! |SS;) LE on BA, and ! |S;S;) and ! |T;T;) DLEs, all spin-adapted for the singlet full-system
spin. Triplet ECSFs are 3 [DDy), 3 [T1So), * [SoT1), * [T1S1), *[S:1T1) and * |T;Ty).
Further, interface calculates the ECI Hamiltonian in the constructed excitonic basis, for each multiplicity simultaneously,
by looping over the fragments/fragment pairs.

142

SHARC Manual 6 Interfaces | 6.25 ECI Interface

CONSTRUCTION OF THE ECI HAMILTONIAN:
Generating the dictionary of ECI integrals took 0.002 sec.

Calculating ECI V-integrals...
Site: BD, Nuclei: BA
Took 0.02 sec.
Site: BA, Nuclei: BD
Took 0.033 sec.

Calculating ECI J-integrals...

Site 1: BD, Site 2: BA
Calculation of P-matrix of dim.
Calculation of L-tensors of dims.
First contraction took 0.739 sec.
Second contraction took 0.001 sec.
Distribution took 0.0 sec.

(2368, 2368) took 0.411 sec.
(231, 231, 2368) and (231, 231, 2368) took 0.288 sec.

Calculating ECI K-integrals...
Site 1: BD, Site 2: BA
Number of atoms per fragment: 18/21 and 14/21
Number of shells per fragment: 59/105 and 56/105
Number of AOs per fragment: 127/231 and 128/231
Calculation of P-matrix of dim. (2368, 2368) and its Cholesky decomposition took 0.07 sec.
Calculation of L-tensor of dim. (2368, 127, 128) took 0.045 sec.
Calculation of Cholesky factors took 0.224 sec.
Prescreening took 0.213 sec.
Chunk 1 (contracting 34 densities of the first fragment)...
Done in 0.515 sec.

Summing up J- and K-matrices, adding site energies and VNN to the diagonal, and rotating J-, K-, and H-matrices to the basis of ECSFs...

Total inter-fragment nuclear-nuclear repulsion (au) = 708.5748067802617

H-, J-, K-matrices for multiplicity 1 in the basis of ECSFs:
H-matrix:

-1361.0908146054 0.0000000000 0.0002633611 -0.0000163705 -0.0021649706 0.0000000055
0.0000000000 -1360.9466671910 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.0002633611 0.0000000000 -1360.9624319791 -0.0021647097 -0.0004058577 -0.0000000000
-0.0000163705 0.0000000000 -0.0021647097 -1360.9628867326 0.0002815142 -0.0000000000
-0.0021649706 0.0000000000 -0.0004058577 0.0002815142 -1360.8344815781 0.0000000038
0.0000000055 0.0000000000 -0.0000000000 -0.0000000000 0.0000000038 -1360.9708608588

J-matrix:
0.0038436955 0.0000000000 0.0000963597 -0.0000245797 -0.0021640119 0.0000000000
0.0000000000 -0.0652297716 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.0000963597 0.0000000000 0.0038124367 -0.0021640119 -0.0004141173 0.0000000000
-0.0000245797 0.0000000000 -0.0021640119 0.0038415313 0.0001141418 0.0000000000
-0.0021640119 0.0000000000 -0.0004141173 0.0001141418 0.0038328724 0.0000000000
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0038149941

K-matrix:
0.0026106372 0.0000000000 -0.0001670014 -0.0000082092 0.0000009587 -0.0000000055
0.0000000000 0.0022608037 0.0000000000 0.0000000000 0.0000000000 0.0000000000
-0.0001670014 0.0000000000 0.0026540078 0.0000006978 -0.0000082596 0.0000000000
-0.0000082092 0.0000000000 0.0000006978 0.0026196904 -0.0001673724 0.0000000000
0.0000009587 0.0000000000 -0.0000082596 -0.0001673724 0.0026631326 -0.0000000038
-0.0000000055 0.0000000000 0.0000000000 0.0000000000 -0.0000000038 0.0026220760

H-, J-, K-matrices for multiplicity 3 in the basis of ECSFs:

H-matrix:

-1360.9466672398 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.0000000000 -1361.0305986559 -0.0000000037 0.0000000000 0.0000000041 -0.0006912039
0.0000000000 -0.0000000037 -1361.0310619982 0.0002927294 -0.0000000247 0.0000000000
0.0000000000 0.0000000000 0.0002927294 -1360.9026763539 0.0000044933 0.0000000000
0.0000000000 0.0000000041 -0.0000000247 0.0000044933 -1360.9708582316 -0.0000006056
0.0000000000 -0.0006912039 0.0000000000 0.0000000000 -0.0000006056 -1360.9026304185

J-matrix:
-0.0652297716 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.0000000000 0.0038202531 0.0000000000 0.0000000000 0.0000000000 -0.0006994784
0.0000000000 0.0000000000 0.0038427062 0.0001256414 0.0000000000 0.0000000000
0.0000000000 0.0000000000 0.0001256414 0.0038144602 0.0000000000 0.0000000000
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0038149941 0.0000000000
0.0000000000 -0.0006994784 0.0000000000 0.0000000000 0.0000000000 0.0038584511

K-matrix:
0.0022608525 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.0000000000 0.0026107342 0.0000000037 0.0000000000 -0.0000000041 -0.0000082744
0.0000000000 0.0000000037 0.0026114386 -0.0001670880 0.0000000247 0.0000000000
0.0000000000 0.0000000000 -0.0001670880 0.0026548039 -0.0000044933 0.0000000000
0.0000000000 -0.0000000041 0.0000000247 -0.0000044933 0.0026194488 0.0000006056
0.0000000000 -0.0000082744 0.0000000000 0.0000000000 0.0000006056 0.0026197850

Time spent in calculating ECI Hamiltonian (sec) = 2.938

For this, it needs to calculate all inter-site Coulomb nuclear-electron (marked by V) and electron-electron (marked by J3)

SHARC Manual 6 Interfaces | 6.25 ECI Interface

interaction integrals, as well as the inter-site exchange integrals (marked by K). For more expensive J and K integrals,
the shapes of some intermediate tensors, as well as the timings of some substeps, are printed. Eventually, the ECI
Hamiltonian, as well as its Coulomb and exchange contributions, is printed for each full-system multiplicity in the basis
of respective ECSFs, sorted as printed at the end of the section CONSTRUCTION OF THE ECI BASIS. For example, one
can easily see strong exciton coupling <18180||H|1SOSI> = —0.0021647097 Hartree ~ —59 meV.

Finally, after diagonalization of the full-system Hamiltonian for each multiplicity, the interface prints the info of the
full-system eigenstates:

FULL-SYSTEM STATES:

Ground state is of multiplicity 1
Ground-state energy = -1361.0908334161868

Full-systems states for multiplicity 1 in the basis of ECSFs:

State Eex/eV fosc Psi
[¢] 0.000 0.0000 1.000(6) ©0.008(BD~(0) : S1 | BA®(®) : S1) -0.002(BD~(O) : S1
1 3.265 0.0000 1.000(BD~(0) : T1 | BAN(O) : T1
2 3.429 0.0037 0.743(BA~(0) : S1) 0.669(BD~(0) : S1) 0.001(0)
3 3.547 1.3839 0.743(BD™(0) : S1) -0.669(BAN(0) : S1) 0.004(BD~(O) : S1 | BAN(0) : S1) 0.002(0
4 3.923 0.0000 1.000(BD~(1+) : DO | BA™(1-) : DO)
5 6.976 0.0000 1.000(BD™(0) : S1 | BA®(@) : S1) -0.008(0) -0.003(BD~(0) : S1) 0.002(BA™(0) : S1

1 1 1 (0) : T1) -0.002(BD~(0) : S1 | BA™(0) : T1
2 1 1.000(BD~(0) : T1) 0.005(BD~(0) : T1 | BA™(O) : S1
3 3 1 (0) : T1 | BA®(0) : T1

4 3.923 1.000(BD™~(1+) : DO | BA~(1-) : DO)

5 5 1.000(BD™(O) : S1 | BA®(0) : T1) 0.002(BA~(0)

6 5 1.000(BD~(0) : T1 | BA®(0) : S1) -0.005(BD~(0)

0
0

—- =
[

Time elapsed in the excitonic part = 3.926 sec.
============== End of excitonic part of the ECI calculation ===============

For each multiplicity, the interface prints the excitation energy and the ECI wavefunction in the basis of ECSFs (with
ECI coefficient > 0.001) of each full-system state. For the states sharing the multiplicity with the full-system ground
state, the oscillator strengths are printed. In the example, all full-system states nearly correspond to a single ECSF (all
leading ECI coefficienst are ~ 1), except the S; and S; states, that are the superpositions of two S; LEs, with exciton
splitting of ~ 118 meV. This is a consequence of fairly converged EHF procedure, i.e., if we have not converged the
embedding charges properly (or even used no embedding), there would be a higher excitonic "correlation” in each state.

6.25.6 During setup

Before calling a setup script, user has to have ECI.template and ECI.resources ready.

After learning the path to ECI. template from the user, the interface will conclude what are all the EHF and SSC interfaces
that need to be instantiated, by making all combinations of full-system charges (found as keys of <label>: EHF:
embedding_site_states dictionary) and the fragment’s charges (found as keys of <label>: SSC: states dictionary).
In the BD-BA example with the template file above, this will include: BD_embedding_zZ0, BA_embedding_z0, BD_z0_Z0,
BD_z1_Z0, BA_z0_Z0 and BA_z-1_Z0. Note that the interface will not check whether all fragments have equal sets of
full-system charges, or whether it is possible to "reach" each full-system charge given the charges of the fragments. If
there is a contradiction here, the error will be raised only during the calculation.

After generating all full-system/fragment charge combination for each fragment, during setup the user can remove
some of them. This could be useful when calculating more than one full-system charge, but not all the combinations are
necessary for some of them. In the BD-BA example, if we would add a certain embedding_site_state for the full-system
charge 1 to each fragment, the template file would immediately become usable for the calculation of [BD-BA1*. In this
case, the setup function would initially "plan" to instantiate SSC children BD_z0_20, BD_z1_Z0, BA_z0_Z0, BA_z-1_Z0
for the full-system charge 0, and BD_z0_Z1, BD_z1_Z1, BA_z0_Z1, BA_z-1_71 for the full-system charge 1. However, it is
obvious that BA_z-1_71 and BD_z0_Z1 are not needed, so user can delete those in this point during the setup.

Finally, the setup functions of SHARC_ECI . py will call the corresponding setup functions of each child.

144

SHARC Manual 6 Interfaces | 6.26 Adaptive Sampling Interface

6.26 Adaptive Sampling Interface

Multi-child hybrid interface for quorum-based dynamics, intended primarily for active learning.

The SHARC-ADAPTIVE interface uses at least two child interfaces, one lead and at least one advisor. During each step,
all the child interfaces are executed. Afterwards the deviations between all pairs of lead and advisors and all pairs of
advisors with advisors with a specified error function for specified properties is calculated. If one of the deviations
exceeds a given threshold the interface can proceed with the results of the lead, or raise an exception, as well as saving
the current geometry to a file.

Wwrite geometry
tofile?

write to file

raise exception?

raise exception

Y

no

A

continue with data from lead

Figure 6.3: Flow chart for the SHARC-ADAPTIVE interface after executing all children and calculating deviations for
given properties.

In any case, if there is no exception the results from the leader (first specified child) will be passed to the caller. Although
this interface is intended to be used for active learning, it is not restricted to it. Alternative use cases could be to
compare, e.g., different DFT functionals or collect training data for several different electronic structure methods at the
same time.

Available features The feature set available from the SHARC-ADAPTIVE interface is the intersection of the feature
sets of all children (i.e., all features that are provided by all children).

6.26.1 Template file: ADAPTIVE.template

The ADAPTIVE.template file is written in yaml format. Table 6.37 lists the existing keywords. A fully commented
template file for this interface with all possible options is located in $SHARC/ . . /examples/SHARC_ADAPTIVE/.

Table 6.37: Keywords for the ADAPTIVE. template file.

Keyword Description

thresholds Dictionary with property as key (string) and threshold as value (float).

error_function Name of the error function, default is "mae", other predefined functions are "mae_max", "mse",
"mse_max" and "rmse".

exit_on_fail Boolean, raise an exception if a threshold is exceeded, default true.

write_geoms Boolean, write current geometry to a file in xyz format if a threshold is exceeded, default true

geom_file Name of the file where geometries will be saved. Note that if this file already exists data will be
appended.

interfaces List of child interfaces, first one is always the lead. Each entry is a dictionary with the keys

"label" (can be chosen arbitrarily, has to be unique, must exist as a directory with the child
interface resource and template files), "interface” (name of a valid SHARC interface), "args" (list
of initialization parameters), and "kwargs" (dictionary of keyword arguments).

custom_error Dictionary to specify a custom error function. Keys: "name" (define a name for the error function,
will be used for "error_function"), "file" (name of the Python file, must be in PYTHONPATH),
and "function” (name of the function in the file).

145

SHARC Manual 6 Interfaces | 6.26 Adaptive Sampling Interface

6.26.2 Resources file: ADAPTIVE. resources

The only valid keyword for this interface is ncpu, everything else, including scratch directories, is handled by the
children themselves.

6.26.3 During setup

As a hybrid interface, there are some peculiarities when doing a setup with SHARC_ADAPTIVE.py. To use it, select
SHARC_ADAPTIVE.py directly in your setup script. You will then immediately be prompted for the path to your
ADAPTIVE. template file, which tells the interface which child interfaces to invoke.

SHARC_ADAPTIVE.py will then instantiate its children and query them for their feature set. Based on these feature
sets, the SHARC_ADAPTIVE. py interface automatically composes its own feature set (the intersection of the children’s
features), which is returned to the setup script.

At a later point during setup, the interface-specific setup dialogue is started. SHARC_ADAPTIVE. py will ask for a resource
file, which will be copied if given. Subsequently, the interface-specific setup dialogues of the children are launched
sequentially (indicated by Setting up interface <name>).

146

SHARC Manual 6 Interfaces | 6.27 Fallback Interface

6.27 Fallback Interface

Two-child hybrid interface that calls a backup if the trial interface fails.

The SHARC-FALLBACK interface uses exactly two child interfaces, one trial and one backup interface. Each time the
run function of the fallback interface is called, first the trial child will be executed. If this is successful, the results
from the trial child will be passed to the caller. If the trial child fails (i.e., raises an exception), the backup child will be
executed, using the same coordinates and requests, and its results will be passed to the caller. If the backup child also
fails, the fallback interface will itself fail.

backup fails? raise exception

continue with data from trial continue with data from backup

Figure 6.4: Flow chart for the SHARc FALLBACK interface.

Available features The feature set available from the SHARC-FALLBACK interface is the intersection of the feature
sets of all children (i.e., all features that are provided by all children). The fallback interface never provides the overlaps
or phases features (as this would involve computing overlaps between time steps from the trial interface and time steps
from the backup interface, which is not possible).

6.27.1 Template file: FALLBACK. template
The FALLBACK template file is written in yaml format. Table 6.38 lists the existing keywords. A fully commented
template file for this interface with all possible options is located in $SHARC/ . . /examples/SHARC_FALLBACK/.

Table 6.38: Keywords for the FALLBACK. template file.
Keyword Description

trial_interface Is a dictionary with the keys "interface” (name of a valid SHARC interface), "args" (list of
initialization parameters), and "kwargs" (dictionary of keyword arguments)

fallback_interface Is a dictionary with the keys "interface” (name of a valid SHARC interface), "args" (list of
inijtialization parameters), and "kwargs" (dictionary of keyword arguments)

stop_at_nfails Raise an exception if the trial interface has failed n times. Default 2.

reset_fail_counter Reset fail counter after n successful trial steps. Default 1.

The options in the template file give some flexibility to control when the fallback interface stops trying to run the
backup interface. With the default stop_at_nfails=2 and reset_fail_counter=1, the fallback interface will stop if
the trial child fails in two consecutive time steps. However, if the trial child is successful at least once between fails, the
fallback interface will not stop.

6.27.2 During setup

As a hybrid interface, there are some peculiarities when doing a setup with SHARC_FALLBACK.py. To use it, select
SHARC_FALLBACK.py directly in your setup script. You will then immediately be prompted for the path to your
FALLBACK. template file, which tells the interface which child interfaces to invoke.

SHARC_FALLBACK. py will then instantiate its children and query them for their feature set. Based on these feature sets,
the SHARC_FALLBACK. py interface automatically composes its own feature set, which is returned to the setup script.

147

SHARC Manual 6 Interfaces | 6.27 Fallback Interface

At a later point during setup, the interface-specific setup dialogue is started. SHARC_FALLBACK. py will ask for a resource
file, which will be copied if given. Subsequently, the interface-specific setup dialogues of the children are launched
sequentially (indicated by Setting up Trial interface and Setting up Fallback interface).

148

SHARC Manual 6 Interfaces | 6.28 File-based Interface Specifications

6.28 File-based Interface Specifications

From the SHARC point of view, quantum chemical calculation proceeds as follows in the QM directory:

1. write a file called QM/QM. in
2. call a script called QM/runQM. sh
3. read the output from a file called QM/QM. out

For specifications of the formats of these two files (QM.1in and QM. out) see below. The executable script QM/runQM.sh
must accomplish that all necessary quantum chemical output is available in QM/QM. out.

Note that this section does not document the SHARC4-style object-oriented Python interfaces. These interfaces are
derived from the SHARC_FAST, SHARC_ABINITIO, or SHARC_HYBRID abstract base classes and have a large number of extra
requirements. In particular, they require implementation of a set of three setup routines (get_features, get_infos,
and prepare) that are needed for all of the setup scripts (e.g., setup_traj.py). Such SHARC4 interfaces also require
following certain naming conventions and behaviour for files placed into the save directory. If you are interested in
developing a SHARc4 interface, we recommend to contact the developers.

6.28.1 QM. in Specification

The QM. in file is written by SHARC every time a quantum chemistry calculation is necessary. It contains all information
available to SHARc. This information includes the current geometry (and velocity), the time step, the number of states,
the charges and the unit used to specify the atomic coordinates. The file also contains control keywords and request
keywords.

The file format is consistent with a standard xyz file. The first line contains the number of atoms, the second line is a
comment. SHARC writes the trajectory ID (a hash of all SHARC input files) to this line. The following lines specify the
atom positions. As a fourth, fifth and sixth column, these lines may contain the atomic velocities. All following lines
contain keywords, one per line and possibly with arguments. Comments can be inserted with ’#’, and empty lines are
permitted. Comments and empty lines are only permitted below the xyz file part. An examplary QM. in file is given in
the following:

3
Jobname
S 0.0 0.0 0.0 0.000 -0.020 0.002
H 0.0 0.9 1.2 0.000 -0.030 0.000
H 0.0 -0.9 1.2 0.000 0.010 -0.000
This is a comment
States 3 0 2
charge 6 1 0
Unit Angstrom
S0C
DM
GRAD 1 2
OVERLAP
NACDR select
12
end

There exist two types of keywords, control keywords and request keywords. Control keywords pass some information
to the interface. Request keywords tell the interface to provide a quantity in the QM. out file. Table 6.39 contains all
control keywords while table 6.40 lists all request keywords.

6.28.2 QM.out Specification

The QM. out file communicates back the results of the quantum chemistry calculation to the dynamics code. After SHARC
called QM/runQM. sh, it expects that the file QM/QM. out exists and contains the relevant data. This file will not be created
and is not needed if PySHARC is used.

149

SHARC Manual 6 Interfaces | 6.28 File-based Interface Specifications

Table 6.39: Control keywords for SHARC interfaces. These keywords pass information from SHARc to the interface.

Keyword Description

unit Specifies in which unit the atomic coordinates are to be interpreted. Possible arguments are
“angstrom” and “bohr”.

states Gives the number of excited states per multiplicity (singlets, doublet, triplets, ...).

savedir Gives a path to the directory where the interface should save files needed for restart and
between time steps. If the interface-specific input files also have this keyword, SHARC assumes
that the path in QM. in takes precedence.

charge Gives the charge per multiplicity (singlets, doublet, triplets, ...).

point_charges
retain

Path to a point charge file.
Integer which specifies for how many steps intermediate files are kept.

Table 6.40: Request keywords for SHARC interfaces. See Table 6.1 for which interfaces can fulfill these requests.

Keyword Description

H Calculate the molecular Hamiltonian (diagonal matrix with the energies of the states of the
model space). This request is always available.

soc Calculate the molecular Hamiltonian including the SOCs (not diagonal anymore within the
model space).

DM Calculate the state dipole moments and transition dipole moments between all states.

GRAD Calculate gradients for all states. If followed by a list of states, calculate only gradients for
the specified states.

NACDR Calculate nonadiabatic coupling vectors (¥;|d/dR|¥;) between all pairs of states. If followed
by “select”, read the list of pairs on the following lines until “end” and calculate nonadiabatic
coupling vectors between the specified pairs of states.

OVERLAP Calculate overlaps (¥ () |¥,(t)) between all pairs of states (between the last and current
time step). If followed by “select”, read the list of pairs on the following lines until “end” and
calculate overlaps between the specified pairs of states.

PHASES Calculate phases between the last and current step.

ION Calculate transition properties between neutral and ionic wave functions.

THEODORE Run THEODORE to compute electronic descriptors for all states.

MULTIPOLAR_FIT Calculate a distributed multipole expansion representing the state electronic densities/transi-
tion densities, via a RESP fit of these densities.

SOCDR Calculate the Cartesian gradients of the full spin-orbit Hamiltonian (currently not used).

DMDR Calculate the Cartesian gradients of the dipole moments and transition dipole moments of
all states (currently not used).

MOLDEN Generate MOLDEN files of the relevant orbitals and copy them to the savedir (this is a “pseudo-

request” that does not produce output in QM. out).

150

SHARC Manual 6 Interfaces | 6.28 File-based Interface Specifications

The following quantities are expected in the file (depending whether the corresponding keyword is in the QM. in file):
Hamiltonian matrix, dipole matrices, gradients, nonadiabatic couplings (either NACDR or NACDT), overlaps, wave
function phases, property matrices. The format of QM.out is described in the following.

Each quantity is given as a data block, which has a fixed format. The order of the blocks is arbitrary, and between
blocks arbitrary lines can be written. However, within a block no extraneous lines are allowed. Each data block starts
with a exclamation mark !, followed by whitespace and an integer flag which specifies the type of data:

0 Basic information
Hamiltonian matrix
2 Dipole matrices
3 Gradients
5 Non-adiabatic couplings (NACDR)
6 Overlap matrix
7 Wavefunction phases
8 wall clock time for QM calculation
12 Dipole moment gradients
13 Spin-orbit matrix gradients
20 Two dimensional properties (matrices)
21 One dimensional properties (vectors)
22 Multipolar_fit
23 Scalar properties
30 Point charge gradients
31 Point charge non-adiabatic couplings
32 Point charge dipole moment gradients
33 Point charge spin-orbit matrix gradients
999 Notes

On the next line, two integers are expected giving the dimensions of the following matrix. Note, that all these matrices
must be square matrices. On the following lines, the matrix or vector follows. Matrices are in general complex, and real
and imaginary part of each element is given as a pair of floating point numbers.

The following shows an example of a 4 X 4 Hamiltonian matrix. Note that the imaginary parts directly follow the real
parts (in this example, the Hamiltonian is real).

! 1 Hamiltonian Matrix (4x4, complex)
4 4
-548.6488 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 0.0000
0.0000 0.0000 -548.6170 0.0000 0.0003 0.0000 0.0003 0.0000
0.0003 0.0000 0.0003 0.0000 -548.5986 0.0000 0.0000 0.0000
0.0003 0.0000 0.0003 0.0000 0.0000 0.0000 -548.5912 0.0000

The three dipole moment matrices (x, y and z polarization) must follow directly after each other, where the dimension
specifier must be present for each matrix. The dipole matrices are also expected to be complex-valued.

! 2 Dipole Moment Matrices (3x2x2, complex)
22

0.1320 0.0000 -0.0020 0.0000

-0.0020 0.0000 -1.1412 0.0000

22

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

22

2.1828 0.0000 0.0000 0.0000

0.0000 0.0000 0.6422 0.0000

Gradient and nonadiabatic couplings vectors are written as 3 X nutom matrices, with the x, y and z components of one
atom per line. These vectors are expected to be real valued. Each vector is preceded by its dimensions.

151

SHARC Manual 6 Interfaces | 6.28 File-based Interface Specifications

! 3 Gradient Vectors (1x6x3,
63! ml1l1s1l11mslO

.0000 -6.5429 -8.1187
.0000 5.8586 8.0160
.0000 6.8428 1.0265
.0000 6.5429 8.1187
.0000 -5.8586 -8.0160
.0000 -6.8428 -1.0265

real)

© © © © © o

If gradients are requested, SHARC expects every gradient to be present, even if only some gradients are requested. The
gradients are expected in the canonical ordering (see section 8.28), which implies that for higher multiplets the same
gradient has to be present several times. For example, with 3 singlets and 3 triplets, SHARC expects 12 gradients in the
QM. out file (each triplet has three components with M = -1, 0 or 1).

Similarly, for nonadiabatic coupling vectors, SHARC expects all pairs, even between states of different multiplicity. The
vectors are also in canonical ordering, where the inner loop goes over the ket states. For example, with 3 singlets and 3
triplets (12 states), SHARC expects 144 (12%) nonadiabatic coupling vectors in the QM. out file.

! 5 Non-adiabatic couplings (ddr) (2x2x1x3, real)
13!ml1s11msloO m2 1 s2 1 ms2 0

0.0e+0 0.0e+0 0.0e+0
13!ml1s11mslo
+2.0e+0 0.0e+0 0.0e+0
13 !ml1s1l2mslo
-2.0e+0 0.0e+0 0.0e+0
13!ml1s12msloO

0.0e+0 0.0e+0 0.0e+0

m2 1 s2 2 ms2 0
m2 1 s2 1 ms20

m2 1 s2 2 ms20

The nonadiabatic coupling matrix (NACDT keyword), the overlap matrix and the property matrix are single n X n
matrices (n is the total number of states), respectively, like the Hamiltonian.

The wave function phases are a vector of complex numbers.
The wall clock time is a single real number.

The dipole moment gradients are a list of 3 X nuom vectors, each specifying the gradient of one polarization of one
dipole moment matrix element. In the outmost loop, the bra index is counted, then the ket index, then the polarization.
Hence, the respective entry in QM. out would look like (for 2 states and 1 atom):

! 12 Dipole moment derivatives (2x2x3x1x3, real)

13 !ml1s11mslo

m2 1 s2 1 ms20

pol 0

0.000000000000E+00 0.000000000000E+00 0.000000000000E+00

13 1!ml1sl1mslo m2 1s21ms20 poll
0.000000000000E+00 .000000000000E+00 0.000000000000E+00
13!ml1sl11msl0 m21s21ms20 pol?2
0.000000000000E+00 .000000000000E+00 0.000000000000E+00
13!ml1s11msl0 m21s22ms20 pol O
1.000000000000E+00 .000000000000E+00 0.000000000000E+00
13! ml1lsl1mslo m2 1s22ms20 poll
0.000000000000E+00 .000000000000E+00 0.000000000000E+00
13!ml1s11msl0 m21s22ms20 pol?2
0.000000000000E+00 .000000000000E+00 0.000000000000E+00
13 !ml1lsl2mslo m2 1s21ms20 pol 0O
1.000000000000E+00 .000000000000E+00 0.000000000000E+00
13! ml1lsl2 mslo m2 1s21ms20 poll
0.000000000000E+00 .000000000000E+00 0.000000000000E+00

13 !ml1sl2 mslo

m2 1 s2 1 ms20

pol 2

152

SHARC Manual 6 Interfaces | 6.28 File-based Interface Specifications

0.000000000000E+00 0.000000000000E+0O0 0.000000000000E+00
13 !ml1lsl2mslo m2 1s22ms20 pol 0O
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
13! ml1lsl2mslo m2 1s22ms20 poll
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
13!ml1s12msl0 m21s22ms20 pol?2
0.000000000000E+00 0.000000000000E+0O 0.000000000000E+00

The section containing the 2D property matrices consists of three subsequent parts: (i) the number of property matrices
contained, (ii) a label for each property matrix (as the property matrices might contain arbitrary data, depending on the
interface and the requests), and (iii) the matrices (full, complex-valued matrices like above):

! 20 Property Matrices

2 ! number of property matrices

! Property Matrix Labels (1 strings)
Dyson norms

Example matrix

! Property Matrices (1x4x4, complex)
4 4 ! Dyson norms

0.000E+00 0.000E+00 0.000E+00 0.000E+00 9.663E-01 0.000E+00 9.663E-01 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.822E-01 0.000E+00 4.822E-01 0.000E+00
9.663E-01 0.000E+00 4.822E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9.663E-01 0.000E+00 4.822E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
4 4 ! Example matrix
1.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+060 0.000E+00
0.000E+00 0.000E+00 2.000E+00 2.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.000E+00 3.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.000E+00 4.000E+00

The section containing the 1D property vectors also consists of three subsequent parts: (i) the number of property
vectors contained, (ii) a label for each property vector (as the property vectors might contain arbitrary data, depending
on the interface and the requests), and (iii) the vectors (real-valued):

! 21 Property Vectors

2 ! number of property vectors
! Property Vector Labels (2 strings)

Oom

PRNTO
! Property Vectors (2x4, real)

4 | TheoDORE descriptor 1 (0m)
0.000000000000E+000
4.318700000000E-001
2.688600000000E-001
2.590000000000E-002

4 | TheoDORE descriptor 2 (PRNTO)
0.000000000000E+000
2.318700000000E-001
1.688600000000E-001
1.590000000000E-002

6.28.3 Further Specifications

The interfaces may require additional input files beyond QM. in, which contain static information. This may include
paths to the quantum chemistry executable, paths to scratch directories, or input templates for the quantum chemistry

153

SHARC Manual 6 Interfaces | 6.28 File-based Interface Specifications

calculation (e.g. active space specifications, basis sets, etc.). The dynamics code does not depend on these additional
files, but they should all be stored in the QM/ subdirectory.

The current conventions in the SHARC suite are that the quantum chemistry interfaces use two additional input files,
one specifying the level of theory (template file, e.g., MOLCAS. template, MOLPRO.template, ...) and one specifying
the computational resources like paths, memory, number of CPU cores, initial orbital source (resource file, e.g.,
MOLCAS. resources, MOLPRO. resources, ...). Furthermore, the current interfaces allow to read in initial orbitals (e.g.,
MOLCAS.*.RasOrb.init, mocoef.init, ...). For interfaces with QM/MM capabilities, additional files could be used to
specify connection table, parameters, etc.

6.28.4 Save Directory Specification

The interfaces must be able to save all information necessary for restart to a given directory. The absolute path is
written to QM. in by SHARC. Hence, for the trajectories the path to the save directory is always a subdirectory of the
working directory of SHARC.

154

SHARC Manual 6 Interfaces | 6.29 The WFOVERLAP Program

6.29 The WFovERLAP Program

This section does not describe an interface to SHARC, but rather the WFovERLAP program. This program is part of
the SHARC distribution, but can also be obtained as a 7 stand-alone package (including a more detailed manual and
a set of auxiliary scripts). It computes overlaps between many-electron wave functions expressed in terms of linear
combinations of Slater determinant, which are based on molecular orbitals (from an LCAO ansatz). It can also compute
Dyson orbitals and Dyson norms between wave functions differing by one « or one f electron. The program is based on
the efficient and general algorithm published in Ref. [54]. It is possible to vary the geometry, the basis set, the molecular
orbitals, and the wavefunction expansion between the calculations.

The resulting wave function overlaps or Dyson norms can be used for example for:

« Propagation in local diabatization, the main application inside SHARC,
« Computation of photoionization spectra [41, 70],
« Comparison of wave functions at different levels of theory [71].

If you employ the wfoverlap.x code inside the SHARC suite for these purposes, please cite these references!

The documentation here only gives a brief overview over the input options of WFOVERLAP.X, because within the SHARC
suite the wfoverlap.x program is always called automatically by the interfaces. For the full manual (and for access to
the auxiliary scripts of WFOVERLAP.X), please download the separate .7 WFOVERLAP package.

6.29.1 Installation

Using precompiled binaries After unpacking, the directory $SHARC should contain a binary wfoverlap_ascii.x
and a link called wfoverlap.x pointing to the binary. With this setup, most interfaces should work without problems.

Manual installation The only exceptions are the following: CoLumBUs (overlaps and Dyson norms) and MoLcas
(only Dyson norms). These features are only available if wfoverlap.x is recompiled with proper support for these
programs. Alternatively, you may want to link wfoverlap.x against your favorite libraries. In these cases, a manual
installation is necessary.

For the manual installation you need a working Fortran90 compatible compiler (Intel’s ifort is recommended), some
reasonably fast BLAS/LAPACK libraries (Intel’s MKL is recommended, although atlas is also fine).

Optionally, with a working CoLumBUs Installation you can install the CoLumsus bindings, which will allow direct
reading of SIFS integral files generated by DarToN. To use this option, it is necessary to use the read_dalton.o
object file. MoLcAS/SEWARD integral files can be read by linking with the CoLumBus/MoLcas interface. Link against
read_molcas. o for this purpose.

To compile the source code, switch to the source directory and edit the Makefile to adjust it to your Fortran compiler
and BLAS/LAPACK installation. The location of your CoLuMBUS installation has to be set via the enviroment variable
$COLUMBUS.

Issuing the command:

cd $SHARC/../wfoverlap/source/

make

will compile the source and create the binaries.

If you are unable to link against CorumBus and/or MoLcas, simply call

make wfoverlap_ascii.x

to compile a minimal version of the CI Overlap program that only reads ASCII files. In this case, overlap and Dyson
calculations with SHARC_COLUMBUS . py and Dyson calculations with SHARC_MOLCAS . py will not be possible.

Testing The command

155

https://sharc-md.org/?page_id=309
https://sharc-md.org/?page_id=309

SHARC Manual 6 Interfaces | 6.29 The WFOVERLAP Program

make test

will run a couple of tests to check if the program is working correctly (alternatively you can call ovl_test.bash $0VDIR,
but $0VDIR needs to be set before).

6.29.2 Workflow

The workflow of the overlap program is shown in Figure 6.5. Four pieces of input, as shown on top, have to be given:

« Overlaps between the two sets of AOs used to construct the bra and ket wavefunctions,
« MO coefficients of the bra and ket wavefunctions,

« information about the Slater determinants,

« the corresponding CI coefficients.

Two main intermediates are computed, the MO overlaps and the unique factors S;, Si; where the latter may require
significant amounts of memory to be stored. The reuse of these intermediates is one of the main reasons for the decent
performance of the wfoverlap. program.

Double molecule Slater

MO coefficients . Cl coefficients
AO overlaps C.. Determinants dy. d’
) ’ s
Ol Pi Zav k). |®7) Y
MO overlaps
,
<<0p|<pq>
Unique factors
{ Sit Sy Contract
.19}

Figure 6.5: Workflow of the wavefunction overlap program.

6.29.3 Calling the program

The main program is called in the following form

wfoverlap.x [-m <mem=1000>] [-f <input_file=cioverlap.input>]

with the command line options

« -m: amount of memory in MB
« -f:input file

Example:

wfoverlap.x -m 2000 -f wfov.in

Mode The program automatically detects whether overlaps or Dyson orbitals should be calculated. If the number
of electrons in the bra and ket wavefunctions is the same, wavefunction overlaps are computed. If the number of
electrons or the number of § electrons differ by exactly 1, Dyson orbitals are computed. If the wave functions differ by
more than one electron, the program will stop with an error message.

156

SHARC Manual

6 Interfaces | 6.29 The WFOVERLAP Program

Memory The amount of memory given is a decisive factor for the performance of the code. Depending on the
amount of memory, one of three different modes is chosen:

(i) All St; and Sy, terms are kept in core (using arrays called P_ovland Q_ovl).

(ii) Only the Sg; factors (P—ovl) are kept in core. This is indicated by

Allocation of Q block overlap matrix failed.
- Using on-the-fly algorithm for Q determinants.

This mode is generally as efficient as 1. but shows somewhat worse parallel scaling.

(iii) Not even all Sg; factors can be stored

Only 437 out of 886 columns of the P_ovl matrix are stored in memory (3 MB)!
Increase the amount of memory to improve the efficiency.

This mode is significantly slower than (i) and (ii) and should be avoided by increasing the amount of memory.

Input file An example input file is shown below:

a_mo=mocoef_a
b_mo=mocoef_b

Table 6.41: List of keywords given in the input file. The a_mo, b_mo, a_det, b_det keywords are mandatory, all
others are optional.

Keyword Default Description

a_mo — MO coefficient file (bra)

b_mo — MO coefficient file (ket)

a_mo_read 0 Format for the MO coefficients (bra):
0: CoLuMBUS, 1: MoLCAS, 2: TURBOMOLE

b_mo_read 0 Format for the MO coefficients (ket)

a_det — Determinant file (bra)

b_det — Determinant file (ket)

ncore 0 Number of discarded core orbitals

ndocc 0 Number of doubly occupied orbitals that are not used for anni-
hilation in Dyson orbital calculations (only has effect if larger
than ncore)

ao_read 0 Format for overlap integrals:
0: ASCII, 1: Mowcas, 2: CoLuMmBUS/SIFS,
-1: Compute by inversion of MO coefficient matrx

mix_aoovl S_mix/ONEINT/aoints AO overlap file

for ao_read=0/1/2

same_aos false. If both calculations were performed with the same set of AOs
(specify only for ao_read=1/2)

nao_a automatic Number of bra AOs for ao_read=1/2 (specify only if different
from ket AOs)

nao_b automatic Number of ket AOs (see above)

moprint 0 Print Dyson orbitals: 1: coefficients to std. out,

2: as Jmol script

force_direct_dets .false. Compute Sy; terms directly (turn off "superblocks"). Recom-
mended if the number of CPU-cores is large (on the same order
as the number of "superblocks").

force_noprecalc false. Do not precalculate the S; factors.

mixing_angles false. Compute mixing angles as a matrix logarithm.

157

SHARC Manual 6 Interfaces | 6.29 The WFOVERLAP Program

a_det=dets_a
b_det=dets_b
ao_read=2
same_aos

The full list of keywords is given in Table 6.41.

6.29.4 Input data

Typically, three types of input need to be provided: AO overlaps, MO coefficients, and a combined file with determinant
information and CI coefficients (cf. Figure 6.5). The file formats are explained here. Within SHARc, these files are
automatically extracted or converted by the interfaces, so the user does not need to create them.

AO overlaps The mixed AO overlaps < Xul)(’V> between the AOs used to expand the bra and ket wavefunctions are
required. They are in general created by a "double molecule" calculation, i.e. an AO integral calculation where every
atom is found twice in the input file.

The native format (ao—_read=0) is a simple ASCII file containing the relevant off-diagonal block of the mixed AO overlap
matrix, e.g.

77
9.97108464676133E-001 2.36720699813181E-001
2.36720699813181E-001 9.99919192433940E-001
1.00147985713321E-002 6.52340422397770E-003

In addition, MoLcAs (ao—_read=1) and CoLuMBUS/SIFS (ao_read=2) files can be read in binary form.

If the same AOs are used for the bra and ket wavefunctions and the MO coeflicient matrix is square, it is possible to
reconstruct the overlaps by inversion of the MO coefficient matrix (ao—read=-1). In this case it is not necessary to
supply a mix_aoovl file.

MO coefficients MO coeflicients of the bra and ket wavefunctions can usually be read in directly in the form written
by the quantum chemistry program. The supported options for a_mo_read and b_mo_read are 0 for CoLumBus format,
1 for MoLcas lumorb format, and 2 for TURBOMOLE format.

Because the number of electrons strongly affects the run time of wfoverlap.x, it is generally beneficial to apply a frozen
core approximation, even if the actual wave function calculation did not do so. Most interfaces which use wfoverlap.x
have a keyword numfrozcore in the resource file, which only affects the number of frozen core orbitals for the overlap

calculation (If the interface support frozen core for the quantum chemistry itself, there will be a keyword in the template
file).

Slater determinants and CI coefficients Slater determinants and CI coefficients are currently supplied by an ASCII
file of the form

3 7 168

dddddee 0.979083342437 0.979083342437 -0.122637656388
ddddabe -0.094807515471 -0.094807515471 -0.663224542162
ddddbae 0.094807515471 0.094807515471 0.663224542162

The first line specifies

« the number of states (columns in the file),
« the number of MOs (length of the determinant strings), and
« the number of determinants in the file (length of the file).

158

SHARC Manual 6 Interfaces | 6.29 The WFOVERLAP Program

Every subsequent line gives the determinant string and the corresponding CI coefficients for the different states. The
following symbols are used in the determinant string:

d - doubly occupied

a - singly occupied (@)
b - singly occupied (f)
e - empty

Most relevant for SHARC users, the wfoverlap.x program fully considers all determinants inside these files, without
applying any form of truncation. Hence, truncation of long wave functions is done during the creation of the determinant
files. Most interfaces which write these files have a keyword wfthres in their resource file. This threshold is a number
between 0.0 and 1.0, and is the minimum wave function norm to which the wave functions should be truncated.
During truncation, the interfaces generally retain the largest-amplitude CI coefficients, and remove determinants
with small coefficients, i.e., they find the truncated expansion with the fewest determinants which has a norm above
the wfthres. Choosing this threshold properly can very strongly affect the computational time spent in the overlap
calculation. Generally, for CASSCF wave functions the threshold can be set to 1 (SHARC_MOLPRO. py, SHARC_MOLCAS . py,
and SHARC_BAGEL . py always use all determinants and do not have the wfthres option), for TDA-DFT/ADC(2) it should
usually be well above 0.99, for and for MRCI wave functions it might be necessary to go as low as 0.95, depending
on the accuracy and performance needed. For TD-DFT calculations without the Tamm-Damcoff approximation, the
response vectors are usually normalized to |X|? — |Y| = 1, but only X is used in the overlap calculation; since the norm
of X can thus exceed 1, the wfthres should be increased above 1, too. As a rule of thumb, the threshold should always
be chosen such that each state is represented by at least a few 100 determinants in the file, in order to obtain smoothly
varying overlaps. If unsure, the user should perform a test calculation, varying the wfthres until a suitable one is found
(i-e., with as many determinants as possible such that the cost of the overlap calculation is bearable).

6.29.5 Output

Usually, the output of wfoverlap.x is automatically extracted by the interfaces, and reported in QM.out in the overlap
or 2D-property sections.

Wavefunction overlaps The output first lists some information about the wavefunction structure and about the
computational time taken for the individual steps (cf. Figure 6.5).

A typical result of a wavefunction overlap computation is shown here:

Overlap matrix <PsiA i|PsiB_j>

|PsiB 1> |PsiB 2>
<PsiA 1| 0.5162656622 -0.2040109070
<PsiA 2| -0.2167057391 -0.5266552021

Renormalized overlap matrix <PsiA_i|PsiB_j>

|PsiB 1> |PsiB 2>
<PsiA 1| 0.5162656622 -0.2040109070
<PsiA 2| -0.2167057391 -0.5266552021

Performing Lowdin orthonormalization by SVD...

Orthonormalized overlap matrix <PsiA_i|PsiB_j>

|PsiB 1> |PsiB 2>
<PsiA 1| 0.9273847015 -0.3741090956
<PsiA 2| -0.3741090956 -0.9273847015

Overlap matrix gives the raw overlap values

<qf,|qf]' \mqf;) (6.16)

of the wavefunctions supplied.

159

SHARC Manual

Renormalized overlap matrix gives the renormalized overlap values

relevant in the case of wavefunction truncation.

<‘{f,|‘y]

‘¥I|‘I’]>
2 7112
7111

| 6.29 The WFOVERLAP Program

(6.17)

The Orthonormalized overlap matrix is constructed according to a procedure described in more detail in Ref. [54].

Dyson orbitals

ALPHA ionization
Dyson norm matrix |<PsiA_i|PsiB_j>|"2

<PsiA
<PsiA
<PsiA
<PsiA
<PsiA

1]
2|
31
4
5]

|PsiB 1>
0.8817323437
0.0615587916
0.0000000000
0.9634885049
0.0000000000

|PsiB 2>
0.4716319904
0.4657174978
0.0363130811
0.0000000000
0.9261839484

The matrix of Dyson norms is printed at the end of the file

|PsiB 3>
0.0680618001
0.8772909828
0.0000000000
0.0017379586
0.0000000000

In the case of moprint=1 the orbitals are printed, as well. The expansion is given with respect to the MOs of the neutral

system.

Dyson orbitals in reference |ket> MO basis:

<PsiA

MO
MO
MO
MO
MO
MO
MO
MO

1]

0 NOoO U A WN R

|PsiB 1>

-1.
-5.
-1.

0.

OF
-3.
-1
-1.

24032037E-03
90277699E-02
23295110E-09
00000000E+00
31351013E-01
50106110E-02

.83303166E-10

91183349E-10

[cl ol ol ole o o]

|PsiB 2>
0.
.00000000E+00
.00000000E+00
.86713110E-01
.00000000E+00
.00000000E+00
.00000000E+00
.00000000E+00

0000000OE+00

|PsiB 3>

9.
6.
3.
0.
-2.
4.
-3.
9.

98160731E-04
14517859E-02
08416849E-10
00000000E+00
49427166E-01
19935829E-02
67409953E-12
40768334E-11

160

7 Auxilliary Scripts

In this chapter, all auxiliary scripts and programs are documented. Input generators (like molpro_input.py and
molcas_input.py) are documented in the relevant interface sections.

All auxiliary scripts are either interactive—prompting user input from stdin in order to setup a certain task—or non-
interactive, meaning they are controlled by command-line arguments and options, in the same way as many standard
command-line tools work.

All interactive scripts sequentially ask a number of questions to the user. In many cases, a default value is presented,
which is either preset or detected by the scripts based on the availability of certain files. Furthermore, the scripts feature
auto-completion of paths and filenames (use TAB), which is active only in questions where auto-completion is relevant.
For certain questions where lists of integers needs to be entered, ranges can be indicated with the tilde symbol (~), e.g.,
-8~-2 (note that no spaces are allowed between the tilde and the two numbers) to indicate the list -8 -7 -6 -5 -4 -3
-2.

All interactive scripts write a file called KEYSTROKES.<script_name> which contains the user input from the last
completed session. These files can be piped to the interactive scripts to perform the same task again, for example:

user@host> cat KEYSTROKES.excite - | $SHARC/excite.py

Note the -, which tells cat to switch to stdin after the file ends, so that the user can proceed if the script asks for more
input than contained in the KEYSTROKES file.

All non-interactive scripts can be called with the -h option to obtain a short description, usage information and a list of
the command line options. Non-interactive scripts also write a KEYSTROKES . <script_name> file, which will contain the
last command entered to execute the script (including all options and arguments).

All scripts can be safely killed during a run by using Ctr1-C. In the case of interactive scripts, a KEYSTROKES . tmp file
remains, containing the user input made so far. Note that the KEYSTROKES . tmp file cannot be directly piped to the
scripts, because KEYSTROKES . tmp will be overwritten when the script starts.

7.1 Wigner Distribution Sampling: wigner.py

The first step in preparing the dynamics calculation is to obtain a set of physically reasonable initial conditions. Each
initial condition is a set of initial atomic coordinates, initial atomic velocities and initial electronic state. The initial
geometry and velocities can be obtained in different ways. With SHARc, often sampling of a quantum-harmonic Wigner
distribution is performed.

The sampling is carried out with the non-interactive Python script wigner.py. The theoretical background is summarized
in Section 8.24.

7.1.1 Usage

The general usage is
user@host> $SHARC/wigner.py [options] filename.molden

wigner.py takes exactly one command-line argument (the input file with the frequencies and normal modes), plus
some options. Usually, the -n option is necessary, since the default is to only create 3 initial conditions.

The argument is the filename of the file containing the information about the vibrational frequencies and normal modes.
The file is by default assumed to be in the @ MOLDEN format. For usage with wigner.py, only the following blocks have
to be present:

+ [FREQ]

. [FR-COORD]

« [FR-NORM-COORD]
The script accepts a number of command-line options, specified in table 7.1.

161

http://www.theochem.ru.nl/molden/molden_format.html

SHARC Manual

7 Auxilliary Scripts |

Table 7.1: Command-line options for script wigner. py.

7.1 Wigner Distribution Sampling: wigner.py

Option Description Default

-h Display help message and quit —

-n INTEGER Number of initial conditions to generate 3

-m Modify atom masses (starts interactive dialog) Most common isotopes
-s FLOAT Scaling factor for the frequencies 1.0

-t FLOAT Use Boltzmann-weighted distribution at the given temperature 0.0 K

-T Discard very high vibrational states at high temperatures Don’t discard, but warn
-L FLOAT Discard frequencies below the given one (in cm™!) 10.0

-0 FILENAME Output filename initconds

-X Creates an xyz file with the sampled geometries initconds.xyz

-1 Instead of generating initconds, create input for SHARC_LVC.py Create initconds

-r INTEGER Seed for random number generator 16661

-f F Type of normal modes read (0=detect automatically, 1-4=see 0

below)

Do not remove translations and rotations from velocity vector

Sample only velocities, but keep equilibrium geometry

Sample only geometries, but set velocities to zero

Produce a file with n initial conditions for a single hydrogen
atom at the origin and zero velocities

Produce a file with n initial conditions for a single atom of ele-
ment EL at the origin and zero velocities

Remove them
Sample normally
Sample normally

--keep_trans_rot
--use_eqg_geom

--use_zero_veloc
--dummy_molecule

--single_atom EL

7.1.2 Normal mode types

The normal mode vectors contained in a MoLDEN file can follow different conventions, e.g., unscaled Cartesian
displacements or different kinds of mass-weighted displacements. By default, wigner.py attempts to identify which
convention is followed by the file (by performing different renormalizations and checking if the so-obtained matrix is
orthogonal). In order to use this automatic detection, use -f 0, which is the default. Otherwise, there are four possible
options: -f 1 to assume normal modes in the GAUssIAN convention (used by GAussiaN, TURBOMOLE, Q-CHEM, ADF,
and Orca); -f 2 to assume Cartesian normal modes (used by Morcas and MoLpPro); -f 3 to assume the COLUMBUS
convention; or -f 4 for mass-weighted, orthogonal normal modes.

7.1.3 Non-default masses

When the -m option is used, the script will ask the user to interactively modify the atom masses. For each atom (referred
to by the atom index as in the MOLDEN file), a mass can be given (relative atomic weights). Note that the frequency
calculation which produces the MoLDEN should be done with the same atomic masses.

7.1.4 Sampling at finite temperatures

When the -t option is used, the script assumes a finite, non-zero temperature. The sampling will then consist of
two steps, where first randomly a vibrational state is picked from the Boltzmann distribution, and then the Wigner
distribution of that state is employed. For more details, see Section 8.24.

At high temperatures and for low-frequency modes it is possible that very large vibrational quantum numbers will be
selected. Because of the occurrence of factorials in the Laguerre polynomials in the excited Wigner distributions, this
leads to variable overflow for vy, > 150. Hence, the highest vibrational quantum number considered is 150, and higher
ones are set to 150. Since this can lead to an overrepresentation of vy, = 150, with the -T option one can instead discard
all samplings where 1y, > 150. No matter whether -T is used or not, keep in mind that usually such high vibrational
states might invalidate the assumption of an harmonic oscillator, and other sampling methods (e.g., molecular dynamics)
should be considered.

162

SHARC Manual 7 Auxilliary Scripts | 7.2 Vibrational State Selected Sampling: wigner_state_selected.py

7.1.5 Output

The script wigner.py generates a single output file, by default called initconds. All information about the initial
conditions is stored in this file. Later steps in the preparation of the initial conditions add information about the excited
states to this file. The file is formatted in a human-readable form.

The initconds file format is specified in section 7.9.4.

When the -x option is given, additionally the script produces a file called initconds.xyz, which contains the sampled
geometries in standard xyz format. This can be useful to inspect the distribution of geometry parameters (e.g., bond
lengths) or to perform single point calculations at the sampled geometries.

When the -1 option is given, the script only produces a file called V0.txt, which is a necessary input file for the LVC
interface (see section 6.4). If this option is activated, no initconds or initconds.xyz files are produced.

7.2 Vibrational State Selected Sampling: wigner_state_selected.py

In addition to wigner.py one can use wigner_state_selected.py to perform vibrational-state-selected initial conditions.
In that situation, one can specify the vibrational level for each normal mode.

7.2.1 Usage

The general usage is
user@host> $SHARC/wigner_state_selected.py [options] filename.molden

wigner_state_selected.py takes exactly one command-line argument (the input file with the frequencies and normal
modes), plus some options. Usually, the --vibselec, --vibdist, --vibstate or --vibene, and -n options are necessary,
the default is to only create 3 initial conditions.
Like wigner.py, the argument is the filename of the file containing the information about the vibrational frequencies
and normal modes. The file is by default assumed to be in the 7 MoLDEN format. Only the following blocks have to be
present:

- [FREQ]

. [FR-COORD]

« [FR-NORM-COORD]
The script accepts a number of command-line options, specified in Table 7.2.

The descriptions of the main options --vibselect, --vibdist, --vibstate, --vibene, --method, and - -template will
be described in next section.

7.2.2 Major options

The wigner_state_selected.py script involves five major options to perform vibrational state selection.
--vibselect determines the method to select the vibrational mode energy:

--vibselect 1: the user will provide a list of vibrational quantum numbers; this will require the keyword
--vibstate.

--vibselect 2: the program will assign vibrational quantum numbers for each mode. This assignment is random,
and selected out of a Boltzmann distribution at a user-specified temperature from option -t.

--vibselect 3: the program generates an initial velocity from a Maxwell thermal distribution at a given
temperature from option -t. This is an option for canonical ensembles, not an option for state-selected ensembles.
This option is not available at the moment.

--vibselect 4: the amount of energy in each mode is the same, and is set by option --vibene E, where E is the
energy of each mode in eV.

--vibselect 5: the amount of energy in each mode is different, and is set option by --vibene E1,E2,E3,...,
where E1,E2,E3, ... is a list of energies in eV for each mode.

--vibselect 6: default, similar as --vibselect 4, but the energy of each mode is computed as minimum of
zero point energy and E.

--vibselect 7: similar as --vibselect 5, but the energy of each mode is computed as minimum of zero point
energy and E;, where I is the index of the mode.

163

http://www.theochem.ru.nl/molden/molden_format.html

SHARC Manual

7 Auxilliary Scripts |

7.2 Vibrational State Selected Sampling: wigner_state_selected.py

Table 7.2: Command-line options for script wigner_state_selected.py.

Option Description Default
--vibselect Method for the vibrational energy (possible: 1, 2, 4-7). 6
--vibdist Method for the phase space distribution (possible: 0, 1, 2). 0
--vibstate List of vibrational state for each mode. 0
--viblist Method to assign mode with the non-zero vibrational level. 0
--vibene List of vibrational energy for each model 0.0
- -method Method for the computation of the energy (possible: 0, 1) 0
--template name of the template file to interface with electronic structure
(see below). This is only needed when using --method 1.
-h Display help message and quit —
-n INTEGER Number of initial conditions to generate 3
-m Modify atom masses (starts interactive dialog) Most common isotopes
-s FLOAT Scaling factor for the frequencies 1.0
-t FLOAT Use Boltzmann-weighted distribution at the given temperature 0.0 K
-T Discard very high vibrational states at high temperatures Don’t discard, but warn
-L FLOAT Discard frequencies below the given one (in cm™!) 10.0
-0 FILENAME Output filename initconds
-X Creates an xyz file with the sampled geometries initconds.xyz
-r INTEGER Seed for random number generator 16661
-f F Type of normal modes read (0=detect automatically, 1-4=see 0

below)

Do not remove translations and rotations from velocity vector
Sample only velocities, but keep equilibrium geometry
Sample only geometries, but set velocities to zero

--keep_trans_rot
--use_eqg_geom
--use_zero_veloc

Sample normally
Sample normally

- -vibdist determines the type of phase space distribution:

--vibdist 0: default, uses quasiclassical or classical distribution. It is a uniform distribution. It is quasiclassical
if vibselect=1 or 2 and classical if vibselect>4.

--vibdist 1: ground state harmonic oscillator distribution.

--vibdist 2: Wigner distribution.

--vibstate is a quantum number for all modes or list of vibrational quantum numbers for each mode. For example,
--vibstate 0 specifies all vibrational mode with quantum number 0, i.e. all mode have only zero point energy.
--vibstate 0,1,2,... specifies the quantum number for each mode, in this example, the first three modes have
vibrational quantum numbers 0, 1, and 2, respectively.

--viblist is a list of vibrational quantum numbers for all modes whose vibrational quantum number are non-zero, and
the rest modes are all set to zero. This is convenient if one is setting up an initial condition for which most modes’
vibrational quantum number are zero, and only several modes’ quantum number are non-zero. For example, --viblist
1,175, 3 specifies all vibrational mode with 0 quantum number, except mode 1 and mode 5; mode 1 has vibrational
quantum number 1, and mode 5 has vibrational quantum number 3. Pairs of numbers, i.e., mode and corresponding
vibrational quantum number are separated by "?".

- -vibene is a vibrational energy for all modes or a list of vibrational energies for each mode. For example, - -vibene 0.2
specifies all vibrational mode with 0.2 €V of vibrational energy. --vibene 0.1,0.2,0.1,... specifies the vibrational
energy for each mode, in this example, the first three modes have vibrational energies of 0.1V, 0.2 €V, and 0.1V,
respectively.

- -method determines how energies are computed for geometries away from the equilibrium structure. With the default
--method 0, the harmonic oscillator approximation, using the provided normal modes, is used. With --method 1, at
each geometry an electronic structure calculation is performed, using the additional option - - template, which specifies
a script that interfacing with electronic structure calculations. Note that --method 1 is not recommended, because
one can also perform electronic structure calculations at all displaced geometries later, using setup_init.py
and the SHARC interfaces. This allows to use all interfaced methods out-of-the-box without needing to write
a template script, and is better supported in the rest of the SHARC workflow.

- -template keyword follows by a file name that is a script serves as interface between the wigner_state_selected.py

and electronic structure software. When using ab initio potential, i.e., when set --method 1, the wigner_state_selected.

164

Py

SHARC Manual 7 Auxilliary Scripts | 7.2 Vibrational State Selected Sampling: wigner_state_selected.py

will write a file called tmp_state_selected.xyz everytime it samples a new geometry, and execute the script, then
read the energy from an output file called energy_state_selected. Therefore, the function of this user-defined script
is to read tmp_state_selected.xyz, and write energy into file energy_state_selected. See the next subsection for
an example.

7.2.3 Template

The following bash script shows an example of a template. The script reads the tmp_state_selected.xyz, write a
Gaussian density functional calculation with MN15 functional and def2-TZVP basis set, and stores the density functional
energy into file energy_state_selected.

#!/bin/bash

#write a Gaussian input

echo "%Chk=e.chk" > el.tmp

echo "%Mem=11800mb" >> el.tmp

echo "#P def2TZVP SCF=(Tight,novracc,maxcycle=500) Integral(Grid=UltraFine) MN15" >> el.tmp
echo " " >> el.tmp

echo "my molecule" >> el.tmp

echo "0 1" >> tl.tmp

echo " " > e2.tmp
echo " " >> e2.tmp

cat el.tmp tmp_state_selected.xyz e2.tmp > e.com

#run a Gaussian calculation
/software/g09/9g09 < e.com > e.out

#save the energy into energy_state_selected
grep 'SCF Done’ e.out|awk ’'{print $5}’ > energy_state_selected

7.2.4 Normal mode types

The normal mode vectors contained in a MoLDEN file can follow different conventions, e.g., unscaled Cartesian
displacements or different kinds of mass-weighted displacements. By default, wigner_state_selected.py attempts
to identify which convention is followed by the file (by performing different renormalizations and checking if the so-
obtained matrix is orthogonal). In order to use this automatic detection, use -f 0, which is the default. Otherwise, there
are four possible options: -f 1 to assume normal modes in the GAussiaN convention (used by GAUSsIAN, TURBOMOLE,
Q-CuEM, ADF, and Orca); -f 2 to assume Cartesian normal modes (used by Morcas and MoLpPro); -f 3 to assume the
CoLuMBUS convention; or -f 4 for mass-weighted, orthogonal normal modes.

7.2.5 Non-default masses

When the -m option is used, the script will ask the user to interactively modify the atom masses. For each atom (referred
to by the atom index as in the MOLDEN file), a mass can be given (relative atomic weights). Note that the frequency
calculation which produces the MoLDEN should be done with the same atomic masses.

7.2.6 Output

The script wigner_state_selected.py generates a single output file, by default called initconds. All information
about the initial conditions is stored in this file. Later steps in the preparation of the initial conditions add information
about the excited states to this file. The file is formatted in a human-readable form.

The initconds file format is specified in section 7.9.4.

When the -x option is given, additionally the script produces a file called initconds.xyz, which contains the sampled
geometries in standard xyz format. This can be useful to inspect the distribution of geometry parameters (e.g., bond
lengths) or to perform single point calculations at the sampled geometries.

165

SHARC Manual 7 Auxilliary Scripts | 7.3 Initial condition for collision dynamics: bimolecular—_collision.py

7.3 Initial condition for collision dynamics: bimolecular_collision.py

The script bimolecular—collision. py is used in the preparation and sampling of initial conditions for bimolecular colli-

sion processes. This is achieved by merging initconds files from other sources (e.g., wigner.py or wigner_state_selected.py).
There are two operation modes. If one is performing a molecule + molecule collision dynamics, one needs to provide

two initconds files. For a molecule + atom collision dynamics, one needs to provide only oneinitconds file and
additionally the element of the colliding atom.

7.3.1 Usage

To set up an initial condition for colliding two molecules (here we simply call an atom a special case of molecule to
simplify the discussion), the following collision parameters are required: initial separation of the two molecules, impact
parameter, and collision energy. Notice that, currently, setting up relative angular momenta between the two molecules
is not supported.

The general usage for a molecule + molecule collision process is:

user@host> $SHARC/bimolecular_collision.py [options] initcondsl initconds2
and for a molecule + atom process it is:

user@host> $SHARC/bimolecular_collision.py [options] initcondsl

bimolecular_collision.py takes one or two command-line arguments (the initconds files), plus some options.
Usually, the --bmin, --bmax, --separation, --relative_trans, and -n options are necessary. The default is to only
create 1 initial conditions. The list of all available options are shown in Table 7.3.

7.3.2 Usage

The bimolecular—_collision.py has seven major options.

--atom to specify the element used in molecule + atom collision dynamics. For example, --atom "H", to specify a
hydrogen atom.

Three options are used to randomly sample the impact parameter, where --bmin specifies the minimum impact
parameter, --bmax specifies the maximum impact parameter, and --strata specifies how many strata are used in
the stratified sampling of impact parameter. For example, --bmin 0.0 --bmax 5.0 --strata 1 means the sampled
impact parameter is in range 0.0 to 5.0 A. Instead, --bmin 0.0 --bmax 5.0 --strata 2 means the first half of the
initial conditions have impact parameter in range 0.0 to 2.5 A, and the second half of the initial conditions have impact
parameter in range of 2.5 to 5.0 A. The stratified sampling is especially useful when trying to analyze the opacity
function at the end of the trajectory simulation, i.e., one can observe how cross section changes as a function of impact
parameter, and if the simulation is converged with respect to the impact parameter.

--separation sets the initial separation of the center of mass of the two molecules. The default value is 10 A.

--relative_trans sets the initial relative translational energy between the two molecules in units of eV. The default is
1.0 eV. Note that we are always letting molecule 2 collide towards molecule 1, so molecule 2 will receive the translational
energy.

Table 7.3: Command-line options for script bimolecular—_collision.py.

Option Description Default

--atom The element used in molecular + atom collision dynamics "H"
(string).

--bmin minimum of impact parameter. 0.0 (A)

- -bmax maximum of impact parameter. 5.0 (A)

--strata number of strata used in sampling impact parameter. 1

--separation initial separation between the two molecules 10.0 (A)

--relative_trans relative translational energy between the two molecules. 1.0 (eV)

--no_random_orient not randomly re-orient each molecules. False

-n INTEGER Number of initial conditions to generate 3

-0 FILENAME Output filename initconds

-X Creates an xyz file with the sampled geometries initconds.xyz

166

SHARC Manual 7 Auxilliary Scripts | 7.4 AMBER Trajectory Sampling: amber_to_initconds.py

--no_random_orient prevents the initial random re-orientation of the molecules. Note that when we put two molecules
together, one can re-orient each of the two molecules, and this is done by default.

7.4 AMBER Trajectory Sampling: amber_to_initconds.py

The first step in preparing the dynamics calculation is to obtain a set of physically reasonable initial conditions. Each
initial condition is a set of initial atomic coordinates, initial atomic velocities and initial electronic state. The initial
geometry and velocities can be obtained in different ways. Besides sampling from a quantum mechanical Wigner
distribution (with wigner.py), it is a widespread approach to sample geometries and velocities from a ground state
molecular dynamics simulation.

Using amber_to_initconds.py, one can convert the results of an AMBER simulation to a SHARC initconds file.

Note that one can instead work with restartnc_to_xyz.py (see Section 7.6), which is more complicated to use but
avoids huge initconds files in very large projects.

7.4.1 Usage

In order to use amber_to_initconds.py, it is necessary to first carry out an AMBER simulation. You need to add the
following options to the AMBER MD input file: (i) ntxo=1 to tell AMBER to write ASCII restart files, (ii) ntwr=-5000 to
create a restart file every 5000 steps (other values are possible, but use the minus to not overwrite the restart files). This
will create a set of AMBER restart files called, e.g., md. rst_5000, md. rst_10000, ...

Note that it is also necessary to reimage the AMBER restart files, because SHARC does not work with periodic boundary
conditions, but the AMBER trajectories might use them. The reimaging can be performed with AMBER’s tool cpptraj,
using the following input:

parm <filename>.prmtop

trajin <filename>.rst7

autoimage

trajout <filename2>.rst7

run

This command has to be repeated for each restart file which needs to be reimaged. Note that amber_to_initconds.py
only works with the rst7 ASCII file format, not with the rst format (even if it is ASCII-formatted).

If you saved the restart files in AMBER’s newer NetCDF format, cpptraj can also be used to convert them to ASCII rst7
restart files. If you did not save restart files, cpptraj can even be used to generate restart files from the trajectory file
(.mdcrd and .mdvel), but for this way it is necessary to save the velocities (.mdvel file).

With the restart files prepared, call amber_to_initconds.py like this:

user@host> $SHARC/amber_to_initconds.py [options] md.prmtop md.rst_0 md.rst_5000 md.rst_10000 ...

The possible options are shown in Table 7.4.

7.4.2 Time Step

Note that the option -t (giving the time step used in AMBER in femtoseconds) is mandatory; if not given, an error message
is produced. This is because AMBER uses a Leapfrog algorithm and thus stores in the restart file R(¢) and v(¢ — At/2),

Table 7.4: Command-line options for script amber_to_initconds.py.

Option Description Default

-h Display help message and quit -

-t FLOAT Time step (in femtoseconds) used in the AMBER simulation —

-0 FILENAME Output filename initconds

-X Creates an xyz file with the sampled geometries initconds.xyz
-m Modify atom masses (starts interactive dialog) As in prmtop file
--keep_trans_rot Do not remove translations and rotations from velocity vector

--use_zero_veloc Sample only geometries, but set velocities to zero Sample normally

167

SHARC Manual 7 Auxilliary Scripts | 7.5 SHARC Trajectory Sampling: sharctraj_to_initconds.py

whereas SHARC uses the velocity-Verlet algorithm and requires geometry and velocity at the same time, e.g., R(t — At/2)
and o(t — At/2). To compensate this, amber_to_initconds.py computes R(t — At/2) from R(t) — o(t — At/2)At/2.
Hence, At of the AMBER trajectory needs to be known.

7.4.3 Atom Types and Masses

By default, atom types and masses are read from the prmtop file (from flags ATOMIC_NUMBER and MASS). If the atomic
number is not sensible (e.g., -1 for a transition metal) then amber_to_initconds.py prompts the user to define the
element. The masses in the prmtop file can be overridden if the -m option is given; then the user can adjust the mass of
each atom individually.

7.4.4 Output

amber_to_initconds.py produces the same output as wigner.py (section 7.1). By default, a file called initconds is
generated for the converted initial conditions. It is important to note that the first restart file given (the second command
line argument) is treated as the “equilibrium” geometry for the purpose of generating the initconds file. The second
given restart file is then converted to the initial condition with index 1, and so on. Note that it is possible to give the
same restart file multiple times as an argument (so that the same geometry can be used as “equilibrium” geometry and
as proper initial condition.

7.5 SHARc Trajectory Sampling: sharctraj_to_initconds.py

The first step in preparing the dynamics calculation is to obtain a set of physically reasonable initial conditions. Each
initial condition is a set of initial atomic coordinates, initial atomic velocities and initial electronic state. The initial
geometry and velocities can be obtained in different ways. Besides sampling from a quantum mechanical Wigner
distribution, it is often appropriate to sample geometries and velocities from a ground state molecular dynamics
simulation.

Using sharctraj_to_initconds.py, one can convert the results of a SHARC simulation to a new SHARC initconds file.

7.5.1 Usage

In order to use sharctraj_to_initconds.py, it is necessary to first run a number of SHARC trajectories (the initial
conditions for those need to be obtained with wigner.py or amber_to_initconds.py). The trajectories can be run with
any number of states and in any state, and with any desirable options; only geometries and velocities are converted to
the new initconds file.

With the trajectories prepared, call sharctraj_to_initconds.py like this:

user@host> $SHARC/sharctraj_to_initconds.py [options] Singlet_0 ...

Alternatively, with the --give_TRAJ_paths option, one can also do:

user@host> $SHARC/sharctraj_to_initconds.py --give_TRAJ_paths [options] TRAJ_00001 TRAJ_00002 ...

The possible options are shown in Table 7.5.

7.5.2 Random Picking of Time Step

For each directory specified as command line argument, sharctraj_to_initconds. py picks exactly one time step and
extracts geometries and velocities of that time step. Note that a directory can be given several times as argument, so
that multiple time steps can be selected.

The time steps are generally picked randomly (uniform probabilities) from an interval specified with the -S option. This
option takes two integers, e.g., -S 50 -50, which can be positive or negative. The meaning of positive/negative/zero is
the same as in PYTHON: positive numbers simply denote a time step (start counting with zero for the step zero of the
trajectory); for negative numbers, start counting at the end, i.e., -1 is the last time step of the trajectory. In this way, it is
possible to select the snapshot from the last n steps of all trajectories, even if they have different length. The example
above, -S 50 -50, means picking a time step between the 50th and the 50th-last step. Note that if a trajectory is shorter
than 100 steps, in this example it is skipped because there are no steps between the 50th and the 50th-last step.

168

SHARC Manual 7 Auxilliary Scripts | 7.6 Creating an XYZ file from an Amber restart file: restartnc_to_xyz.py

Table 7.5: Command-line options for script sharctraj_to_initconds.py.

Option Description Default

-h Display help message and quit —

-r INTEGER Seed for the random number generator 16661

-S INTEGER INTEGER Range of time steps from which a step is randomly chosen last step

-0 FILENAME Output filename initconds

-X Creates an xyz file with the sampled geometries initconds.xyz
--keep_trans_rot Do not remove translations and rotations from velocity

--use_zero_veloc Sample only geometries, but set velocities to zero Sample normally
--debug Show timings

--give_TRAJ_paths Allows specifying individual trajectories Specify parent directories

7.5.3 Output

sharctraj_to_initconds.py produces the same output as wigner.py (section 7.1). By default, a file called initconds
is generated for the converted initial conditions. It is important to note that the first directory given (the first command
line argument) is treated as the “equilibrium” geometry for the purpose of generating the initconds file. The second
given directory is then converted to the initial condition with index 1, and so on. Note that it is possible to give the
same directory multiple times as an argument (so that the same geometry can be used as “equilibrium” geometry and as
proper initial condition.

7.6 Creating an XYZ file from an Amber restart file: restartnc_to_xyz.py

With the script restartnc_to_xyz.py one can extract information from an Amber restart file and write the Cartesian
coordinates to different files.

There are three different modes in which the script can operate. In the default mode, the script is producing output in
xyz format. The velocities from the restart file are discarded. Optionally, the script can pick up lines from a QM. in file
and append to the xyz output. In the second mode, the script produces output in initconds file format. In the third
mode, the script produces a geom and a veloc file (overwriting previous files in the present folder). In both cases, the
velocities from the restart file are considered.

Note that this script, like amber_to_initconds.py (Section 7.4) modifies the geometries read from the restart file by
rewinding half a time step. This is because Amber uses a Leapfrog algorithm, but SHARC uses the velocity Verlet
algorithm. This is the reason why the time step is a required argument for restartnc_to_xyz.py.

7.6.1 Usage

restartnc_to_xyz.py is a command line tool, and is executed like this:
user@host> $SHARC/restartnc_to_xyz.py -t <time step> <prmtop file> <restartnc file> > <output file>

The options are summarized in Table 7.6

Table 7.6: Command-line options for restartnc_to_xyz.py.

Option Description Default

-h Display help message and quit. -

-t Specify the timestep in fs that Amber used required.

-a Output in Angstrom in Bohr

-q Append request lines from file ’QMin’ do not append anything

-i Produce output to append to initconds produce output in xyz format
-g Produce geom and veloc files produce output in xyz format

169

SHARC Manual 7 Auxilliary Scripts | 7.7 Creating an XYZ file from a SHARC trajectory: sharctraj_to_xyz.py

7.6.2 Input

Time step Here, the user needs to specify the timestep that was used for the Amber dynamics (e.g., 2 fs). The output
coordinates will be Rouput = Rerom rst — 3 AtDfrom rst-

Prmtop file Specify the prmtop file of the system that was propagated in Amber so that the information on atom
types etc. can be extracted.

Restartnc file Specify the Amber restart file (NetCDF format) containing the molecular dynamics data that should
be extracted.

7.6.3 Output

The extracted Cartesian coordinates and/or velocities of each time step are put to the terminal in the specified format
(XYZ or initconds). In case of the -g option, the geom and veloc files are written to the current directory.

7.7 Creating an XYZ file from a SHARC trajectory: sharctraj_to_xyz.py

The script sharctraj_to_xyz.py allows extraction of the geometries and velocities of a single time step from a SHARC
NetCDF trajectory file and prints or writes them in the same three formats as restartnc_to_xyz.py (XYZ files, QM. in
files, and geom/veloc file pairs).

The main application for this script is in reusing geometries and velocities from a finished SHARC trajectory to create
new initial conditions. It shares this task with sharctraj_to_initconds.py, which is intended for smaller projects
and ASCII output.dat files and operates on an entire swarm of trajectories to produce a new initconds file. In
contrast, sharctraj_to_xyz.py operates on a single NetCDF output.dat.nc/output_NUC.dat.nc file and is intended
for projects where dummy initconds files are used.

7.7.1 Usage

sharctraj_to_xyz.py is a command-line tool and is executed as follows:
user@host> $SHARC/sharctraj_to_xyz.py [options] <geom> <output.dat.nc>

The available command-line options are summarized in Table 7.7.

Table 7.7: Command-line options for sharctraj_to_xyz.py.

Option Description Default

-h Display help message and quit. —

-s Select time step (negative numbers count from the end) last frame

-a Output in Angstrom in Bohr

-q Append request lines from file QM. in in same directory do not append anything
-1 Produce output to append to initconds format print XYZ format

-9 Write geom and veloc files print XYZ format

Note that in -i and -g modes, the flags -a and -q are ignored.

7.7.2 Input

Geometry file The geometry file must be in SHARC format, containing atomic symbols, numbers, and masses. It is
used to map the structure from the NetCDF file.

NetCDF trajectory file The trajectory file must be in SHARC NetCDF format and must contain geometry and
velocity information. This file is accessed at the selected time step to retrieve the data.

170

SHARC Manual 7 Auxilliary Scripts | 7.8 Setup of Initial Calculations: setup_init.py

Time step The desired time step to extract can be specified via the -s flag. Negative numbers count from the last
frame backward (e.g., -1 extracts the final step). Unlike sharctraj_to_initconds.py, sharctraj_to_xyz.py does
not have any options to pick a random time step, but because sharctraj_to_xyz.py operates only on a single file,
randomization logic can be implemented in a Bash wrapper script.

7.7.3 Output

Three different output modes are available:

« By default, the script prints atomic positions in XYZ format to standard output. Using the -q option, requests
from a QM. in file in the same directory can be appended.

« Using the -1i option, the output is printed in initconds file format.

« Using the -g option, two files geom and veloc are written to the current directory (overwriting any existing files).

7.8 Setup of Initial Calculations: setup_init.py

The interactive script setup_init.py creates input for single point calculations at the initial geometries given in an
initconds file. These calculations might be necessary for some schemes to select the initial electronic state of the
trajectory, e.g., based on the excitation energies and oscillator strength of the transitions from ground state to the
excited state, or based on overlaps with a reference wave function.

There are other choices of the initial state possible, which do not require single point calculations at all initial geometries.
See the description of excite.py (section 7.9). In this case, setup_init.py can be used to set up only the calculation at
the equilibrium geometry (see below at “Range of Initial Conditions”).

7.8.1 Usage

The script is interactive, and can be started by simply typing
user@host> $SHARC/setup_init.py

Please be aware that the script will setup the calculations in the directory where it was started, so the user should cd to
the desired directory before executing the script.

Please note that the script does not expand ~ or shell variables, except where noted otherwise.

7.8.2 Input

The script will prompt the user for the input. In the following, all input parameters are documented:

Initial Conditions File Enter the filename of the initial conditions file, which was generated beforehand with
wigner.py. If the script finds a file called initconds, the user is asked whether to use this file, otherwise the user has
to enter an appropriate filename. The script detects the number of initial conditions and number of atoms automatically
from the initial conditions file.

Range of Initial Conditions The initial conditions in initconds are indexed, starting with the index 1. In order to
prepare ab initio calculations for a subset of all initial conditions, enter a range of indices, e.g. a and b. This will prepare
all initial conditions with indices in the interval [a, b]. In any case, the script will additionally prepare a calculation for
the equilibrium geometry (except if a finished calculation for the equilibrium geometry was found).

If the interval [0, 0] is given, the script will only setup the calculation at the equilibrium geometry.

Number of states Here the user can specify the number of excited states to be calculated. Note that the ground
state has to be counted as well, e.g., if 4 singlet states are specified, the calculation will involve the Sy, Sy, S, and Ss.
Also states of higher multiplicity can be given, e.g. triplet or quintet states. For even-electron molecules, including
odd-electron states (e.g. doublets) is only useful if transition properties for ionization can be computed (e.g. Dyson
norms with some of the interfaces). These transition properties can be used to calculate ionization spectra or to obtain
initial conditions for dynamics after ionization.

171

SHARC Manual 7 Auxilliary Scripts | 7.8 Setup of Initial Calculations: setup_init.py

Charge per multiplicity In SHARC4, the molecular charge is not set in the interface template files, but directly by
the setup scripts/SHARC driver/parent interface. Hence, enter the molecular charge per multiplicity here. This array
needs to have the same length as the number of states array. If the number of states for some multiplicities is zero, the
entered number will be ignored. For example, if you provided states 3 2 1and charges 0 +1 0, then the 3 singlets
and 1 triplet states will be computed as neutral species, and the 2 doublet states as cations with charge +1.

Interface In this point, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the
corresponding number.

If you selected SHARC_LEGACY . py, then you have to subsequently select the legacy interface that you intend to use. If
you selected a hybrid interface, then you will subsequently be queried with the path to the corresponding template file,
so that the hybrid interface can figure out the child interface it should use. This might continue recursively until all
interfaces in the interface call tree are known.

Spin-orbit calculation Usually, it is sufficient to calculate the spin-free excitation energies and oscillator strengths
in order to decide for the initial state. However, using this option, the effects of spin-orbit coupling on the excitation
energies and oscillator strengths can be included. Note that the script will not ask for spin-orbit couplings if only singlet
states are included in the calculation, or if the chosen interface does not support calculation of spin-orbit couplings.

Dyson norm calculation In some cases, initial conditions should be set up to simulate dynamics after ionization.
Note that the script will only ask for this property if the chosen interface supports Dyson norms.

Reference overlaps The calculations can be setup in such a way that the wave function overlaps between states at
the equilibrium geometry and the displaced geometries is computed. This allows correlating the states at the displaced
geometries with the reference states, such that one can know the state characters of all states without inspection. This
is useful for a crude “diabatization” of the states, e.g., if one wants to start all trajectories in the nz* state of the molecule
although this state can be S, S,, or S; (use excite.py to setup initial conditions in such a way, see section 7.9). Note
that the script will only ask for this option if the chosen interface supports wave function overlaps.

When activating this option, keep in mind that the calculation in ICOND_00000 must be successfully finished before any
of the other ICOND_XXXXX calculations can be started.

TheoDORE analysis If the chosen interface supports wave function analysis with TheoDORE, then this option can
be activated here. setup_init.py will then include the relevant keywords in the computations, and the results of the
TheoDORE analysis will be written to the QM. out files. Note that the script will only ask for this option if the chosen
interface supports wave function descriptors from TheoDORE.

The remaining settings for TheoDORE (fragment and descriptor input) will be asked later in setup_init.py.

7.8.3 Interface-specific input

After identifying all electronic structure information that needs to be computed, the setup script will call the chosen
interface’s own setup routines. The interface will ask the user for all necessary information, depending on the requested
quantities.

For hybrid interfaces, the children’s setup routines will also be called at some point, possibly in a recursive fashion,
until all interfaces in the call tree are setup. See Chapter 6 for the questions that the interfaces ask.

7.8.4 Input for Run Scripts

Run script mode The script setup_init.py generates a run script (Bash) for each initial condition calculation. Due
to the large variety of cluster architectures, these run scripts might not work in every case. It is the user’s responsibility
to adapt the generated run scripts to his needs.

setup_init.py can generate run scripts for two different schemes how to execute the calculations. With the first
scheme, the ab initio calculations are performed in the directory where they were setup (subdirectories of the directory
where setup_init.py was started). Note that the interfaces will still use their scratch directories to perform the actual
quantum chemistry calculations. Currently, this is the default and simplest option.

172

SHARC Manual 7 Auxilliary Scripts | 7.9 Excitation Selection: excite.py

With the second option, the run scripts will transfer the input files for each ab initio calculation to a temporary directory,
where the interface is started. After the interface finishes all calculations, the results files are transferred back to the
primary directory and the temporary directory is deleted. Note that setup_init.py in any case creates the directory
structure in the directory where it was started. The name of the temporary directory can contain shell variables, which
will be expanded when the script is running (on the compute host).

Submission script The setup script can also create a Bash script for the submission of all ab initio calculations to
a queueing system. The user has to provide a submission command for that, including any options which might be
necessary. This submission script might not work with all queueing systems. The user should also enter a project name
that is used to add a name option to the submission script.

7.8.5 Output

setup_init.py will create for each initial condition in the given range a directory whose names follow the format
ICOND_%051i/, where %051 is the index of the initial condition padded with zeroes to 5 digits. Additionally, the directory
ICOND_00000/ is created for the calculation of the excitation energies at the equilibrium geometry.

To each directory, the following files will be added:

« QM.in: Main input file for the interface, contains the geometry and the control keywords (to specify which
quantities need to be calculated).

« run.sh: Run script, which can be started interactively in order to perform the ab initio calculation in this directory.
Can also be adapted to a batch script for submission to a queue

« Interface-specific files: Usually a template file, a resource file, and an initial wave function.

The calculations in each directory can be simply executed by starting run.sh in each directory. In order to perform this
task consecutively on a single machine, the script all_run.sh can be executed. The file DONE contains the progress of
this calculation. Alternatively, each run script can be sent to a queueing system (you might need to adapt this script to
you cluster system). Note that if reference overlaps were requested, the calculation in ICOND_00000/ must be finished
before starting any of the other calculations.

In figure 7.1, the directory tree structure setup by setup_init.py is given.

After all calculations are finished, excite.py can be used to collect the results.

7.9 Excitation Selection: excite.py

excite.py has two tasks: adding excited-state information to the initconds file, and deciding which excited state for
which initial condition is a valid initial state for the dynamics.

$ (pwd)
—| all_gsub.sh

<Interface files>)

INIT_00001

Figure 7.1: Directory structure created by setup_init.py. Directories are in blue, executable scripts in green and
regular files in black and white. Interface files usually include initial MO coefficients, template files and
interface input files.

173

SHARC Manual 7 Auxilliary Scripts | 7.9 Excitation Selection: excite.py

7.9.1 Usage

The script is interactive, and can be started by simply typing
user@host> $SHARC/excite.py

7.9.2 Input

Initial condition file Enter the path to the initial conditions file, to which excite.py will add excited-state informa-
tion. This file can already contain excited-state information (in this case this information can be reused).

Generate excited state list There are three possibilities to add excited-state information to the initconds file:

1. generate a list of dummy excited states,

2. read excited-state information from the output of the initial ab initio calculations (prepare the calculations with
setup_init.py),

3. keep the existing excited-state information in the initconds file.

The first option is mainly used if no initial ab initio calculations need to be performed (e.g., the initial state is known).

In order to use the second option, one should first setup initial excited-state calculations using setup_init.py (see 7.8)
and run the calculations. excite.py can then read the output of the initial calculations and calculate excitation energies
and oscillator strengths.

The third option can be used to reuse the information in the initconds file, e.g., to apply a different selection scheme
to the states or to just read the number of states.

Path to ab initio results If excite.py will read the excited-state information from the ab initio calculation results,
here the user has to provide the path to the directory containing the ICOND_%05i subdirectories.

Number of states If a dummy list of states will be generated, the user has to provide the number of states per
multiplicity. Note that a singlet ground state has to be counted as well, e.g. if 4 singlet states are specified, the calculation
will involve the Sy, S, Sz and Ss. Also states of higher multiplicity can be given, e.g. doublet or triplet states (e.g.,2 2 1
for two singlets, two doublets and one triplet).

If the ab initio results are read the number of states will be automatically determined from the results.

Excited-state representation When generating new lists of excited states (either dummy states or from ab initio
results), the user has to specify the representation of the excited states (either MCH or diagonal representation). The
MCH representation is spin-free, meaning that transition dipole moments are only allowed between states of the same
multiplicity. For molecules without heavy atoms, this option is sufficient. For heavier atoms, the diagonal representation
can be used, which includes the effects of spin-orbit coupling on the excitation energies and oscillator strengths. Note,
however, that excited-state selection with delta pulse excitation (option 3 under “Initial state selection”) should be
carried out in the MCH representation if the ground state is not significantly spin-orbit-mixed.

When reading ab initio results, excite.py will diagonalize the Hamiltonian and transform the transition dipole matrices
for each initial condition to obtain the diagonal representation.

When a dummy state list is generated, the representation will only be written to initconds.excited (but has no actual
numeric effect for excite.py). Note that the representation which is declared in the initconds.excited file influences
how SHARc determines the initial coefficients (see the paragraph on initial coefficients in 4.1.3).

Note that the representation cannot be changed if existing excited-state information is kept.

Hint: If the ICOND_%051 directories need to be deleted (e.g., due to disk space restrictions), making one read-out with
excite.py for each representation and saving the results to two different files will preserve most necessary information.

lonization probabilities If excite.py detects that the ab initio results contain ionization probabilities, then those
can be used instead of the transition dipole moments. Note that in this case the transition dipole moments are not
written to the initconds.excited file.

174

SHARC Manual 7 Auxilliary Scripts | 7.9 Excitation Selection: excite.py

Reference energy excite.py can read the reference energy (ground state equilibrium energy) directly from the
ab initio results. If the ab initio data is read anyways, excite.py already knows the relevant path. If a dummy list of
states is generated, the user can provide just the path to the QM. out file of the ab initio calculation for the equilibrium
geometry. Otherwise, excite.py will prompt the user to enter a reference energy manually (in hartree).

Initial state selection Every excited state of each initial condition has a flag specifying it either as a valid initial
state or not. excite.py has four modes how to flag the excited states:

1. Unselect all excited states,

2. User provides a list of initial states,

3. States are selected stochastically based on excitation energies and oscillator strengths,
4. Keep all existing flags.

The first option can be used if excite.py is only used to read the ab initio results for the generation of an absorption
spectrum (using spectrum. py).

The second option can be used to directly specify a list of initial states, if the initial state is known (e.g., starting in the
ground state and exciting with an explicit laser field). In this case, the given states of all initial conditions are flagged as
initial states. This option is also useful if reference overlaps were computed (see 7.8.

The third option is only available if excited-state information exists (i.e., if no dummy list is generated). For details on
the stochastic selection procedure, see section 8.9.

The fourth option can only be used if the existing state information is kept. In this case excite.py does nothing except
counting the number of flagged initial states.

Excitation window This option allows to exclude excited states from the selection procedure if they are outside a
given energy window. This option is only available if excited state information exists, but not if a dummy list of states
is generated (because the dummy states have no defined excitation energy).

For the stochastic selection procedure, states outside the excitation window do not count for the determination of pyax
(see equation (8.45)). This allows to excite, e.g., to a dark nz* state despite the presence of a much brighter 7z* state.

For the keep-flags option, this option can be used to count the number of excited states in the energy window.

Considered states Here the user can specify the list of desired initial states. If reference overlaps are present in the
excitation calculations, then the user can choose to specify the initial state in terms of diabatized states (as defined by
the overlap with the reference, where the diabatized states are identical to the computed states). See section 8.9.1 for
how the diabatization is carried out.

For the stochastic selection procedure, the user can instead exclude certain states from the procedure. Excluded states
do not count for the determination of py,.x (see equation (8.45)).

If the number of states per multiplicity is known, excite.py will print a table giving for each state index the multiplicity,
quantum number and M value.

Random number generator seed The random number generator in excite.py is used in the stochastic selection
procedure. Instead of typing an integer, typing “!” will initialize the RNG from the system time. Note that this will not
be reproducible, i.e. repeating the excite.py run with “!” as random seed will give a different selection in each run.

7.9.3 Output

excite.py writes all output to a file <BASE>.excited, where <BASE> is the name of the initial conditions file used as
input. The output file is also an initial conditions file, but contains additional information regarding the excited states,
the reference energy and the representation of the excited states. An initial conditions file with excited-state information
is needed for the final preparatory step: setting up the dynamics with setup_traj.py. Additionally, spectrum.py can
calculate absorption spectra from excited-state initial condition files.

7.9.4 Specification of the initconds.excited file format

The initial conditions files initconds and initconds.excited contain lists of initial conditions, which are needed
for the setup of trajectories. An initial condition is a set of initial coordinates of all atoms and corresponding initial

175

SHARC Manual 7 Auxilliary Scripts | 7.9 Excitation Selection: excite.py

velocities of each atom, and optionally a list of excited state informations. In the following, the format of this file is
specified.

The file contains of a header, followed by the body of the file containing a list of the initial conditions.

File header An examplary header looks like:

SHARC Initial conditions file, version 0.2 <Excited>

Ninit 100

Natom 2

Repr MCH

Eref -0.50
Eharm 0.04

States 201

Equilibrium
H 1.0 0.0 0.0 0.0 1.00782563 0.0 0.0 0.0
H 1.6 1.5 0.0 0.0 1.00782563 0.0 0.0 0.0

The first line must read SHARC Initial conditions file, version <VERSION>, with the correct version string fol-
lowed. The string Excited is optional, and marks an initial conditions file as being an output file of excite.py
(setup—_traj.py will only accept files marked like this). The following lines contain:

1. the number of initial conditions,

the number of atoms,

the electronic state representation (a string which is None, MCH or diag),

the reference energy (hartree),

the harmonic energy (zero point energy in the harmonic approximation, hartree),
6. optionally the number of states per multiplicity.

il LN

After the header, first the equilibrium geometry is expected. It is demarked with the keyword Equilibrium, followed
by natom lines, each specifying one atom. Unlike the actual initial conditions, the equilibrium geometry does not have a
list of excited states or defined energies.

File body The file body contains a list of initial conditions. Each initial condition is specified by a block starting with
a line containing the string Index and the number of the initial condition. In the file, the initial conditions are expected
to appear in order.

A block specifying an initial condition looks like:

Index 1
Atoms

H 1.0 -0.02 0.0 0.0 1.00782503 -0.001 0.0 0.0

H 1.6 1.52 0.6 0.0 1.007825063 0.001 0.0 0.0

States

001 -0.49 -0.49 -0.16 0.0 -0.03 0.0 ©0.605 0.0 0.0 0.00 False
002 0.25 -0.49 0.02 0.0 0.43 0.0 -1.77 0.0 6.5 0.53 True
003 -0.40 -0.49 0.00 0.0 0.00 0.0 ©0.00 0.0 2.5 0.00 False
004 0.40 -0.49 0.00 0.0 0.00 0.0 ©0.00 0.0 2.5 0.00 False
005 -0.40 -0.49 0.00 0.0 0.00 0.0 ©0.00 0.0 2.5 0.00 False
Ekin 0.004 a.u.

Epot_harm 0.026 a.u.

Epot 0.013 a.u.

Etot_harm 0.030 a.u.

Etot 0.018 a.u.

The formal structure of such a block is as follows. After the line containing the keyword Index and the index number,
the keyword Atoms indicates the start of the list of atoms. Each atom is specified on one line:

symbol,

nuclear charge,

X, y, z coordinate in Bohrs,

atomic mass,

x, y and z component of nuclear velocity in atomic units.

A

176

SHARC Manual 7 Auxilliary Scripts | 7.10 Calculation of Absorption Spectra: spectrum. py

After the atom list, the keyword States indicates the list of electronic states. This list consists of one line per electronic
state, but can be empty, if no information of the electronic states is available. Each line consists of:

1. state number (starting with 1),

state energy in Hartree,

reference energy in Hartree (usually the energy of the lowest state),

six numbers defining the transition dipole moment to the reference state (usually the lowest state),

the excitation energy in eV,

the oscillator strength,

a string which is either True or False, specifying whether the electronic state was selected by excite.py as
initial electronic state.

N

The transition dipole moments are specified by six floating point numbers, which are real part of the x component,
imaginary part of the x component, then the real and imaginary parts for the y and finally the z component (the
transition dipole moments can be complex in the diagonal representation).

The electronic state list is terminated with the keyword Ekin, which at the same time gives the kinetic energy of all
atoms. The remaining entries give the potential energy in the harmonic approximation and the actual potential energy,
as well as the total energy.

7.10 Calculation of Absorption Spectra: spectrum.py

Aside from setting up trajectories, the initconds.excited files can also be used to generate absorption spectra based
on the excitation energies and oscillator strengths in the file. The script spectrum.py calculates Gaussian, Lorentzian,
or Log-normal convolutions of these data in order to obtain spectra. See Section 8.1 for further details.

spectrum.py evaluates the absorption spectrum on a grid for all states it finds in an initial conditions file. Using
command-line options, some initial conditions can be omitted in the convolution, see Table 7.8.

7.10.1 Input

The script is executed with the initial conditions file as argument:
user@host> $SHARC/spectrum.py [OPTIONS] initconds.excited

The script accepts a number of command-line options, which are given in table 7.8.

Table 7.8: Command-line options for script spectrum.py.

Option Description Default

-h Display help message and quit. —

-0 FILENAME Output filename for the spectrum spectrum.out

-n INTEGER Number of grid points 500

-e FLOAT FLOAT Energy range (eV) for the spectrum 1to 10 eV

-i INTEGER INTEGER Index range for the initial conditions 1 to 1000

-f FLOAT FWHM (eV) for the spectrum 0.1eV

-G Gaussian convolution Gaussian

-L Lorentzian convolution Gaussian

-N Log-normal convolution Gaussian

-s Use only selected initial conditions Use all

-1 Make a line spectrum Convolution

-D Compute density of states (ignore fosc) Compute absorption
--gnuplot FILENAME Write a GNUPLOT script No GNUPLOT script
-B INTEGER Perform B bootstrapping cycles (error estimation) 0

-b FILENAME Output filename for bootstrapping spectrum_bootstrap.out
-r INTEGER Seed for random number generator (for bootstrap) 16661

-p INTEGER Number of standard deviations (for bootstrap) 3

-C Calculate absorption cross section (A?/molecule) Ooff

-m Convert absorption cross section to molar absorption coefficient (M~!cm™!)

177

SHARC Manual 7 Auxilliary Scripts | 7.11 Laser field generation: laser.x

7.10.2 Output

The script writes the absorption spectrum to a file (by default spectrum.out). Using the -o option, the user can redirect
the output to a suitable file. The output is a table containing n + 2 columns, where n is the number of states found in
the initial conditions file. The first column gives the energy in eV, within the given energy interval. In columns 2 to
n + 1 the state-wise absorption spectra are given. The last column contains the total absorption spectrum, i.e., the sum
over all states. The table has ngiq + 1 rows. For line spectra the output format is exactly the same, however, the file
will contain one row for each excited state of each initial condition in the initial conditions file. If density of states is
computed, the script replaces the oscillator strength by a factor of 1 for all states.

Additionally, the script writes some information about the calculation to standard output, among these the maximum
of the spectrum, which can be used in order to normalize the spectrum. The reported maximum is simply the largest
value in the last column of the spectrum.

If requested, the script generates a GNUPLOT script, which can be used to directly plot the spectrum.

If the -c switch is used, the spectrum is computed in terms of absolute absorption cross section (in units of A?). This
option is not compatible with density-of-state spectra or line spectra. If the -m option is used additionally to -c, then
the spectrum is computed in terms of the molar absorption coefficient (in units of M~!cm™?). The -m option cannot be
used without -c.

7.10.3 Error Analysis

The shape of the spectrum is strongly influenced by the number of initial conditions included and by the width of the
broadening function (FWHM). In principle, the FWHM of the broadening function should be as small as possible and
the number of initial conditions extremely large, in order to obtain a correctly sampled spectrum. In reality, if only few
initial conditions were considered, the FWHM should be chosen large enough to smooth out any artifical structure of
the spectrum arising solely from the small sample size.

In order to estimate whether the number of initial conditions and the FWHM are well-chosen, spectrum.py can
compute error estimates for the total absorption spectrum. This estimate is computed by a bootstrapping procedure
(similar to the one used in bootstrap.py). In order to use it, use the -B option with a positive integer argument (the
default is zero, and hence no bootstrapping is performed). The procedure will generate a second output file, called
spectrum_bootstrap.out by default. It contains in the first column the energy in €V, in the second the geometric
average spectrum from all bootstrap cycles, in column 3 and 4 the positive and negative errors of the spectrum, and in
all further columns the individual spectra obtained in the bootstrap cycles. In gnuplot, in order to plot the average
spectrum and the upper and lower error bounds, plot u 1:2, u 1:($2+$3), and u 1:($2+$4).

A suitable procedure is to start with a rather small FWHM, compute the spectrum with errors, and if the errors are
unsatisfactorily large, increase stepwise the FWHM. Note that the bootstrapping estimate will give very small errors if
the FWHM is very large—even though the actual spectrum can look very different in this case.

7.11 Laser field generation: laser.x

The Fortran code laser.x can generate files containing laser fields which can be used with SHARc. It is possible to
superimpose several lasers, use different polarizations and apply a number of chirp parameters.

7.11.1 Usage

The program is simply called by
user@host> $SHARC/laser.x

It will interactively ask for the laser parameters. After input is complete, it writes the laser field to the file laser in the
format which SHARC expects (see 4.5).

Similar to the interactive Python scripts, laser.x will also write the user input to KEYSTROKES . laser. After modifying
this file, it can be used to directly execute laser.x without doing the interactive input again:

user@host> $SHARC/laser.x < KEYSTROKES. laser

178

SHARC Manual 7 Auxilliary Scripts | 7.12 Preparing QM/MM calculations: setup_from_prmtop.py

7.11.2 Input

The first four options are global and need to be entered only once, all remaining input options need to be given for
every laser pulse. For the definition of laser fields see section 8.16.

Number of lasers Any number of lasers can be used. The output file will contain the sum of all laser pulses defined.

Real-valued field If this is true, the output file will only contain the real parts of the laser field, while the columns
defining the imaginary part of the field will be zero. Note, however, that SHARC will anyways only use the real part of
the field in the simulations.

Time interval and steps The definitions of the starting time, end time and time step of the laser field must exactly
match the simulation time and time substeps of the SHARC simulation. Note, that the laser field must always start at =0
fs to be used with SHARcC. The end time for the laser field must therefore coincide with the total simulation time given
in the SHARC input. The number of time steps for the laser field is fiota1/ Afsup + 1.

Files for debugging This option is normally not needed, and can be set to False. If set to True, the chirped and
unchirped laser fields in both time and frequency domain will be written to files called DEBUG_. . ..

Polarization vector The polarization vector p (will be normalized).

Type of envelope There are two options possible for the envelope function &(t), either a Gaussian envelope or a
sinusoidal one (see 8.16).

Field strength There are two input lines for the field strength &, the first defining the unit in which the field strength
is defined, the second gives the corresponding number. Field strength can be read in in GV/m, TW/cm™2 or atomic
units.

FWHM and time intervals This option depends on the type of envelope chosen. While in both cases all 5 numbers
need to be entered, for a Gaussian pulse only the first and third number have an effect. For a sinusoidal pulse all but the
first number has an effect.

For a Gaussian pulse, the first argument corresponds to FWHM in equation (8.94) and the third argument to ¢, in (8.93).

For a sinusoidal pulse, the second, third, fourth and fifth argument correspond to t, ¢, t.; and t., respectively, in
equation (8.95).

Central frequency There are two input lines for the central frequency wy. The first defines the unit (wavelength in
nm, energy in eV, or atomic units). The second line gives the value.

Phase The total phase ¢ is given in multiples of 7. For example, the input “1.5” gives a phase of 37”

Chirp parameters There are four lines giving the chirp parameters by, by, b3 and by. See equation (8.97) for the
meaning of these parameters.

7.12 Preparing QM/MM calculations: setup_from_prmtop.py

This script processes an AMBER prmtop topology file to generate input files for SHARc QM/MM simulations. It allows
the user to specify a list of QM atoms and prepares several auxiliary files such as QMMM. table, atommask, and rattle, as
well as topology files for the two MM calculations involved in a subtractive electrostatic embedding QM/MM simulation.
Use this script to prepare QM/MM calculations with SHARC_QMMM. py and SHARC_OPENMM. py.

See Sections 6.24 and 6.7 for further details.

179

SHARC Manual 7 Auxilliary Scripts | 7.13 Setup of Trajectories: setup_traj.py

7.12.1 Usage

setup_from_prmtop.py is a command-line script, invoked as:

user@host> $SHARC/setup_from_prmtop.py -f <prmtop> -q <gm_list> [options]

7.12.2 Input

The script requires the following arguments:

« -f <prmtop>: Path to the AMBER .prmtop topology file.
« -q <qm_list>: A space-separated or range-based list of QM atom indices (counting starts from 1) in quotes.
Example: "1 2 3 8 10~12".
Optional flags:
« --rattle-hx: Generate a rattle file containing all H-X bonds (where X is any atom) and their equilibrium
distances from the prmtop file.

+ --atommask: Generate an atommask file marking QM atoms with T (True) and MM atoms with F (False), for use
in decoherence and rescaling exclusion.

7.12.3 Output

The script generates several files in the current directory:

+ QMMM. table: Lists each atom’s QM/MM type, atomic symbol, and bonded atoms. Required for SHARC_QMMM. py.

« NAME_chrg_0.prmtop: A copy of the original topology file, with QM atom charges set to zero. Use this for the
MML child of SHARC_QMMM. py.

+ NAME_gm_and_links_chrg0.prmtop: A truncated topology file containing only the QM and link atoms, with their
charges set to zero. Use this for the MMS child of SHARC_QMMM. py.

- atommask (optional): Text file with one line per atom, either T or F, based on the QM atom list.

« rattle (optional): Contains all H-X bonds with equilibrium distances, used for constrained dynamics.

7.13 Setup of Trajectories: setup_traj.py

This interactive script prepares the input for the excited-state dynamics simulations with SHARC. It works similarly to
setup_init.py, reading an initial conditions file, prompting the user for a number of input parameters, and finally
prepares one directory per trajectory. However, the setup_traj.py input section is noticeably longer, because most
options for the SHARC dynamics are covered.

7.13.1 Input

Initial conditions file Please be aware that setup_traj.py needs an initial conditions file generated by excite.py
(files generated by wigner.py, amber_to_initconds.py, sharctraj_to_initconds.py, ... are not allowed). The main
distinction is that excite.py flags some excited states as selected for setup, and setup_traj .py requires this information.
The script reads the number of initial states, the representation, and the reference energy automatically from the file.

Number of states This is the total number of states per multiplicity included in the dynamics calculation. Affects
the keyword nstates in the SHARC input file.

Only advanced users should use here a different number of states than given to setup_init.py. In this case, the
excited-state information in the initial conditions file might be inconsistent. For example, if 10 singlets and 10 triplets
were included in the initial calculations, but only 5 singlets and 5 triplets in the dynamics, then the sixth entry in the
initial conditions file corresponds to S5, while setup_traj.py assumes the sixth entry to correspond to T;.

180

SHARC Manual 7 Auxilliary Scripts | 7.13 Setup of Trajectories: setup_traj.py

Charge per multiplicity In SHARC4, the molecular charge is not set in the interface template files, but directly by
the setup scripts/SHARC driver/parent interface. Hence, enter the molecular charge per multiplicity here, which will be
copied into the input file. This array needs to have the same length as the number of states array. If the number of
states for some multiplicities is zero, the entered number will be ignored. For example, if you provided states 3 2
1 and charges 0 +1 0, then the 3 singlets and 1 triplet states will be computed as neutral species, and the 2 doublet
states as cations with charge +1.

Active states States can be frozen for the dynamics calculation here. See section 8.2 for a general description of state
freezing in SHARC. Only the highest states in each multiplicity can be frozen, it is not possible to, e.g., freeze the ground
state in simulations where ground state relaxation is negligible. Affects the keyword actstates.

Contents of the initial conditions file Optionally, a map of the contents of the initial conditions file can be displayed
during the execution of setup_traj.py, showing for each state which initial conditions were selected (and which initial
conditions do not have the necessary excited-state information). For each state, a table is given, where each symbol
represents one initial condition. A dot “.” represents an initial condition where information about the current excited
state is available, but which is not selected for dynamics. A hash mark “#” represents an initial condition which is
selected for dynamics. A question mark “?” represents initial conditions for which no information about the excited
state is available (e.g. if the initial excited-state calculation failed). The tutorial shows an example of this output.

The content of the initial conditions file is also summarized in a table giving the number of initial conditions selected
per state.

Initial states for dynamics setup The user has to input all states from which trajectories should be launched. The
numbers must be entered according to the above table giving the number of selected initial conditions per state. It is
not allowed to specify inactive states as initial states. The script will give the number of trajectories which can be setup
with the specified set of states. If no trajectories can be setup, the user has to specify another set of initial states. The
initial state will be written to the SHARC input, specified in the same representation as given in the initial conditions file.
The initial coefficients will be determined automatically by SHARC, according to the description in section 4.1.3.

Starting index for dynamics setup and number of trajectories Specifies the first initial condition within the
initial condition file to be included in the setup. This is useful, for example, if the user might setup 50 trajectories
starting with index 1. setup_traj.py reports afterwards the last initial condition to be used for setup, e.g. index 90.
Later, the user can setup additional trajectories, starting with index 91.

Random number generator seed The random number generator in setup_traj.py is used to randomly generate
RNG seeds for the SHARC input. Instead of typing an integer, typing “!” will initialize the RNG from the system time.
Note that this will not be reproducible, i.e. repeating the setup_traj .py run (with the same input) with “!” as random
seed will give for the same trajectories different RNG seeds. Affects the keyword RNGseed.

Interface In this point, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the
corresponding number. The choice of the interface influences some dynamics options which can be set in the next
section of the setup_traj.py input.

If you selected SHARC_LEGACY. py, then you have to subsequently select the legacy interface that you intend to use. If
you selected a hybrid interface, then you will subsequently be queried with the path to the corresponding template file,
so that the hybrid interface can figure out the child interface it should use. This might continue recursively until all
interfaces in the interface call tree are known.

Method Here, the user can either choose TSH (surface hopping using the SHARC method) or SCP (self-consistent
potential, i.e., Ehrenfest dynamics). This choice affects a large number of subsequent questions.

Simulation Time This is the maximum time that SHARC will run the dynamics simulation. If trajectories need to be
run for longer time, it is recommended to first let the simulation finish. Afterwards, increase the simulation time in
the corresponding SHARC input file (keyword tmax) and add the restart keyword (also make sure that the norestart
keyword is not present). Then the simulation can be restarted by running again the run.sh script. Sets the keyword
tmax in the SHARC input files.

181

SHARC Manual 7 Auxilliary Scripts | 7.13 Setup of Trajectories: setup_traj.py

Simulation Time Step This gives the time step for the dynamics. The on-the-fly ab initio calculations are performed
with this time step, as is the propagation of the nuclear coordinates. A shorter time step gives more accurate results,
especially if light atoms (hydrogen) are subjected to high kinetic energies or steep gradients. Of course a shorter time
step is computationally more expensive. A good compromise in many situations is 0.5 fs. Sets the keyword stepsize in
the SHARC input files.

Integrator Here, the user can select between the fixed velocity-Verlet (fvv) and the adaptive velocity-Verlet (avv)
algorithm. Note that the adaptive algorithm is incompatible with several other functionality of SHARC (e.g., wave function
overlaps, output stride control, thermostats). If the adaptive algorithm is chosen, setup_traj .py automatically removes
wave function overlaps from the feature set, so that local diabatization will not be available when the propagation
method is queried later.

If the adaptive algorithm is chosen, setup_traj.py asks for the convergence threshold of the total energy (in eV). The
adaptive algorithm will reduce the time step if this threshold is exceeded by the change in total energy between two
time steps. Note that setup_traj.py does not allow to set the other keywords that control the adaptive integrator
(stepsize_min, stepsize_max, stepsize_min_exp, stepsize_max_exp). Here, the defaults are to reduce the time step
by half when total energy conservation is violated, possibly multiple times until the time step is one sixteenth of the
original one. The time step is increased by a factor of 2 when the total energy conservation is overachieved (smaller
than a fifth of the threshold).

Number of substeps This gives the number of substeps for the interpolation of the Hamiltonian for the propagation
of the electronic wave function. Usually, 25 substeps are sufficient. In cases where the diagonal elements of the
Hamiltonian are very large (very large excitation energies or a badly chosen reference energy) more substeps might be
necessary. Sets the keyword nsubsteps in the SHARC input files.

Prematurely terminate trajectories Usually, trajectories which relaxed to the ground state do not recross to an
excited state, but vibrate indefinitely in the ground state. If the user is not interested in these vibrations, such trajectories
can be terminated prematurely in order to save computational resources. A threshold of 10-20 fs is usually a good
choice to safely detect ground state relaxation. Sets the keyword killafter in the SHARC input files.

Representation for the dynamics Either the diagonal representation can be chosen (by typing “yes”) to perform
dynamics with the SHARC methodology, or the dynamics can be performed on the MCH states (spin-diabatic dynamics
[26], FISH [25]). Sets the keyword surf in the SHARC input files.

Spin-orbit couplings If more than just singlet states are requested, the script asks whether spin-orbit couplings
should be computed. If the chosen interface cannot provide spin-orbit couplings, this question is not posed and
automatically answered.

Quantities describing the non-adiabatic couplings Electronic propagation can be performed with temporal
derivatives, nonadiabatic coupling vectors or overlap matrices (Local diabatization). Enter the corresponding number.
Note that depending on the chosen interface, some options might not be available, as displayed by setup_traj.py. Also
note that currently, no interface can provide temporal derivatives (because their computation involves calculating the
overlap matrix and then local diabatization can be done instead). Sets the keyword coupling in the SHARC input files.

If nonadiabatic coupling vectors are chosen, the user is asked whether overlap matrices should be computed anyways
to provide wave function phase tracking information. As the overlap calculations are usually fast compared to other
steps, this is recommended.

Gradient transformation The nonadiabatic coupling vectors can be used to correctly transform the gradients to the
diagonal representation. If nonadiabatic coupling vectors are used anyways, this option is strongly recommended, since
it gives more accurate gradients for no additional cost. Sets the keyword gradcorrect in the SHARC input files. If the
dynamics uses the MCH representation, this question is not asked.

Questions for surface hopping

The following keywords are only posed if the selected method is surface hopping.

182

SHARC Manual 7 Auxilliary Scripts | 7.13 Setup of Trajectories: setup_traj.py

Surface hop treatment This option determines how the total energy is conserved after a surface hop and whether
frustrated hops lead to reflection. Sets the keywords ekincorrect and reflect_frustrated in the SHARC input files.

Decoherence correction For most applications, a decoherence correction should be enabled. This controls the
decoherence_scheme (and decoherence_param keywords in the SHARC input files.

Note that setup_traj.py does not allow to modify the @ parameter for the energy-based decoherence (keyword
decoherence_param). In order to change decoherence_param, the user has to manually edit the SHARC input files.

Surface hopping scheme Choose one of the available schemes to compute the hopping probabilities or turn off
hopping.

You can also activate forced hops to the ground state, which is sometimes useful for single-reference methods that do
not describe the ground state—excited state crossing topology correctly.

Scaling and Damping These two prompts set the keywords scaling and damping in the SHARC input files. The
scaling parameter has to be positive, and the damping parameter has to be in the interval [0, 1].

Atom masking In some cases, the script will ask to specify the atoms to which decoherence/rescaling/reflection
should be applied. See section 4 for explanations (keyword atommask).

Gradient and nonadiabatic coupling selection For dynamics in the MCH representation, selection of gradients is
used by default, and only one gradient (of the current state) is calculated. Selection of nonadiabatic couplings is only
relevant if they are used (for propagation, gradient correction or rescaling of the velocities after a surface hop). For the
selection threshold, usually 0.5 eV is sufficient, except if spin-orbit coupling is very strong and hence the gradients mix
strongly. Sets the keywords grad_select and nac_select in the SHARC input files.

Questions for self-consistent potential methods

The following keywords are only posed if the selected method is self-consistent potential (SCP), i.e., coherent switching
with decay of mixing (CSDM).

Nuclear EOM In the coherent nuclear propagation for the SCP method, the nuclear equation of motion can be
controlled using the neom keyword. Note that this choice is independent of the form of coupling used in the electronic
equation of motion. Choices are ddr or gdiff, to either include the full NAC vectors into the gradient of the effective
potential, or to construct effective NAC vectors from the gradient difference vector.

Switching scheme In decay-of-mixing algorithms, it is necessary to select an option for computing the probabilities
of switching pointer states. This can be specified using the switching_procedure keyword. Currently, one can choose
off or csdm.

Decoherence scheme and Decoherence time method For methods based on self-consistent potentials, decoher-
ence is introduced through the decay-of-mixing algorithm. The use of the decay-of-mixing decoherence scheme is
enabled by setting decoherence_scheme dom, while the method for computing the decoherence time can be specified
using the decotime_method keyword.

Damping This prompt sets the keyword damping in the SHARC input files. The damping parameter has to be in the
interval [0, 1].

Remaining general questions

RATTLE The script will ask whether RATTLE should be used. If this is the case, the user has to provide a rattle file.
These can be prepared manually or with setup_from_prmtop.py (Section 7.12).

183

SHARC Manual 7 Auxilliary Scripts | 7.13 Setup of Trajectories: setup_traj.py

Thermostat If the adaptive velocity-Verlet algorithm is not used, the user gets prompted whether a thermostat should
be used. Currently, only the Langevin thermostat is available. The user has to provide the desired temperature (in K),
RNG seed, and the friction coefficient (in fs~!). setup_traj.py does not support setting up multiple thermostat regions,
such options should be added manually after setup.

Droplet and tether potentials Here the user gets asked whether to use a droplet and/or tethering potential.

First, the droplet potential is set up. The user can either manually enter the force constant and offset radius, or let these
parameters be determined from the system size. To do so, the user has to enter five parameters. First, the density, molar
mass, and number of molecules define the radius of the solvent sphere. We recommend to use the density from the
MD output, the molar mass of the solvent, and the number of solvent molecules (ignoring the solute). Second, the
user sets the “wokness”, a parameter between 0 and 1 that defines how extensive the flat-bottom part of the droplet
potential is. Giving a value of 1 produces a harmonic oscillator with no flat-bottom part, and a value of 0 produces
a particle-in-a-box-like flat potential with infinite walls. We recommend values of around 0.2-0.5; values close to 1
will lead to the droplet potential affecting the inner droplet region and values close to 0 will produce unphysical and
instable behaviour close to the wall. The droplet offset radius is computed from the sphere radius and the wokness
parameter. The fifth parameter is the pressure at the surface of the sphere. The force constant is then determined from
the sphere and offset radius, such that the pressure is zero at the offset radius and equal to the entered pressure at the
sphere radius.

In either case, after the definition of the droplet potential, the user can define the atoms that feel the droplet potential.
Typically, all should be chosen.

Second, the tether is set up. Here, the user has to manually enter the tether force constant, tether position, and tether
offset radius. Subsequently, the atoms affected by the tether should be specified. Here, typically only some or all of the
solute molecule’s atoms are chosen. We recommend to set the offset radius of the tether to be larger than the solute
molecule, so that the tether does not produce any force unless the molecule tries to diffuse towards the surface of the
droplet.

Laser file The user can specify to use an external laser field during the dynamics, and has to provide the path to
the laser file (see section 7.11 and 4.5). setup_traj.py will check whether the number of steps and the time steps are
compatible to the dynamics.

If the interface can provide dipole moment gradients, setup_traj.py will also ask whether dipole moment gradients
should be included in the simulations. Currently, these are not fully supported yet.

Dyson norm calculation If the interface is compatible, the user can request that Dyson norms are calculated
on-the-fly. This option is only asked if Dyson norms can be computed (i.e., if states are present which differ by one
electron, e.g., singlets and doublets). Note that Dyson norms are not saved in NetCDF file format (question below).

THEODORE calculations If the interface is compatible, the user can request that THEODORE is run on-the-fly. Note
that TheoDORE descriptors are not saved in NetCDF file format (question below).

7.13.2 Interface-specific input

After the dynamics and properties settings, the setup script will call the chosen interface’s own setup routines. The
interface will ask the user for all necessary information, depending on the requested quantities.

For hybrid interfaces, the children’s setup routines will also be called at some point, possibly in a recursive fashion,
until all interfaces in the call tree are setup. See Chapter 6 for the questions that the interfaces ask.

7.13.3 Running and output control

PySHARC setup setup_traj.py will ask whether the user wants to run the trajectories using PySHARC, i.e., use
driver.py instead of sharc.x. Note that this is not possible if the adaptive time step integrator was chosen or if the
SHARC package was not compiled with PySHARC support. For details, see Section 3.4 and Section 2.2. Briefly, PySHARC
is intended for running fast potential energy methods, like analytical, vibronic coupling, machine learning, or force
field models. For these models, PyYSHARC removes many overheads and allows orders of magnitude faster execution
than sharc.x.

184

SHARC Manual 7 Auxilliary Scripts | 7.13 Setup of Trajectories: setup_traj.py

NetCDF output format Next, the script will ask whether output should be written in NetCDF format and whether
nuclear and electronic information should be written to separate files. See Sections 5.4 and 5.5 for details. These options
are only available if PySHARC support is installed. They lower I/O demand and disk space and increase execution
time, especially for fast methods. Note that with this format, Dyson norms, TheoDORE descriptors (and other
properties), gradients, and nonadiabatic coupling vectors are not saved. Additionally, trajectory restart is
not possible with NetCDF output format.

Separate output files should be used if the system has a huge number of states or atoms, and the user wants to separately
set the output stride (below) for nuclei and electrons.

Output quantities The user can finally define which quantities are saved in the data file. The script will only ask for
quantities that are computed and that can be saved.

Output stride Here the user can adjust the data is written to output.dat, output.dat.nc, and output_NUC.dat.nc.
The files output.log, output.lis, and output.xyz are not affected. See details in Section 4.1 for details about the
strides.

7.13.4 Run script setup

This input section is very similar to the one in setup_init.py (see section 7.8).

7.13.5 Output

setup_traj.py will create for each initial state a directory where all trajectories starting in this state will be put. If the
initial conditions file specified that the initial conditions are in the MCH representation, then the initial states will be
assumed to be in the MCH representation as well. In this case, the directories will be named Singlet_0, Singlet_1, ...
Doublet_0, Triplet_1, ... If the initial states are in the diagonal representation, then the directories are simply called
X_1, ... since they do not have a definite spin.

In each directory, subdirectories called TRAJ_%051i are created, where %051 is the initial condition index, padded to 5
digits with zeroes. In each trajectory’s directory, an SHARC input file called input will be created, which contains all the

$ (pwd)
:: all_gsub.sh
Singlet_1
—{ TRAJ_00001

<Interface files>]

TRAJ_00002
Singlet_2

L Singlet_. ..

Figure 7.2: Directory structure created by setup_traj.py. Directories are in blue, executable scripts in green and
regular files in black and white. Interface files usually include initial MO coefficients, template files and
interface input files.

185

SHARC Manual 7 Auxilliary Scripts | 7.14 File transfer: retrieve.sh

dynamics options chosen during the setup_traj.py run. Also, files geom and veloc will be created. For trajectories
setup with setup_traj.py, the determination of the initial wave function coefficients is done by SHARc. Furthermore,
in each trajectory directory a subdirectory QM is created, where the runQM. sh script containing the call to the interface
is put (if using sharc.x. In the directory QM also all interface-specific input files will be copied.

For each trajectory, a run.sh script will be created, which can be executed to run the dynamics simulation. You might
need to adapt the run script to your cluster setup.

setup_traj.py also creates a script all_run—traj.sh, which can be used to execute all trajectories sequentially. Note
that this is intended for small test trajectories, and should not be used for expensive production trajectories. For the
latter, setup_traj.py can optionally create a script all_qsub_traj.sh, which can be executed to submit all trajectories
to a queueing system. You might need to adapt also this script to your cluster setup.

The full directory structure created by setup_traj.py is given in figure 7.2.

7.14 File transfer: retrieve.sh

In some cases, SHARC will run on some temporary directory, and not in the directory where the trajectories have been
submitted from. The shell script retrieve.sh is a simple scp wrapper, which can be executed (in a directory where a
trajectory has been sent from) in order to retrieve the output files of this trajectory. This might not work for every
cluster setup.

It relies on the presence of the file host_infos. All trajectories set up with setup_traj.py create this file after the
trajectory has been started with run.sh. retrieve.sh reads host_infos to determine the hostname and working
directory of the trajectory and then uses scp to retrieve the output and restart files.

The script can be called with the option “-1is” in order to only retrieve the output.lis file, but not the other output
files.

If the script is called with the option “-res” then also the restart files and the content of the restart/ directory are
copied.

It is advisable to configure public-key authentification for the hosts running the trajectories, so that not for every
execution of retrieve.sh a password has to be entered.

7.15 Resetting trajectories: clean_traj.sh

Especially when developing and when performing preliminary test trajectories, it is useful to quickly reset a trajectory,
in order to run it again. This is especially important because the SHARc drivers will refuse to run a trajectory from time
zero if restart files are present. Similarly, most interfaces will raise an error if interface-specific restart files are present
that do not match the requested time step.

The tool clean_traj.sh removes all output and restart files, the output_data/ folder, and empty marker files (STOP,
CRASHED, DONT_ANALYZE, RUNNING, DEAD). Additionally, it recursively removes files from the QM/ and restart/ directories.

7.15.1 Usage

Within a TRAJ_%05i/ folder, simply call the script. If the script is executed in a directory that does not match this
naming convention, it will exit without deleting.

7.16 Ensemble Diagnostics Tool: diagnostics.py

The purpose of this script is to automatize the critical step of checking the trajectories in an ensemble for sanity before
beginning the ensemble analysis.

The tool can check several different aspects of the trajectories. First, it checks whether all relevant output files of
the trajectories are present, and if they are complete and consistent (e.g., no missing lines due to network/file system
problems). Second, it checks simulation progress and status (e.g., whether the trajectory is running, crashed, finished, or
stopped). Third, it can check several energy-related requirements: total energy conservation, smoothness of kinetic and

186

SHARC Manual 7 Auxilliary Scripts | 7.17 Data Extractor: data_extractor.x

potential energy, and hopping energy differences. It also checks for conservation of total population, and for trajectories
using local diabatization also intruder states are checked.

Note that the diagnostics script can also be used to automatically run the data_extractor.x for all trajectories.

Also note that diagnostics.py will not work if the printlevel in the SHARC trajectories was lower than 2.

7.16.1 Usage

The script is interactive, simply start it with no command-line arguments or options:

user@host> $SHARC/diagnostics.py

7.16.2 Input

Paths to trajectories First the script asks the user to specify all directories for whose content the analysis should be
performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. diagnostics.py will automatically include all trajectories contained in these directories.

Unlike the ensemble analysis scripts (these are populations.py, transition.py, crossing.py, trajana_essdyn.py,
trajana_nma.py, and data_collector.py, see below), diagnostics.py ignores files which indicate the status of a
trajectory (CRASHED, RUNNING, DONT_ANALYZE) and carries out the diagnostics routines as long as it identifies a directory
as a SHARC trajectory.

Settings The settings for the diagnostics run can be modified with a simple menu, which can be navigated with the
commands show, help, end, and where the settings can be modified with <key> <value> (e.g., hop_energy 0.2 sets the
corresponding option to 0.2 eV). A list of the settings is given in Table 7.9.

Generally, the keywords missing_output, missing_restart, and normal_termination should always be left at True,
since checking them is cheap and the obtained information is important.

Note that data_extractor.x or data_extractor_NetCDF.x is always run for all trajectories, except if output.dat is
older than the files in output_data/. During the check of each trajectory, output.lis, output_data/energies.out,
and output_data/coeff_diag.out are furthermore checked for missing time steps.

Trajectory Flagging diagnostics.py determines for each trajectory a “maximum usable time” value (Tp,,). This
value is either the total simulation time or the time when the first violation (problems with time step consistency,
total energy conservation, potential/kinetic energy smoothness, hopping energy restriction, or intruder states) in the
trajectory appeared. The script prints the Ty, values for all trajectories at the end.

The user can then give a threshold for T, so that diagnostics.py excludes all trajectories with values smaller than the
threshold from analysis (the script will create a file DONT_ANALYZE in the directory of each affected trajectory). In this
way it is possible to perform ensemble analysis for a given simulation length while ignoring problematic trajectories.

When choosing the threshold for T, keep in mind that a compromise usually has to be made. A small value of the
threshold will mean that many trajectories are admitted for analysis (because problems occurring late do not matter),
giving good statistics, but that the analysis can only be carried out for the first part of the simulation time. On the other
hand, choosing a large threshold allows analysis of a satisfactory simulation time, but only few trajectories will be
included in the analysis (only the ones where no problems occurred for many time steps).

It is advisable that the chosen threshold value is used as input for the ensemble analysis scripts which ask for a maximum
analysis time (populations.py, transition.py, crossing.py, trajana_essdyn.py, trajana_nma.py).

7.17 Data Extractor: data_extractor.x

The data_extractor.x is the primary tool to extract useful, tabular data from the output.dat file that is produced by
sharc.x. The produced files can then be further processed, e.g., by plotting them or by computing ensemble statistics
with data_collector.py (section 7.30).

187

SHARC Manual 7 Auxilliary Scripts | 7.17 Data Extractor: data_extractor.x

Table 7.9: List of the settings for diagnostics. py.

Key Value Explanation

missing_output Boolean Checks if "output.lis”, "output.log", "output.xyz", "output.dat” are existing. Set-
ting to False only suppresses output, but files are always checked.

missing_restart Boolean Checks if "restart.ctrl”, "restart.traj", "restart/" are existing. Files are not checked

if set to False.

normal_termination Boolean Checks for status of trajectory:
RUNNING: no finish message in output.log, last step started recently.
STUCK: no finish message in output.log, last step started long ago.
CRASHED: error message in output.log.
FINISHED: finish message in output.log.
FINISHED (stopped by user): finished due to STOP file.

etot_window Float Maximum permissible drift (along full trajectory) in the total energy (in eV).

etot_step Float Maximum permissible total energy difference between two successive time
steps (in eV).

epot_step Float ~ Maximum permissible active state potential energy difference between two
successive time steps (in eV). Not checked for time steps where a hop occurred.

ekin_step Float Maximum permissible kinetic energy difference between two successive time
steps (in eV).

pop_window Float =~ Maximum permissible drift in total population.

hop_energy Float =~ Maximum permissible change in active state energy during a surface hop (in
evV).

intruders Boolean Checks if intruder state messages in "output.log" refer to active state.

always_update Boolean Run the data_extractor.x always, even if output.dat is older than the pro-
duced files.

extractor_mode String Controls command line flags for the data_extractor.x:

xs: Uses the -xs flag.

s: Uses the -s flag.

1: Uses the -1 flag.

x1: Uses the -x1 flag.

dont: data_extractor.x is never run (this leads to incomplete diagnostics,
but is very fast).

188

SHARC Manual 7 Auxilliary Scripts | 7.17 Data Extractor: data_extractor.x

7.17.1 Usage

The data_extractor.x is a command line tool, and is called with the output.dat file as an argument, and possibly
with some options.

user@host> $SHARC/data_extractor.x [options] output.dat

The program will create a directory output_data/ in the current working directory (not necessarily in the directory
where output.dat resides). In this directory, several files are written, containing, e.g., the potential energies depending
on time, populations depending on time, etc. Which files are created can be controlled with the command line options,
which are summarized in Table 7.10. For most applications, using the -xs or -s flags should be sufficient. The default is
equivalent to -s. Note that some options might not be available if the necessary data is not written to output.dat (see
write options in Table 4.1).

The program will extract the complete output.dat file until it reaches the EOF.

The data_extractor.x program will automatically detect the format of the output.dat file (the SHARCI release had a
different file format than the more recent SHARC2, SHARC3, and SHARC4 releases).

Note that diabatic coefficients can only be obtained if wave function overlaps are present in output.dat. Furthermore,
the data file must contain all time steps, so diabatic coefficients will be wrong if the output_data_steps keyword is
used to suppress writing of some time steps.

If you are interested in diabatic populations averaged over an ensemble, some special steps need to be taken. The reason
is that, by default, data_extractor.x equates the diabatic basis with the electronic states as provided in the first time
step of the trajectory. Hence, different trajectories have different diabatic bases and averages across several trajectories
are meaningless. In order to provide a common basis, run the initial condition calculations (using setup_init.py)
with reference overlaps. The resulting QM. out file will then contain the overlaps between the states at the equilibrium
geometry and the initial geometry. The QM. out file can then be provided to data_extractor.x:

user@host:traj/Singlet_2/TRAJ_00123> 1n -s init/ICOND_00123/ Reference
user@host:traj/Singlet_2/TRAJ_00123> $SHARC/data_extractor.x output.dat

data_extractor.x will attempt to find and open a file called Reference/QM. out and extract the wave function overlaps
from there. These are then used to define the diabatic basis.

7.17.2 Output

After the program finishes, the directory output_data/ contains a number of files. In each file, the number of columns
is dependent in the total number n of states i € {1...n}. The content of the files is listed in Table 7.11.

The file expec.out contains the information of energy.out, spin.out and fosc.out in one file. The content of
expec.out can be conveniently plotted by using make_gnuscript.py (section 7.22) to generate a GNUPLOT script.

189

SHARC Manual

7 Auxilliary Scripts | 7.17 Data Extractor: data_extractor.x

Table 7.10: Command-line options for data_extractor.x.

Option Description Default
-h Display help message and quit. -

-f File name (can also be given without file name) File name must be given
-sk skip parsing of geom., vel., grad., NAC. False
-e Write energy.out True

-d Write fosc.out True
-da Write fosc_act.out True
-sp Write spin.out True
-cd Write coeff_diag.out, coeff_class_diag.out, coeff_mixed_diag.out True
-cm Write coeff_MCH.out, coeff_class_MCH.out, coeff_mixed_MCH.out True
-cb Write coeff_diab.out, coeff_class_diab.out, coeff_mixed_diab.out True (if overlaps present)
-p Write prob.out True
-X Write expec.out True
-Xm Write expec_MCH.out True
-id Write ion_diag.out False
-im Write ion_MCH.out False
-dd Write dip_mom_diag.out False
-XS -e,, -d,, -cd,, -cm,, -p,, -Xx

-5 -sp,, -xm,, -cb,, -daplus -xs Default
-1 -id, , -implus -s

-x1 -dd plus -1 (i.e., all)

Table 7.11: Content of the files written by data_extractor.x. n is the total number of states, j is a state index
(j € {1..n}), and « is the active state.

File # Columns Columns
energy.out 4+n 1 Time ¢ (fs)
2 Kinetic energy (eV)
3 Potential energy (eV) of active state (diagonal)
4 Total energy (eV)
4+ Potential energy (eV) of state j (diagonal)
fosc.out 2+n 1 Time ¢t (fs)
2 Oscillator strength from lowest to active state (diagonal)
2+ Oscillator strength from lowest state to state j (diagonal)
fosc_act.out 1+2n 1 Time ¢ (fs)
1+ E; — Eqctive (in €V, diagonal)
1+n+j Oscillator strength from active state to state j (diagonal)
spin.out 2+n 1 Time ¢ (fs)
2 Total spin expectation value of active state
2+j Total spin expectation value of state j
coeff_diag.out 2+2n 1 Time ¢ (fs)
2 Norm of wave function Y |c;.hag|2
1+2j Re(c]"®)
2+2j Im(c}*®)
coeff_class_diag.out 2+n 1 Time ¢ (fs)
2 1
2+ j 5_,'
coeff_mixed_diag.out 2+n 1 Time ¢ (fs)
2 1
2+] 51'
coeff_MCH.out 2+2n 1 Time ¢ (fs)
2 Norm of wave function };; |cMCH 2

]

Continued on next page

190

SHARC Manual 7 Auxilliary Scripts | 7.18 Data Extractor for NetCDF: data_extractor_NetCDF.x

Table 7.11 - Continued from previous page

File # Columns Columns
1+42j Re(cMCH)
2+2j Im(c{}“?H)
coeff_class_MCH.out 2+n 1 Time ¢ (fs)
2 1
2+ |Uj0l|2
coeff_mixed_MCH.out 2+n 1 Time ¢ (fs)
2 1
2+ Ujel? + S 2Re(U,-kU;lc,‘jiagcfiag*)
coeff_diab.out 2+2n 1 Time ¢ (fs)
2 Norm of wave function };; |c?ialb 2
1+2j Re(c?iab)
2+2j Im(cfeP)
coeff_class_diab.out 2+2n 1 Time ¢ (fs)
2 1
2+j |Tal?
coeff_mixed_diab.out 2+2n 1 Time ¢ (fs)
2 1
2+ I Tial® + Tis 2Re (T T) ™)
prob.out 2+n 1 Time ¢ (fs)
2 Random number from surface hopping
2+ Cumulated hopping probability Zi:l Py
expec.out 4+3n 1 Time ¢t (fs)
2 Kinetic energy (eV)
3 Potential energy (eV) of active state (diagonal)
4 Total energy (eV)
4+ Potential energy (eV) of state j (diagonal)

4+n+j Total spin expectation value of state j (diagonal)
4+2n+j Oscillator strength of state j (diagonal)

expec_MCH.out 4+3n 1 Time ¢ (fs)
2 Kinetic energy (eV)
3 Potential energy (eV) of approximate active state (MCH)
4 Total energy (eV)
4+ Potential energy (eV) of state j (MCH)

4+n+j Total spin expectation value of state j (MCH)
4+2n+j Oscillator strength of state j (MCH)

ion_diag.out 4+ 3n 1 Time ¢ (fs)

1+ E; — Eyctive (in €V, diagonal)

1+n+j Dyson norm from active state to state j (diagonal)
ion_MCH.out 4+3n 1 Time ¢ (fs)

1+j E j Eapproximate active (in ev, mCH)

1+n+j Dyson norm from approximate active state to state j (MCH)
dip_mom_diag.out Formatted like a minimal output.dat

file containing the dipole moment matrices
in diagonal representation.

7.18 Data Extractor for NetCDF: data_extractor_NetCDF.x

This program has the same function as the data_extractor.x. While the latter acts on ASCII-formatted output.dat
files, the data_extractor_NetCDF.x reads only the header from output.dat, but the time step data from output.dat.nc.
This file is obtained by setting output_format to ascii in the SHARc input file. For more details, see Section 5.4.

Note that this program currently does not support a few options of the data_extractor.x. In particular, the options
-sk, -dd, -id, and -im are ignored and no corresponding output is produced.

191

SHARC Manual 7 Auxilliary Scripts | 7.19 Data Converter for NetCDF: data_converter.x

Using the -xyz flag, the data_extractor_NetCDF.x can be used to write an output.xyz file from the NetCDF data file.

7.18.1 Usage

The data_extractor_NetCDF.x is used in the same way as data_extractor.x:
user@host> $SHARC/data_extractor_NetCDF.x [options] output.dat
Note that both output.dat and output.dat.nc need to be present. The file name of output.dat.nc is hardcoded, if

your file is called differently, you should set a symbolic link.
7.18.2 Output

Same as data_extractor.x.

7.19 Data Converter for NetCDF: data_converter.x

This program can be used to convert an output.dat file into a NetCDF file (output.dat.nc). This significantly reduces
the size of the file, and allows deleting the output.xyz file (its content will be in the NetCDF file).
7.19.1 Usage

The data_converter.x usage is very simple:
user@host> $SHARC/data_converter.x output.dat

Note that the data_converter.x does not modify the output.dat file. Hence, in order to save disk space, remove the
data (below the header) afterwards:

user@host> sed -i ’'l,/End of header array data/!d’ output.dat

7.19.2 Output

The program writes a file called output.dat.nc. This file can be extracted as usual with data_extractor_NetCDF.x
(see Section 7.18).

7.20 Data Converter from NetCDF to ASCII: data_converter_to_ASCII.x

This program converts a output.dat.nc to output.dat.cp, which will be in ASCII format. This will blow up the file
size, but is sometimes necessary or convenient for the inspection of the file content or to apply certain scripts.
7.20.1 Usage

The data_converter_to_ASCII.x usage is very simple, and fully analogous to data_extractor_NetCDF.x:
user@host> $SHARC/data_converter_to_ASCII.x output.dat

Note that both output.dat and output.dat.nc need to be present. The file name of output.dat.nc is hardcoded, if
your file is called differently, you should set a symbolic link.

7.20.2 Output

The program writes a file called output.dat.cp. This file can be extracted as usual with data_extractor.x (see
Section 7.17).

192

SHARC Mauadilliary Scripts | 7.21 Data Converter from NetCDF nuclear files to XYZ: data_extractor_NUC_xyz.py

7.21 Data Converter from NetCDF nuclear files to XYZ:
data_extractor_NUC_xyz.py

If the option output_format ascii_separate_nucleiisused, then the nuclear coordinates end up in the file output_NUC.dat . nc.
This file cannot be extracted by data_extractor_NetCDF.x -xyz to produce an xyz file for analysis. However, using
data_extractor_NUC_xyz.py, the xyz file can be generated.

7.21.1 Usage

Usage is very simple:
user@host> python $SHARC/data_extractor_NUC_xyz.py geom output_NUC.dat.nc > output_NM.xyz

Note that the script reads the element symbols from the geom file. The script can read either output_NUC.dat.nc or
output.dat.nc.

7.21.2 Output

The program writes the xyz coordinates to standard output. Redirect the output to store it in a file.

7.22 Plotting the Extracted Data: make_gnuscript.py

The contents of the output files of data_extractor.x can be plotted with GNUPLOT. In order to quickly generate an
appropriate GNUPLOT script, make_gnuscript.py can be used. The usage is:

user@host> $SHARC/make_gnuscript.py <S> [<D> [<T> [<Q> ... 1 1 1

make_gnuscript.py takes between 1 and 8 integers as command-line arguments, specifying the number of singlet,
doublet, triplet, etc. states. It writes an appropriate GNUPLOT script to standard out, hence redirect the output to a file,
e.g.:

user@host> $SHARC/make_gnuscript.py 3 0 2 > gnuscript.gp

Then, GNUPLOT can be run in the output_data directory of a trajectory:

user@host> gnuplot gnuscript.gp

This can also be accomplished in one step using a pipe, e.g.:

user@host> $SHARC/make_gnuscript.py 3 0 2 | gnuplot

The created plot script generates four different plots (press ENTER in the command-line where you started GNUPLOT to
go to the next plot). The first plot shows the potential energy of all states in the dynamics over time in the diagonal
representation. The currently occupied state is marked with black circles. A thin black line gives the total energy (sum
of the kinetic energy and the potential energy of the currently occupied state). Each state is colored, with one color as
contour and one color at the core of the line. The contour color represents the total spin expectation value of the state.

The core color represents the oscillator strength of the state with the lowest state. See figure 7.3 for the relevant color
code. Note that by definition the “oscillator strength” of the lowest state with itself is exactly zero, hence the lowest

Oscillator strength

[.

00 1075 107* 1073 1072 107! 1.0
Spin expectation value

S d T

q Q 6 7 8

Figure 7.3: Color code for plots generated with the use of make_gnuscript.py.

193

SHARC Manual 7 Auxilliary Scripts | 7.23 Internal Coordinates Analysis: geo. py

state is also light grey. This dual coloring allows for a quick recognition of different types of states in the dynamics, e.g.
singlets vs. triplets or nz* vs. 7" states.

The second plot shows the same data again, but using relative energies such that the energy of the lowest state is zero.
The third plot shows the population |cM“H|? of the MCH electronic states over time. The line colors are auto-generated
in order to give a large spread of all colors over the excited states, but the colors might be sub-optimal, e.g. for printing.
In this cases, the user should manually adjust the colors in the generated script.

The fourth plot shows the population |cfhag|2 of the diagonal electronic states over time. These are the populations
which are actually used for surface hopping. However, since these states are spin-mixed, it is usually difficult to interpret

these populations.

The fifth plot shows the surface hopping probabilities over time. The plot is setup in such a way that the visible area
corresponding to a certain state is proportional to the probability to hop into the state. Hence, if for a given time step
the random number (black circles) lies within a colored area, a surface hop to the corresponding state is performed.

7.23 Internal Coordinates Analysis: geo.py

SHARC writes at every time step the molecular geometry to the file output.xyz. The non-interactive script geo.py can
be used in order to extract internal coordinates from xyz files. The usage is:

user@host> $SHARC/geo.py [options] < Geo.inp > Geo.out

By default, the coordinates are read from output.xyz, but this can be changed with the -g option (see table 7.13). Note
that the internal coordinate specifications are read from standard input and the result table is written to standard out.

7.23.1 Input

The specifications for the desired internal coordinates are read from standard input. It follows a simple syntax, where
each internal coordinate is specified by a single line of input. Each line starts with a one-letter key which specifies the
type of internal coordinate (e.g. bond length, angle, dihedral, ...). The key is followed by a list of integers, specifying
which atoms should be measured. As a simple example, r 1 2 specifies the bond length (r is the key for bond lengths)
between atoms 1 and 2. Note that the numbering of the atoms starts with 1. Each line of input is checked for consistency
(whether any atom index is larger than the number of atoms, repeated atom indices, misspelled keys, wrong number of
atom indices, ...), and erroneous lines are ignored (this is indicate by an error message).

Table 7.12 lists the available types of internal coordinates. The output is a table, where the first column is the time
(Actually, the geometries are just enumerated starting with zero, and the number multiplied by the time step from the
-t option). The successive columns in the output table list the results of the internal coordinates calculations. Each
request generates at least one column, see table 7.12.

Note that for most internal coordinates, the order of the atoms is crucial, since e.g. aj2s # az13. This also holds for the
Cremer-Pople parameter requests. For these input lines, the atoms should be listed in the order they appear in the ring
(clockwise or counter-clockwise).

As an advice, it is always a good idea to put the comment as the last request, if needed. Since the comment may contain
blanks, having the comment not as the very last column might make it impossible to plot the resulting table.

The Boeyens classification symbols which are output for 6-membered rings are reported in KIEX math code. Note that
in the Boeyens classification scheme by definition a number of symbols are equivalent, and only one symbol is reported.
These are the equivalent symbols: 10, =3Cs =°Cy, %Cy = °C3 = 2C5, ' Ty = 4Ty, °Ts = ° T, °Ty =°T4, °T, = °T,, °T, = 3T
and 4T2 = 1T5.

For 5-membered rings, the classification symbols are chosen similar to the Boeyens symbols. For the “E and E, symbols,
atom a is puckered out of the plane and the four other atoms are coplanar, while for the “Hj, symbols the neighboring
atoms a and b are puckered out of the plane in opposite directions and only the three remaining atoms are coplanar.
It is also possible to measure angles between the average planes through two n-membered rings. Currently, this is only
possible if both rings have the same number of atoms (3, 4, 5, or 6).

7.23.2 Options

geo.py accepts a number of command-line options, see table 7.13. All options have sensible defaults. However, especially
if long comments should be written to the output file, it might be necessary to increase the field width. Note that

194

SHARC Manual 7 Auxilliary Scripts | 7.24 Normal Mode Analysis: geo_NM. py

Table 7.12: Possible types of internal coordinates in geo.py.

Key Atom Description Output columns
Indices

X a x coordinate of atom a x

y a y coordinate of atom a y

z a z coordinate of atom a z

r ab Bond length between a and b r

a ab Angle between a-b and b—c a

d abcd Dihedral, i.e., angle between normal vectors of (a,b, c) and (b,c,d) d
(between -180° and 180°, same sign conventions as MOLDEN)

p abcd Pyramidalization angle: 90° minus angle between bond a—b p
and normal vector of (b, ¢, d)

q abcd Pyramidalization angle (alternative definition; angle between q
bond a-b and average of bonds b—c and b-d

5 abcde Cremer-Pople parameters for 5-membered rings [62] and q2, $2, Boeyens
comformation classification.

6 abcdef Cremer-Popleparameters for 6-membered rings [62] and Q, ¢, 0, Boeyens
Boeyens classification [63].

i a-f Angle between average plane through 3-rings (a - c)and(d - f) i

j a-h Angle between average plane through 4-rings (a - d)and (e - f) j

k a-j Angle between average plane through 5-rings (a - e)and (f - j) &k

1 a-1 Angle between average plane through 6-rings (a - f)and(g - 1) [

C Writes the comment (second line of the Comment

xyz format) to the table.

the minimum column width is 20 so that the table header can be printed correctly. Also note that the column for the
comment is enlarged by 50 characters.

Table 7.13: Command-line options for geo. py.

Option Description Default

-h Display help message and quit. -

-b Report x, y, z, r, g2 and Q in Bohrs Angstrom
-r Report a, d, p, q, ¢2, ¢, 0, 1, j, k, and I in Radians Degrees

-g FILENAME Read coordinates from the specified file output.xyz
-t FLOAT Assumed time step between successive geometries (fs) 1.0 fs

-w INTEGER Width of each column (min=20) 20

-p INTEGER Precision (Number of decimals, min=width-3) 4

7.24 Normal Mode Analysis: geo_NM. py

The non-interactive script geo_NM. py computes normal mode coordinates for a given molecular trajectory. The usage is:
user@host> $SHARC/geo_NM.py [options] > Geo_NM.out

By default, the coordinates are read from output.xyz, but this can be changed with the -g option (see Table 7.14).
Additionally, the normal mode definitions are read from the V0. txt file, which contains the parameters defining the
normal mode coordinates. The result table is written to standard output.

The computation uses the same formulae as for SHARC_LVC. py when computing the normal mode coordinates (Equa-
tion (8.108)).

7.24.1 Input

Table 7.14 lists the available options for the script.

195

SHARC Manual 7 Auxilliary Scripts | 7.25 Calculation of Ensemble Populations: populations.py

Table 7.14: Command-line options for geo_NM. py.

Option Description Default
-h Display help message and quit. -

-p Number of decimals for normal mode coordinates 4

-w Field width for the output table 20

-g FILENAME Read coordinates from the specified geometry file output.xyz
-v FILENAME Use the specified file with normal mode definitions Vo.txt
-t FLOAT Timestep between successive geometries in fs 1.0

-T INTEGER Start counting the timesteps from a specified value 0

-k Switch on aligning the structures using the Kabsch algorithm off

-q STRING Specify list of considered atoms for normal mode calculation (e.g., "1~8 12 20") all atoms
-b Enable buffered reading of the geometry file (useful for large files) off

Using the options -k and -q, one can analyze the normal mode coordinates of a subsystem of a large calculation, e.g.,
a QM/MM calculation. Use the -q option to select which atoms are considered for the normal mode computation.
The number of selected atoms must match the atom number in the V0.txt file. Turn on the -k option in case the
molecule/selected atoms have not the same orientation as the reference geometry (which is generally the case in
QM/MM calculations), so that the geometry is aligned prior to computing the normal mode coordinates.

7.24.2 Output Format
The output is a table where each row corresponds to a geometry snapshot in the trajectory. The first column contains

the time in femtoseconds, and the following columns contain the normal mode coordinates for each mode. The last
column contains the comment from the geometry file.

Table 7.15: Output format of geo_NM. py.

Time (fs) Mode1 Mode2 ... Comment

0.00 0.123456 0.234567 ... First snapshot
1.00 0.234567 0.345678 ... Second snapshot
2.00 0.345678 0.456789 ... Third snapshot

Note that in most cases, V0. txt will contain zero vectors for the first six normal modes, so columns 2 to 7 will contain
only zeros in the output of geo_NM. py.

7.25 Calculation of Ensemble Populations: populations.py

For an ensemble of trajectories, usually one of the most relevant results are ensemble-averaged populations. The
interactive script populations.py collects these populations from a set of trajectories.

Different methods to obtain populations or quantities approximating populations can be collected, as described below.

7.25.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/populations.py

Depending on the analysis mode (see below) it might be necessary to run data_extractor.x for each trajectory prior
to running populations.py (but populations.py can also call data_extractor.x for each subdirectory, if desired).

Paths to trajectories First, the script asks the user to specify all directories for whose content the analysis should be
performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. populations.py will automatically include all trajectories contained in these directories.

196

SHARC Manual 7 Auxilliary Scripts | 7.25 Calculation of Ensemble Populations: populations.py

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. populations.py will ignore all directories containing one of these
files. The file name is case insensitive, i.e., also files like crashed or even cRasHED will lead to the trajectory being
ignored. Additionally, populations.py will ignore trajectories with a DONT_ANALYZE file from diagnostics. py.

Analysis mode Using populations.py, there are two basic ways in obtaining the excited-state populations. The first
way is to count the number of trajectories for which a certain condition holds. For example, the number of trajectories
in each classical state can be obtained in this way. However, it is also possible to count the number of trajectories for
which the total spin expectation value is within a certain interval. The second way to obtain populations is to obtain
the sum of the absolute squares of the quantum amplitudes over all trajectories. Table 7.16 contains a list of all possible
analysis modes.

Table 7.16: Analysis modes for populations.py. The last column indicates whether data_extractor.x has to be run
prior to the ensemble analysis.

Mode Description From which file? Extract?

1 For each diagonal state count how many trajectories output.lis No
have this state as active state.

2 For each MCH state count how many trajectories output.lis No
have this state as approximate active state (see sec-
tion 8.23.1).

3 For each MCH state count how many trajectories output.lis No

have this state as approximate active state (see sec-
tion 8.23.1). Multiplet components are summed up.
4 Generate a histogram with definable bins (variable output.lis No
width). Bin the trajectories according to their total
spin expectation value (of the currently active diago-
nal state).
5 Generate a histogram with definable bins (variable output.lis No
width). Bin the trajectories according to their state
dipole moment expectation value (of the currently
active diagonal state).
6 Generate a histogram with definable bins (variable output_data/fosc.out Yes
width). Bin the trajectories according to the oscillator
strength between lowest and currently active diagonal

states.

7 Calculate the sum of the absolute squares of the diag- output_data/coeff_diag.out Yes
onal coefficients for each state.

8 Calculate the sum of the absolute squares of the MCH output_data/coeff_MCH.out Yes
coeflicients for each state.

9 Calculate the sum of the absolute squares of the MCH output_data/coeff_MCH.out Yes

coefficients for each state. Multiplet components are
summed up.

12 Transform option 1 to MCH basis (section 8.5). output_data/coeff_class_MCH.out Yes

13 Transform option 1 to MCH basis (section 8.5). Multi- output_data/coeff_class_MCH.out Yes
plet components are summed up.

14 Wigner-transform option 1 to MCH basis (section 8.5). output_data/coeff_mixed_MCH.out Yes

15 Wigner-transform option 1 to MCH basis (section 8.5). output_data/coeff_mixed_MCH.out Yes
Multiplet components are summed up.

20 Calculate the sum of the absolute squares of the dia- output_data/coeff_diab.out Yes

batic coefficients for each state (Only for trajectories
with local diabatization).
21 Transform option 1 to diabatic basis (section 8.5). output_data/coeff_class_diab.out Yes
22 Wigner-transform option 1 to diabatic basis (sec- output_data/coeff_mixed_diab.out Yes
tion 8.5). Multiplet components are summed up.

197

SHARC Manual 7 Auxilliary Scripts | 7.25 Calculation of Ensemble Populations: populations.py

Run data extractor For analysis modes 6, 7, 8, 9 and 20 it is necessary to first run the data extractor (see Section 7.17
or Section 7.18). The script automatically detects whether the regular or NetCDF extractor should be called. This task
can be accomplished by populations.py. However, for a large ensemble or for long trajectories this may take some
time. Hence, it is not necessary to perform this step each time populations.py is run.

populations.py will detect whether the file output.dat or the content of output_data/ is more recent. Only if
output.dat is newer the data_extractor.x will be run for this trajectory.

Note that mode 20 can only be used for trajectories using local diabatization propagation (keyword coupling overlap
in SHARC input file) or .

Number of states For analysis modes 1, 2, 3, 7, 8 and 9 it is necessary to specify the number of states in each
multiplicity. The number is auto-detected from the input file of one of the trajectories.

Intervals For analysis modes 4, 5 and 6 the user must specify the intervals (i.e., the histogram bins) for the classification
of the trajectories. The user has to input a list of interval borders, e.g.:

Please enter the interval limits, all on one line.
Interval limits: le-3 0.01 0.1 1

Note that scientific notation can be used. Based on this input, for each time step a histogram is created with the number
of trajectories in each interval. The histogram bins are:

1. x <1073

2. 1073 < x <0.01
3. 0.01 <x <0.1
4. 0.1<x<1
5.1<x

Note that there is always one more bin that interval borders entered.

Normalization If desired, populations.py can normalize the populations by dividing the populations by the number
of trajectories.

Maximum simulation time This gives the maximum simulation time until which the populations are analyzed.
For trajectories which are shorter than this value, the last population information is used to make the trajectory long
enough. Trajectories which are longer are not analyzed to the end. populations.py prints the length of the shortest
and longest trajectories after the analysis.

If diagnostics.py was executed previously, the user can enter here the threshold for the maximum usable time (see
section 7.16).

Setup for bootstrapping The output file of populations.py is sufficient to perform kinetic model fits with the script
make_fitscript.py. However, if error estimates for the kinetic model are desired (using bootstrap.py), the output
file of populations.py is not enough. The user can tell populations.py to save additional data which is required by
bootstrap.py.

Gnuplot script populations.py can generate an appropriate GNUPLOT script for the performed population analysis.

7.25.2 Output

By default, populations.py writes the resulting populations to pop.out. If the file already exists, the user is ask whether
it shall be overwritten, or to provide an alternative filename. Note that the output file is checked only after the analysis
is completed, so the program might run for a considerable amount of time before asking for the output file.

198

SHARC Manual 7 Auxilliary Scripts | 7.26 Calculation of Numbers of Hops: transition.py

7.26 Calculation of Numbers of Hops: transition.py

Another important information from the trajectory ensemble is the number of hopping events and the involved states,
for example to judge the relative importance of competing reaction pathways.

The interactive script transition.py calculates from an ensemble the number of hops between each pair of states
and presents the results as “transition matrices”. Currently, the script employs the MCH active state information from
output.lis for this computations. Note that since the MCH active state is only an approximate quantity (since hops are
actually performed in the diagonal basis in SHARC), the results should be checked carefully. The script transition.py
is still partly work-in-progress.

7.26.1 Usage

The script is interactive, simply start it with no command-line arguments or options:

user@host> $SHARC/transition.py

Paths to trajectories First the script asks the user to specify all directories for whose content the analysis should be
performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. populations.py will automatically include all trajectories contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. populations.py will ignore all directories containing one of these
files. The file name is case insensitive, i.e., also files like crashed or even cRasHED will lead to the trajectory being
ignored. Additionally, transition.py will ignore trajectories with a DONT_ANALYZE file from diagnostics.py.

Analysis mode The different analysis modes for transition.py are given in Table 7.17.

7.27 Fitting population data to kinetic models: make_fit.py

Often it is interesting to fit some functions to the population data from a trajectory ensemble, in order to provide a
way to abstract the data and to obtain some kind of rate constants for population transfer, which allows to compare to
experimental works. In simple cases, it might be sufficient to fit basic mono- and biexponential functions to the data,
which provides the sought-after time constants. However, often a more meaningful approach is based on a chemical
kinetics model. Such a model is specified by a set of chemical species (e.g., electronic states, reactants, products, etc)
connected by elementary reactions with associated rate constants, which together form a reaction network graph. For
an explanation of those graphs, see section 8.10.

The script make_fit.py helps the user in implementing and fitting such global fits to a kinetics model.

The script works in a stand-alone fashion, unlike its predecessors (make_fitscript.py and bootstrap.py). It solves
the differential equations numerically using a Runge-Kutta 5th order algorithm and fits the kinetic parameters using
a number of different optimization algorithms. The script requires Python2 with NumPy and SciPy. If these are not
available, use make_fitscript.py and bootstrap.py.

Table 7.17: Analysis modes for transition.py. The last column indicates whether data_extractor.x has to be run
prior to the ensemble analysis.

Mode Description From which Extract?

file?

1 Get transition matrix in MCH basis. output.lis No
Get transition matrix in MCH basis, ignoring hops within output.lis No
multiplets.

3 Write a tabular file with the transition matrix in the MCH output.lis No
basis for each time step.

4 Write a tabular file with the transition matrix in the MCH output.lis No

basis for each time step, ignoring hops within multiplets.

199

SHARC Manual 7 Auxilliary Scripts | 7.27 Fitting population data to kinetic models: make_fit.py

Often, one is also interested in obtaining an estimate of the error associated to these rate constants, e.g., in order to
decide whether enough trajectories were computed. A possible way to obtain such error estimates is the statistical
bootstrapping procedure. The idea of bootstrapping is to generate resamples of the original ensemble; for an ensemble
of n trajectories, one draws n random trajectories with replacement to obtain one resample. The resample can then
be fitted like the original ensemble to obtain a second estimate of the rate constants. By generating many resamples,
one can thus obtain a “probability” distribution of the rate constants, from which a statistical error measure can be
calculated. For details on these statistical measures, see section 8.4.

The script make_fit.py implements this resampling—fitting—statistics procedure. It is dependent on the output of
populations.py, but otherwise works in a stand-alone fashion.

7.27.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/make_fit.py

Before you start the script, you need to prepare a file with the relevant populations data (usually, the output file of
populations.py will suffice). You also might want to run transition.py first, which can help in developing a suitable
kinetic model.

7.27.2 Input

The interactive input for this script consists of specifying the reaction network graph, the initial conditions and the data
file. Additionally, the user has to specify which species should be fitted to which data columns in the file. Optionally,
the user can specify the bootstrap settings for estimating errors.

Kinetic model species As a first step, the user has to specify the set of species in the model. Each species is fully
described by its label. A label must start with a letter and can be followed by letters, numbers and underscores (although
an underscore must not be directly followed by another underscore).

During input, the user can add one or several labels to the set of species, remove labels and display the current set of
defined labels. It is not possible to add a label twice. Once all labels are defined, the keyword end brings the user to the
next input section (hence, end is not a valid label).

Kinetic model elementary reactions Next, the reactions have to be defined. A reaction is specified by its initial
species, final species, and reaction rate label. Reaction rate labels are under the same restrictions as species labels and
must not be already used as a species label. Furthermore, initial and final species must be both defined previously and
they must be different. There can only be one reaction from any species to another species (If a second reaction is
defined, the first reaction label is simply overwritten). Note that reaction rate labels can be used in several reactions (in
this way, different rates can be restricted to be the same).

During input, the user can add and remove reactions and display the currently defined reactions (displayed as a matrix).
Unlike species labels, only one reaction can be added per line. Once all reactions are defined, the keyword end brings
the user to the next input section.

Kinetic model initial values In order to specify the initial values for each species, the user simply has to define
which species have non-zero initial population. These species will then be assigned an initial population constant,
which can be fitted along with the reaction rates.

During input, the user can add and remove species from the set of species with non-zero initial population. Once all
reactions are defined, the keyword end brings the user to the next input section.

Operation mode The script can either read a pop.out file for a simple global fit, or a bootstrap_data/ directory for
a global fit with error estimate. If the latter is chosen, the user needs to enter the number of bootstrap cycles.

200

SHARC Manual 7 Auxilliary Scripts | 7.27 Fitting population data to kinetic models: make_fit.py

Populations data file The user has to specify a path (autocomplete is enabled) to the file containing the population
data to which the model functions should be fitted. In bootstrap mode, instead the path to the bootstrap_data/
directory (can be prepared with populations.py) needs to be given. The script reads the file/files and automatically
detects the maximum time and the number of data columns.

The file/files should be formatted as a table, with one time step per line (e.g., an output file of populations.py). On
each line, the first number is interpreted as the time in femtoseconds and all consecutive numbers (separated by spaces)
as the populations at this time. Note that the first entry must be at =0 and all subsequent lines must be in strictly
increasing order. Time steps can be unevenly spaced if necessary.

Species—Data mapping In the next setup section, the user has to specify which functions should be fitted to which
data column from the data file. In the simplest case, one species is fitted to a single data column (e.g., the species S0 is
fitted to data column 2). However, it is also possible to fit the sum of two species to a column (this can be useful, e.g., to
describe biexponential processes) and to fit a species to the sum of several columns (e.g., one can fit to the total triplet
population to obtain a total ISC rate constant). In general, it is also possible to fit sums of species to sums of columns.

It is not allowed to use one species or one column in more than one mapping. However, it is possible to leave species or
data columns unused in the global fit. While unused species still affect the outcome (through the reaction network
definitions), unused data columns are simply ignored in the fit.

During input, the user can add one mapping per line as well as display the current mappings. For the column definitions,
ranges can be given with the tilde symbol, e.g., 5~9 is interpreted as 5 6 7 8 9. If a typo is made, the user can reset the
mappings and repeat only the mapping input without the need to repeat the previous sections. Once all mappings are
defined, the keyword end finishes the input section.

Fitting procedure In the last section, the user can edit the initial guesses for the rate constants and initial populations.
To change a value, enter label = value. Use show to print the current values for all constants. end finishes the guess
edit step.

Afterwards, the script asks whether the initial populations should be optimized or not. This is usually only useful if
several species have non-zero initial populations. If you optimize initial populations, note that their sum might differ
from 1 after optimization.

The script also asks whether the rate constants should be constrained to positive values. If answered with yes, then
the optimized rate constants are restricted to the range 0.000 001 to infinity (i.e., the time constants are constrained
between 1000000 fs and 0 fs). Note that with constraints SciPy uses the Trust Region Reflective algorithm, and the
Levenberg-Marquardt algorithm for unconstrained cases.

7.27.3 Output

The script will write the output to standard out. It will first print the iterations of the fit, and the obtained results
afterwards (all fitted parameters with errors). The script will also write two files, fit_results.txt and fit_results.gp.
The latter is a GNUPLOT script that can be used to plot the global fit, which is useful for visual inspection.

Note that the errors printed for normal runs are just the intrinsic fitting errors, which assume that the population data
is error-free. To obtain realistic fitting errors that take into account the uncertainty due to the finite trajectory ensemble,
use the bootstrap mode.

In bootstrap mode, the script initially will perform the same steps as in normal mode, using the average population
from the bootstrap directory. After writing the fit results and the two files, the script will start performing the bootstrap
iterations, writing the fitted parameters in each iteration. In this way, the user can monitor the convergence of these
values, to decide whether more iterations are required. Typically, the values and errors will vary strongly during the
first iterations and stabilize later. The convergence rate is strongly dependent on the fitting model and the data.

After all iterations are done (or the script is interrupted with Ctrl-C), the script will print a summary of the statistical
analysis. For each fitting parameter (all time constants and all initial populations), the script will list the arithmetic
mean and standard deviation (absolute and relative), the geometric mean and standard deviation (separately for + and —,
absolute and relative), and the minimum and maximum values. The script will also print a histogram with the obtained
distribution for each parameter. For details on these statistical measures, see section 8.4.

bootstrap.py also creates an output file once it is finished. The file, fit_bootstrap.txt, contains the summary of the
statistical analysis with the computed statistical measures and the histograms. Additionally, at the end this file contains
a table with all obtained fitting parameters for resamples (e.g., for further statistical or correlation analysis).

201

SHARC Manual 7 Auxilliary Scripts | 7.28 Obtaining Special Geometries: crossing.py

7.28 Obtaining Special Geometries: crossing.py

In many cases, it is also important to obtain certain special geometries from the trajectories. The script crossing.py
extracts geometries fulfilling special conditions from an ensemble of trajectories.

Currently, crossing. py finds geometries where the approximate MCH state (see section 8.23.1) of the last time step is
different from the MCH state of the current time step (i.e. crossing.py finds geometries where surface hops occured).

7.28.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/crossing.py

The input to the script is very similar to the one of populations.py.

Paths to trajectories First the script asks the user to specify all directories for whose content the analysis should be
performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. crossing.py will automatically include all trajectories contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. crossing.py will ignore all directories containing one of these files.
Additionally, crossing.py will ignore trajectories with a DONT_ANALYZE file from diagnostics. py.

Analysis mode Currently, crossing.py only supports one analysis mode, where crossing.py is scanning for each
trajectory the file output.lis. If the occupied MCH state (column 4 in output file output.lis) changes from one
time step to the next, it is checked whether the old and new MCH states are the ones specified by the user. If this is
the case, the geometry corresponding to the new time step (¢) is retrieved from output.xyz (lines t(naiom + 2) + 1 to

t(Natom +2) + natom)'

States involved in surface hop First, the user has to specify the permissible old MCH state. The state has to be
specified with two integers, the first giving the multiplicity (1=singlet, ...), the second the state within the multiplicity (1
1=S,, 1 2=S;, etc.). If a state of higher multiplicity is given, crossing.py will report all geometries where the old MCH
state is any of the multiplet components.

For the new MCH state, the same is valid.

Third, the direction of the surface hop has to be specified. Choosing “Backwards” has the same effect as exchanging the
old and new MCH states.

7.28.2 Output

All geometries are in the end written to an output file, by default crossing.xyz. The file is in standard xyz format. The
comment of each geometry gives the path to the trajectory where this geometry was extracted, the simulation time and
the diagonal and MCH states at this simulation time.

7.29 Essential Dynamics Analysis: trajana_essdyn.py

An essential dynamics analysis [66] is a procedure to find the most active vibrational modes in an ensemble of trajectories.
It is based on the computation of the covariance matrix between all Cartesian (or mass-weighted Cartesian) coordinates
of all steps of all trajectories and a singular value decomposition of this covariance matrix. For details on the computation,
see section 8&.8.

The interactive script trajana_essdyn.py can be used to perform such an analysis.

202

SHARC Manual 7 Auxilliary Scripts | 7.29 Essential Dynamics Analysis: trajana_essdyn.py

7.29.1 Usage

trajana_essdyn.py is an interactive script, which is started with:
user@host> $SHARC/trajana_essdyn.py

Note that before executing the script you should prepare an XYZ geometry file with the reference geometry (e.g., the
ground state minimum or the average geometry from the trajectories).

7.29.2 Input

During interactive input, the script queries for the paths to the trajectories, the path to the reference structure, and a
few other settings.

Path to the trajectories First the script asks the user to specify all directories for whose content the analysis should
be performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. trajana_essdyn.py will automatically include all trajectories contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. trajana_essdyn.py will ignore all directories containing one of
these files. Additionally, trajana_essdyn.py will ignore trajectories with a DONT_ANALYZE file from diagnostics. py.

Path to reference structure For the essential dynamics analysis, a reference structure is required. This structure is
substracted from all geometries for the correlation analysis. The structure can be in any format understandable by
OpPENBABEL, but the type of format needs to be specified. In most cases, the reference structure will be either in XYZ or
MoLDEN format.

Mass-weighted coordinates If enabled, the correlation analysis will be carried out in mass-weighted Cartesian
coordinates. In the output file, the mass-weighting will be removed properly.

Number of steps and time step These parameters are automatically detected and suggested as defaults. It is not
necessary to change them.

Time step intervals By default, trajana_essdyn.py will analyze the full length of the simulations together. However,
it is also possible to compute the essential dynamics for different time intervals (e.g., if the molecular motion is different
in the beginning of the dynamics). Multiple, possibly overlapping, intervals can be entered; for each of the intervals,
one set of output files is produced.

Results directory The path to the directory where the output files are stored. The path has to be entered as a relative
or absolute path. If it does not exist, trajana_essdyn.py will create it.

7.29.3 Output

Inside the results directory, trajana_essdyn.py will create two subdirectories, total_cov/ and cross_av/. In the
directory total_cov/ the results of the full covariance analysis are stored (i.e., essential modes found here have large
total activity, but the trajectories could behave very differently). On the contrary, cross_av/ will contain the results
of the analysis of the average trajectory (i.e., essential modes found here have strongly coherent activity, where all
trajectories behave similarly).

For each time step interval entered, one output file (e.g., 0-1000.molden) is created in each of the two subdirectories.

203

SHARC Manual 7 Auxilliary Scripts | 7.30 General Data Analysis: data_collector.py

7.30 General Data Analysis: data_collector.py

Whereas most of the other analysis scripts in the SHARC suite are intended for rather specific tasks, data_collector.py
is aimed at providing a general analysis tool to carry out a large variety of tasks. The primary task of data_collector.py
is to collect tabular data from files which are present in all trajectories, possibly perform some analysis procedures
(smoothing, averaging, convoluting, integrating, summing), and output the combined data as a single file. Possible
applications of this functionality are statistical analysis of internal coordinates (e.g., mean and variation in a bond length),
the creation of hair figures (e.g., a specific bond length plotted for all trajectories), data convolutions (e.g., distribution
of bond length over time, simulation of time- and energy-resolved spectra), or data integration (e.g., computation of
time-resolved intensities).

7.30.1 Usage

data_collector.py is an interactive script, which is started with:
user@host> $SHARC/data_collector.py

7.30.2 Input

In general, the first step in data_collector.py is to collect tabular data files which exist in the directories of multiple
trajectories. For each trajectory, this file needs to have the same file name and the same tabular format; for example,
one could read for all trajectories the output.lis files.

Collecting Hence, in the first input section, the script asks the user to specify all directories for whose content the
analysis should be performed. Enter one directory path at a time, and finish the directory input section by typing
“end”. Please do not specify each trajectory directory separately, but specify their parent directories, e.g. the directories
Singlet_1 and Singlet_2. data_collector.py will automatically include all trajectories contained in these directories.
If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. data_collector.py will ignore all directories containing one of
these files. Additionally, data_collector.py will ignore trajectories with a DONT_ANALYZE file from diagnostics. py.

In the second step, data_collector.py displays all files which appear in multiple trajectories and which might be
suitable for analysis (the script ignores files which it knows to be not suitable, e.g., output.dat, output.xyz, most files
in the QM/ or restart/ subdirectories, ...). All other files (e.g., output.lis, files in output_data/, ...) will be displayed,
together with the number of appearances.

Once one of the files has been selected, one needs to assign the different data columns. (i) One column is designated the
time column T, which defines the sequentiality of the data: (ii) Multiple columns can then be designated as data columns,
called X columns in the following. (iii) The same number of columns is designated as weight columns, called Y columns
here (weights can be set equal to 1 by selecting column “0” in the relevant menu). For example, for a time-resolved
spectrum, the transition energies would be the X data, whereas the oscillator strengths would be the Y data (weights).
With these assignments, the full data set is defined:

« For each trajectory a
— For each time step ¢
« For each X column i there will be a value pair (x{(t),yf(t)) or (x{(t),1).
In the simplest case, there will be exactly one (x(t),1) pair for each trajectory and time, which is a two-dimensional
data set. Keep in mind that in general, each trajectory could have different time steps at this point. We refer to this kind
of data set (independent trajectories with possibly different time axes) as Typel data set. As will be described below, in

data_collector.py, during certain processing steps the format of the data set is changed, which will create Type2 or
Type3 data sets.

Once this data set is collected from the files (where too short or commented lines are ignored), data_collector.py
allows for a number of subsequent processing steps, which are summarized in Figure 7.4.

Smoothing In this step, each trajectory is individually smoothed, using one of several smoothing kernels (Gaussian,
Lorentzian, Log-normal, rectangular). Smoothing does not change the size or format of the data set, each value is simply

204

SHARC Manual 7 Auxilliary Scripts | 7.30 General Data Analysis: data_collector.py

Collecting

S——

|
¥
2

Synchronizing

Convoluting(X)

& S —

Summing(Y)
3

D———

ntegrating00

I<

&

Convoluting(T)

:

¥ 9

Integrating(T)

| ' 10
| Typel | | Type2 |

Figure 7.4: Possible workflows in data_collector.py. Grey boxes denote the different computational actions, yellow
diamonds denote the different decisions which are queried in the input dialog, and the boxes at the denote
the three different data set types (dark blue=Typel, light blue=Type2, green=Type3). The different actions
and data set types are explained in the text.

replaced by the corresponding smoothed value; hence, a new Typel data set is obtained. Smoothing is applied to each X
and each Y column independently, but always with the same kernel.

2o X () f(5.1)

X ==)

and analogously for Y (t). (7.1)

Here, f(¢,1") is the smoothing kernel.

Synchronizing In this step, the Typel data set is reformatted, by merging all trajectories together. This step creates a
Type2 data set, which has a common T axis for all trajectories (simply the union of the T columns from all trajectories).
For each time step, all X and Y values of all trajectories are collected. If a trajectories does not have data at a particular
time step, NaNs will be inserted. In this way, a rectangular, two-dimensional data set is obtained, with as many rows as
time steps, and 2n,jnx data columns.

A simple application of Collecting+Synchronizing could be to generate a table with the bond length for all time steps
for all trajectories, in order to generate a “hair figure”. This task could in principle also be accomplished with Bash tools
like awk and paste, but this is troublesome if the trajectories are of different length, with different time steps, or if the
table files contain comments.

Averaging The Type2 data set from the Synchronizing step can contain a large number of data columns (2najnx).
In order to reduce this amount of information, the Averaging step can be used to compute the mean and standard
deviation across all trajectories, separately for each time step. This will create a new Type2 data set, which still has a

205

SHARC Manual 7 Auxilliary Scripts | 7.30 General Data Analysis: data_collector.py

common time axis, but will only contain 4ny + 1 data columns; these are the mean and standard deviation of all X and Y
columns, plus one column giving the number of trajectories for each time step.

Currently, this step can be performed with either arithmetic mean/standard deviation or geometric mean/standard
deviation.

Statistics Similar to the Averaging step, the Statistics step computes mean and standard deviations from a Type2 data
set. The difference is that during Statistics, these values are computed for all values from the first to the current time
step. The data in the last time step thus gives the total statistics over all time steps and trajectories. The Type2 data set
from the Statistics step contains the same number of data columns as the one from the Averaging step.

Currently, this step can be performed with either arithmetic mean/standard deviation or geometric mean/standard
deviation.

With the Averaging and Statistics steps, it is possible to compute the same data as with trajana_nma.py (if the
appropriate files are read), namely the total (Statistics) and coherent (Averaging+Statistics) activity of the normal modes.
Using data_collector.py, the same analysis can also be applied to internal coordinates computed with geo. py.

Convoluting(X) In order to create a data set which has common T and X axes (a Type3 data set), it is in general
necessary to perform some kind of data convolution involving the X column data. In order to do this, data_collector.py
creates a grid along the X axis (ngq points from the minimum value to the maximum value of all X data in the data set,
plus some padding).

Yit,X) = YO F O XE(D). (7.2)

The created Type3 data set has nx data points for each time step and each X grid point.

Using energies as X columns and oscillator strengths/intensities as Y columns, in this way it is possible to compute
time-dependent spectra.

Summing(Y) When ny is larger than one, the Summing step can be used to compute the sum over all data points for
each time step and each X grid point.

Y(t,X) = Z Yi(t, X). (7.3)

This creates a new Type3 data set, which will only contain one data point for each time step and each X grid point.

For example, for a transient spectrum involving multiple final states (nx > 1), after the Convoluting(X) step one obtains
one transient spectrum for each final state. With the Summing(Y) step, one can then compute the total transient
absorption spectrum.

Integrating(X) When computing transient spectra, one is often interested in integrating the spectrum within a
certain energy window. This can be done with the Integrating(X) step. After entering a lower and upper X limit, a
new Type3 data set is created, with only three data points per time step. The first data point contains the integral from
minus infinity to the lower limit, the second data point the integral between lower and upper limit, and the third data
point the integral from the upper limit to infinity. If Summing(Y) was not carried out, this integration is carried out
independently for each of the nx data columns.

Convoluting(T) The Type3 data set can also be convoluted along the time axis (e.g., in order to apply an instrument
response function to a time-resolved spectrum). In order to do this, a uniform grid along the T axis is generated (with
NTgrid points from the minimum value to the maximum value of the previous T axis, plus some padding).

Yi(t',X) = > Yi(t, X)f(£,1). (7.4)
t

The created Type3 data set has as many data points for each X grid point as before, but the number of time steps is now
NnTgrid- Convoluting(T) can be applied also if Summing(Y) and/or Integrating(X) were used (in this case, the kernel is
applied to the summed up or integrated data).

206

SHARC Manual 7 Auxilliary Scripts | 7.30 General Data Analysis: data_collector.py

Integrating(T) This step carries out a cumulative summation along the T axis.

t
Yi(t, X) = Z Yi(t, X). (7.5)
t'=0

In this way, the data in the last time step constitute the integral over all time steps. Since all the partial cumulative sums
are also computed, integrals within some bounds can simply be computed as differences between partial cumulative
sums.

Converting At the end of the workflow, a Type3 data set can be converted back into a Type2 data set, which affects
how the output file is formatted. This is usually a good idea if the Integrating(X) step was performed, but might not be
a good idea otherwise. See below for how the different data set types are formatted on output.

7.30.3 Output

After the input dialog is finished, data_collector.py will start carrying out the requested analyses. For each of
the workflow steps, one output file is written, so that all intermediate results can be used as well. Output files have
automatically generated filenames, which describe how the data was obtained. Filenames are always in the form
collected_data_<T>_<X>_<Y>_<steps>.<type>.txt, where <T> is an integer giving the T column index, <X> and <y>
are lists of integers of the X and Y column indices, <steps> is a string denoting which workflow steps were carried out, and
<type> denotes the data set type. For example, an output file could be named collected_data_1_2_0_sy_cX.type3. txt,
where column 1 was the T column, column 2 the X column, no Y column was used, Synchronizing and Convoluting(X)
were performed, resulting in a Type3 data set.

Format of Typel data set output Typel data sets are formatted such that each trajectory is given as a continuous
block, separated by an empty line. Within each block, each line contains the data of one time step, order increasingly.
Each line contains a trajectory index, the relative file path, the time, all X column data, and then all Y column data.

1 2 3 4 5 6 7
#Index Filename Time X Column 5 X Column 6 Y Column 0 Y Column 0
0 Singlet_1//TRAJ_00001/./Geo.out 0.00000000E+00 1.13340000E-01 7.99096900E+00 1.00000000E+00 1.00000000E+00
0 Singlet_1//TRAJ_00001/./Geo.out 5.00000000E-01 1.59173000E-01 7.94395200E+00 1.00000000E+00 1.00000000E+00
0 Singlet 1//TRAJ_00001/./Geo.out 1.00000000E+00 2.10868000E-01 7.89084000E+00 1.00000000E+00 1.00000000E+00
1 Singlet_1//TRAJ_00002/./Geo.out 0.00000000E+00 5.03990000E-02 7.99078100E+00 1.00000000E+00 1.00000000E+00
1 Singlet_1//TRAJ_00002/./Geo.out 1.00000000E+00 3.80370000E-02 8.00349700E+00 1.00000000E+00 1.00000000E+00
1 Singlet_1//TRAJ_00002/./Geo.out 2.00000000E+00 1.09515000E-01 7.93073500E+00 1.00000000E+00 1.00000000E+00
2 Singlet_1//TRAJ_00004/./Geo.out 0.00000000E+00 2.10908000E-01 8.29417600E+00 1.00000000E+00 1.00000000E+00
2 Singlet_1//TRAJ_00004/./Geo.out 5.00000000E-01 1.49506000E-01 8.35651800E+00 1.00000000E+00 1.00000000E+00
2 Singlet_1//TRAJ_00004/./Geo.out 1.00000000E+00 1.05887000E-01 8.40056700E+00 1.00000000E+00 1.00000000E+00

Note here in the example that the second trajectory has a time step of 1.0 fs and thus no data at 0.5 fs.

Format of Type2 data set output Type2 data sets are formatted such that all trajectories share a common time axis,
hence for each time step there will be one line of data. Each line starts with the time, followed columns with the data for
the first trajectory, followed by the data for the second trajectory, etc. Within each trajectory, first all X columns, then
all Y columns are given. If a Y column contains only unit weights (using special file column “0”), then this Y column is
omitted from the Type2 formatted output.

1 2 3 4 5 6 7
Time X Column 5 X Column 6 X Column 5 X Column 6 X Column 5 X Column 6
0.00000000E+00 1.13340000E-01 7.99096900E+00 5.03990000E-02 7.99078100E+00 2.10908000E-01 8.29417600E+00
5.00000000E-01 1.59173000E-01 7.94395200E+00 NaN NaN 1.49506000E-01 8.35651800E+00

1.00000000E+00 2.10868000E-01 7.89084000E+00 3.80370000E-02 8.00349700E+00 1.05887000E-01 8.40056700E+00

207

SHARC Manual 7 Auxilliary Scripts | 7.31 Handling large sets of coordinate data: align_and_reorder_traj.py

Note here in the example that the second trajectory does not have data at 0.5 fs.

Format of Typ3 data set output Type3 data sets are formatted such that all trajectories share common time and X
axes. The data is formatted block-wise, with the first block corresponding to the first time step and containing all points
on the X grid, followed by an empty line, followed by the second block, etc. Each block consists of ngq lines, each
starting with the time and X value in the first two columns and followed by nx columns with the convoluted data.

1 2 3 4
Time X_axis Conv(5,0) Conv(6,0)
0.00000000E+00 -1.45534000E-01 2.38544715E-05 0.00000000E+00
0.00000000E+00 2.30671958E-01 1.51462322E+00 0.00000000E+00
0.00000000E+00 6.06877917E-01 1.07930050E-01 0.00000000E+00
5.00000000E-01 -1.45534000E-01 1.31312692E-04 0.00000000E+00
5.00000000E-01 2.30671958E-01 1.28614756E+00 0.00000000E+00
5.00000000E-01 6.06877917E-01 4.46251462E-10 0.00000000E+00
1.00000000E+00 -1.45534000E-01 8.75871124E-05 0.00000000E+00
1.00000000E+00 2.30671958E-01 2.42291042E+00 0.00000000E+00
1.00000000E+00 6.06877917E-01 1.60277894E-16 0.00000000E+00

7.31 Handling large sets of coordinate data: align_and_reorder_traj.py

The script align_and_reorder_traj.py can be used to do two tasks simultaneously—(i) aligning the coordinate (and
velocities) of trajectories and (ii) storing the coordinates resorted, with one file per time step instead of one file per
trajectory. This script reads one NetCDF file with coordinates (and velocities) from each trajectory; it either reads
output.dat.nc or output_NUC.dat.nc. Using the Kabsch algorithm, it translates and rotates a selected part of the
system onto a reference geometry. It then stores one file per time step, containing the coordinates from all trajectories
for that time step.

The output is also using NetCDF files, but these NetCDF files are compliant with the format used by AMBER. Hence, the
resulting files can be read by VMD and cpptraj for further analysis.

7.31.1 Usage

align_and_reorder—_traj.py is an interactive script, which is started with:

user@host> $SHARC/align_and_reorder_traj.py

7.31.2 Input

Paths to trajectories This part works just as in other interactive scripts. The script asks the user to specify all
directories for whose content the analysis should be performed. Enter one directory path at a time, and finish the
directory input section by typing “end”. Please do not specify each trajectory directory separately, but specify their
parent directories, e.g. the directories Singlet_1 and Singlet_2. crossing.py will automatically include all trajectories
contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or

RUNNING in the corresponding trajectory directory. crossing.py will ignore all directories containing one of these files.
Additionally, align_and_reorder_traj.py will ignore trajectories with a DONT_ANALYZE file from diagnostics.py.

Coordinate file Here, the user get prompted to select either output.dat.nc or output_NUC.dat.nc. The former is
the default, the latter is only offered if such files are present. Which file to use depends on whether you have used
output_format netcdf or output_format netcdf_separate_nuclei in the SHARC input.

208

SHARC Manual 7 Auxilliary Scripts | 7.32 Producing radial distribution functions: frames_to_RDF.py

Reference geometry Here you provide a file in xyz format with the reference geometry to which you want to align
(part of) your system. The atoms in the reference file should have the same ordering as in the SHARC trajectories.

Reference atom map If you only want to align part of the system (e.g., the QM region of a QM/MM calculation),
here you specify the atom numbers of the atoms that should be aligned. This list must have the same length as the
reference geometry has atoms. If the reference geometry has a different atom ordering as the atoms in the SHARC
trajectory, one can provide the indices in the correct way here; but this is error-prone and not recommended.

Perspective Here one can choose between two options. When using the “molecular perspective”, the molecule (i.e.,
the atoms in the reference atom map) is aligned optimally to the reference geometry at each individual time step. This
minimizes motion of the molecule, so that one can observe the distribution of solvent around the molecule. This option
removes self-rotation of the molecule, but because the frame of reference is different in each time step, this perspective
is not an inertial frame.

Alternatively, one can use the “solvent perspective”. Here, the translation and rotation operation is determined for
each trajectory only from the first time step, and the same operations are then applied to later time steps. This leads
to a proper inertial frame of reference. Here, one can observe that the molecule can rotate away from the reference
orientation for later time steps, just as in reality.

Output files Here one can choose to write or not write the coordinates and/or the velocities. The default, and
probably most used, option is to write only coordinates.

7.31.3 Output

The script creates, in the present directory, one NetCDF file per time step covered by the selected trajectories. The files are
called frame_coord_mol_pers_XXXXX.nc or frame_coord_sol_pers_XXXXX.nc, depending on the chosen perspective.
These files use all the settings needed to open them in VMD or cpptraj; note that you need a corresponding prmtop
file in either case.

7.32 Producing radial distribution functions: frames_to_RDF.py

This script is used together with the output NetCDF files from align_and_reorder—_traj.py (Section 7.31). It calculates
the radial distribution function (RDF) or radial histogram between two sets of atoms A and B over all snapshots ¢ in the
NetCDF file. The histogram is defined as:

= 35 3o

t acAbeB

Ry (1) —ﬁ,,(t)(—R). (7.6)

The RDF is related to the histogram by

has(R)
Na(Np — 64p) 37 (R? — (R +dR)?)

9aB(R) = (7.7)
where d4p = 1 if the sets A and B are identical. Hence, the RDF is a normalized version of the histogram, although the
normalization of the RDF is missing the volume of the system and hence the RDF will not approach 1 at long distances,
as it should. We recommend to renormalize manually.

The script also computes the Cartesian-weighted histogram, which for the x component is

RGBS DI () = (0)°

n — 3 (7.8)
t acAbeB R, (t) — Rp(t)

Ru(t) = Ry(1)| -)

and analogously for y and z. Note that hag(R) = h%;(R) + hZB (R) + h% 5 (R). The same applies to the RDFs.

Note that this script tries to use numba for just-in-time compilation, if numba is installed. This dramatically improves
performance. Note that the script caches the compiled code so that it can be reused when the script is called again.
However, this only works if all numerical parameters (especially the masks) are identical between the calls. Hence, if
operating on a large number of files, try to arrange your computations such that you loop over the NetCDF files in the
innermost loop.

209

SHARC Manual 7 Auxilliary Scripts | 7.32 Producing radial distribution functions: frames_to_RDF.py

7.32.1 Usage

frames_to_RDF.py is a command-line, non-interactive script, which is started with:

user@host> $SHARC/frame_to_RDF.py <NetCDF> <maskl> <mask2> <outfile> [options]

7.32.2 Input

The script has four required input arguments. The first argument is the path to the NetCDF file. Note that NetCDF files
that are produced by sharc.x or driver.py do not work, but files from align_and_reorder_traj.py (Section 7.31) do.

The second and third arguments are files specifying which atoms are in the sets A and B. These files can be in either of
two file formats: raw ASCII (one integer per line) or output files of cpptraj’s mask command. Note that these two files
can be identical, but if they are not, they must not have shared indices (this limitation might get removed in the future).

The fourth argument is the desired output file name.

7.32.3 Options

The optional arguments are summarized in Table 7.18.

Table 7.18: Command-line options for frames_to_RDF. py.

Option Description Default

-h Display help message and quit. —

-w FLOAT Bin width in A 0.1

-n INT Number of bins 100

-r Write raw histograms write RDFs

7.32.4 Output

The output is an ASCII file with five columns. The first column is the distance in A, the second one is the histogram or
RDF, and the three remaining columns are the x, y, and z component of the histogram or RDF.

7.32.5 Obtaining mask files

Mask files can be written manually. They are simply an ASCII file with one integer per line, listing all the atoms that
this mask encompasses. Counting starts at 1. Note that indices must not be repeated.

Alternatively, mask files can be written with cpptraj. This requires a prmtop file and the NetCDF file that should be
analyzed. One starts cpptraj, loads the prmtop file, then the first frame of the NetCDF file, then uses the mask command
to select some atoms (using 7 AMBER’s atom selection syntax), then runs the program:

parm system.prmtop

trajin frame_coord_mol_pers_00000.nc 1 1
mask @%sc maskout "mask_c"

mask @%s maskout "mask_s"

mask @%h4 maskout "mask_hl"

mask @%HW maskout "mask_h"

mask @%0W maskout "mask_o"

run

quit

This produces a file that starts with Frame AtomNum Atom ResNum Res MolNum. If this line is present, f rames_to_RDF.py
recognizes the format and reads the atom indices from the second column.

210

https://amberhub.chpc.utah.edu/atom-mask-selection-syntax/

SHARC Manual 7 Auxilliary Scripts | 7.33 Producing 3D distributions: frames_to_dx.py

7.33 Producing 3D distributions: frames_to_dx.py

This script is used together with the output NetCDF files from align_and_reorder_traj.py (Section 7.31). It calculates
the three-dimensional distribution of atoms from a set A on a grid, using kernel density estimation.

Note that this script tries to use numba for just-in-time compilation, if numba is installed. This dramatically improves
performance. The compiled code is not cached, unlike for frames_to_RDF. py.
7.33.1 Usage

frames_to_dx.py is a command-line, non-interactive script, which is started with:

user@host> $SHARC/frame_to_dx.py <NetCDF> <mask> <outfile> [options]

7.33.2 Input

The script has three required input arguments. The first argument is the path to the NetCDF file. Note that NetCDF files
that are produced by sharc.x or driver.py do not work, but files from align_and_reorder_traj.py (Section 7.31) do.

The second argument is a file specifying which atoms are in the set A. This file can be in either of two file formats: raw
ASCII (one integer per line) or output files of cpptraj’s mask command. The mask files can be created as defined in
Section 7.32.5.

The third argument is the desired output file name.

7.33.3 Options

The optional arguments are summarized in Table 7.19.

Table 7.19: Command-line options for frames_to_dx. py.

Option Description Default
-h Display help message and quit. —

-w FLOAT Cell widthin A 0.5

-n INT Number of cells per direction 40

-f FLOAT FWHM of the convolution Gaussian in A 0.5

-c X,Y,Z Center of the grid origin

7.33.4 Output

The output is an ASCII file containing grid data in OpenDX format. The file specifies the position of the grid and the
values of each grid cell. These files can be visualized with VMD using the Isosurface representation. See Ref. [37] for a
discussion how to choose the isovalues needed for the Isosurface plots.

7.34 Computing X-ray scattering: RDF_to_scattering.py

This script takes the output of frames_to_RDF.py with the -r option and computes X-ray scattering using the indepen-
dent atom model. Note that the script is rather preliminary and has only limited options.

The data to compute the atomic form factors are taken from https: //lampz.tugraz.at/~hadley/ssl/crystaldiffraction/
atomicformfactors/formfactors.php, which employs linear combinations of Gaussian functions to model f;(Q). The
full function is:

4 Q 2
f(Q =ca+) asexp (—bA (5)) : (7.9)
i=1

These atomic form factors can be used up until Q = 25A71.

211

https://lampz.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php
https://lampz.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php

SHARC Manual 7 Auxilliary Scripts | 7.34 Computing X-ray scattering: ROF_to_scattering.py

The scattering signal is computed as:

. sin(QR) dR.
OR

Note that the script does not currently perform any smoothing or normalization. Therefore, only difference scattering
signals should be computed and no absolute intensities are obtained.

Reutoft
((7.10)

85an(Q) = (@ i@ [(han() - W (R)

7.34.1 Usage

RDF_to_scattering.py is a command-line, non-interactive script, which is started like this (do not type the line break):

user@host> $SHARC/RDF_to_scattering.py --alpha <elementl> --beta <element2>
--hist <histogram> --hist-ref <reference> [options]

7.34.2 Input

The script requires several input arguments.

The --alpha and - -beta flags specify the two elements for which the structure factor S(Q) is calculated. These must
match keys in the atomic form factor data file (e.g. h, o, 1il+). The keys are case-insensitive.

The --hist and --hist-ref flags give the paths to the files containing the pair distribution functions Hyp(r) and
H;eg(r), respectively. These files must contain at least two columns: the distance in A in the first column and the

histogram values in the user-selected column.

The form factor data file is specified with --data. If SHARC is properly installed and the environment variable $SHARC
is set, the default form factor file is taken from $SHARC/../lib/formfactor_gaussian.txt. If this file exists, --data is
optional, else it is required.

7.34.3 Options

The optional arguments are summarized in Table 7.20.

Table 7.20: Command-line options for RDF_to_scattering.py.

Option Description Default
--data FILE Form factor data file $SHARC/../lib/formfactor_gaussian.txt
--alpha STR Element « key required
--beta STR Element j key required
--hist FILE Histogram H,z(r) file required
--hist-ref FILE Reference histogram H;fﬂf(r) file required
--column INT Histogram column index (1-based) 2

--rcut FLOAT Cutoff for maximum r (A) 10.0
--gqmax FLOAT Maximum Q value (A~1) 15.0
--gpoints INT Number of Q points to compute 200

-h Display help message and quit —

7.34.4 Output

The output is written to standard output and consists of two columns: the Q value and the corresponding structure
factor S(Q). Each line corresponds to a different Q value, spaced linearly between 0.01 and qmax with a total of qpoints
values.

These results can be redirected into a file for plotting or further analysis:

user@host> ./RDF_to_scattering.py ... > sq.dat

212

SHARC Manual 7 Auxilliary Scripts | 7.35 Optimizations: otool_external and setup_orca_opt.py

7.35 Optimizations: otool_external and setup_orca_opt.py

All SHARC interfaces can deliver gradients for (multiple) ground and excited states in a uniform manner. This allows in
principle to perform optimizations of excited-state minima, conical intersections, or crossing points. In order to employ
a high-quality geometry optimizer for this task, the SHARC suite is interfaced to the external optimizer feature of Orca.
This is accomplished by providing the scripts orca_External (for Orca4) and otool_external (for Orca5/6), which is
called by Orca, runs any of the SHARc interfaces, constructs the appropriate gradient, and returns that to Orca. For the
methodology used to construct the gradients, see section 8.20.

In order to easily prepare the input files for such an optimization, the script setup_orca_opt.py can be used. It takes a
geometry file, interface input files, and the path to Orca, and creates a directory containing all relevant input files. In the
following, setup_orca_opt.py is described first, because it is the script which the user directly employs. Afterwards,
orca_External and otool_external are specified.

7.35.1 Usage

setup_orca_opt.py is an interactive script, which is started with:
user@host> $SHARC/setup_orca_opt.py

Note that before executing the script you should prepare a template for the interface you want to use (as, e.g., in
setup_init.py or setup_traj.py).

7.35.2 Input

In the input section, the script asks for: (i) the path to Orca, (ii) the input geometries, (iii) the optimization settings, (iv)
the interface settings.

Path to Orca Here the user is prompted to provide the path to the Orca directory. Note that the script will not
expand the user (~) and shell variables (since possibly the calculations are running on a different machine than the one
used for setup). ~ and shell variables will only be expanded during the actual calculation.

The script works with Orca 4, 5, and 6.

Interface In this point, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the
corresponding number.

If you selected SHARC_LEGACY . py, then you have to subsequently select the legacy interface that you intend to use. If
you selected a hybrid interface, then you will subsequently be queried with the path to the corresponding template file,
so that the hybrid interface can figure out the child interface it should use. This might continue recursively until all
interfaces in the interface call tree are known.

Input geometry Here the user is prompted for a geometry file in XYZ format, containing one or more geometries
(with consistent number of atoms). For each geometry in this file, a directory with all input files is created, in order to
carry out multiple optimizations (e.g., with output from crossing. py).

Number of states Here the user can specify the number of excited states to be calculated. Note that the ground state
has to be counted as well, e.g., if 4 singlet states are specified, the calculation will involve the Sy, S, Sz and Ss5. Also
states of higher multiplicity can be given, e.g. triplet or quintet states.

Charge As in other setup scripts, you need to provide the charge for each involved multiplicity.

States to optimize Two different optimization tasks can be carried out: optimization of a minimum (ground or
excited state) or optimization of a crossing point (either a conical intersection between states of the same multiplicity
or a minimum-energy crossing points between states of different multiplicities; this is detected automatically).

For minima, the state to optimize needs to be specified. For crossing points, the two involved states need to be specified.
In all cases, the specified states need to be included in the number of states given before.

213

SHARC Manual 7 Auxilliary Scripts | 7.35 Optimizations: otool_external and setup_orca_opt.py

Cl optimization parameters If you are optimizing a conical intersection (states of same multiplicity) with an interface
which cannot provide nonadiabatic coupling vectors (e.g., SHARC_TURBOMOLE . py, SHARC_ADF . py, or SHARC_GAUSSIAN. py),
then the optimization will employ the the penalty function method of Levine, Coe, and Martinez [69]. In this method, a
penalty function is optimized, which depends on the energies of the two states and on two parameters, o and « (see
section 8.20 for their mathematical meaning).

Practically, the parameters affect how close the minimum of the penalty function is to the true minimum on the crossing
seam and how hard the optimization will be to converge. Generally, a large o will allow going closer to the true conical
intersection, but will make the penalty function more stiff (steeper harmonic) and thus harder to optimize. A small «
will also allow going closer to the true conical intersection, but will make the penalty function less harmonic; at & = 0,
the penalty function will have a cusp at the minimum, making it unoptimizable because the gradient never becomes
zero.

The default values, 3.5 and 0.02, are the ones suggested in [69]. They can be regarded as relatively soft, i.e., they enable
a very smooth convergence but might lead to unacceptably large energy gaps at convergence (i.e., the minimum of
the penalty function is too far from the true minimum of the crossing seam). In this case, it is advisable to restart the
optimization from the last point with increased o (e.g., by a factor of 4), and simultaneously reducing the maximum
step (see next point). The « is best left at the suggested value of 0.02 to avoid the cusp problem.

Maximum allowed displacement Within Orca, it is possible to restrict the maximum step (the trust radius) of the
optimizer. A larger maximum step might decrease the number of iterations necessary, but might also lead to instabilities
in the optimization (if the potential energy surface is very steep or anharmonic). Hence, it can be advisable to reduce
the maximum allowed step (from the default of 0.3 a.u.), especially if the starting geometry is already very good (e.g.,
after restart with increase of o) or if the potential is known to be stiff (strong bond, large o, small «, ...). Note that the
maximum step can be restricted even the penalty function method is not used and ¢ and « are not relevant.

Interface-specific input This input section is basically the same as for other setup scripts. Note that for hybrid
interfaces, all child interfaces will also ask for relevant input.

Run script setup Here the user needs to provide the path to the directory where the optimizations should be setup.

7.35.3 Output

Inside the specified directory, setup_orca_opt. py creates one subdirectory for each geometry in the input geometry file.
Each subdirectory is prepared with the corresponding initial geometry file (geom.xyz), the Orca input file (orca. inp),
the appropriate interface-specific files, and a shell script for execution (run—_EXTORCA. sh).

In order to run one of the optimizations, execute the shell script or send it to a batch queuing system. Note that $SHARC
needs to be added to the $PATH so that Orca can find orca_External. For Orca6, the $EXTOPTEXE variable must be
set. (Both of these steps are automatically done inside run_EXTORCA. sh).

When the shell script is started, Orca will write a couple of output files, where the two most relevant are orca.trj and
orca.log. The former is an XYZ file with all geometries from the optimization steps. The latter (the Orca standard
output) contains all details of the optimization (convergence, step size, etc) as well as a summary of what orca_External
did (after the line EXTERNAL SHARC JOB). This summary contains all relevant energies and shows how the gradient is
constructed. Note that in each iteration, a line starting with »> is written, which contains the energies of the optimized
state(s). This line can easily be extracted with grep to follow the optimization of a crossing point.

7.35.4 Description of orca_External and otool_external

orca_External and otool_external provide a connection between the external optimizer of Orca and any of the
SHARC interfaces. In figure 7.5, the file communication between ORca, orca_External, and the interfaces is presented.

As can be seen, orca_External writes QM. in and QM. out files, in the same way that sharc.x is doing. All information
to write the QM. in file comes from the OrRcA communication file orca.extcomp.inp (geometry) and the Orca input
file (number of states, interface, states to optimize). To provide the latter information, orca_External reads specially
marked comments from the Orca input file which are ignored by Orca. These comments start with #SHARC:, followed
by a keyword (states, interface, opt, or param) and the keyword arguments.

214

SHARC Manual 7 Auxilliary Scripts | 7.36 Single Point Calculations: setup_single_point.py

resources

initial MOs

orca.extcomp.inp}\ /

Orca orca_External Interface

orca.inp

MoLPRO

MoLcas

CoLuMBUS

Analytical

TURBOMOLE

GAUSSIAN

orca.extcomp.out

orca.log
WFOVERLAP

orca.trj

Figure 7.5: Communication between ORrca, orca_External, the interfaces, and the quantum chemistry codes. The
scheme works nearly identically for otool_external.

When using otool_external, the settings are not read from orca.inp, because otool_external cannot work out the
path to orca.inp in a robust way. Instead, the settings are read from a separate file otool_external.inp that is created
by setup_orca_opt.py.

7.36 Single Point Calculations: setup_single_point.py

It is possible to run single point calculations through the SHARc interfaces. This is useful, e.g., to do a computation in
exactly the same way as during the dynamics simulations. Single point calculations using the interfaces can also be
easily automatized.

7.36.1 Usage

setup_single_point.py is an interactive script, which is started with:
user@host> $SHARC/setup_single_point.py

Note that before executing the script you should prepare a template for the interface you want to use (as, e.g., in
setup_init.py or setup_traj.py).

7.36.2 Input

In the input section, the script asks for: (i) the input geometries, (ii) the number of states, and (iii) the interface settings.

Interface In this point, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the
corresponding number.

If you selected SHARC_LEGACY . py, then you have to subsequently select the legacy interface that you intend to use. If
you selected a hybrid interface, then you will subsequently be queried with the path to the corresponding template file,
so that the hybrid interface can figure out the child interface it should use. This might continue recursively until all
interfaces in the interface call tree are known.

Input geometry Here the user is prompted for a geometry file in XYZ format, containing one or more geometries
(with consistent number of atoms). For each geometry in this file, a directory with all input files is created, in order to
carry out multiple optimizations (e.g., with output from crossing. py).

215

SHARC Manual 7 Auxilliary Scripts | 7.37 Format Data from QM. out Files: QMout_print.py

Number of states Here the user can specify the number of excited states to be calculated. Note that the ground state
has to be counted as well, e.g., if 4 singlet states are specified, the calculation will involve the Sy, S;, S; and Ss5. Also
states of higher multiplicity can be given, e.g. triplet or quintet states.

Charge As in other setup scripts, you need to provide the charge for each involved multiplicity.

Interface-specific input This input section is basically the same as for other setup scripts. Note that for hybrid
interfaces, all child interfaces will also ask for relevant input.

Run script setup Here the user needs to provide the path to the directory where the optimizations should be setup.

7.36.3 Output

Inside the specified directory, setup_single_point.py creates one subdirectory for each geometry in the input geometry
file. Each subdirectory is prepared with the corresponding geometry file (QM. in), the appropriate interface-specific files
(template, resources, QM/MM), and a shell script for execution (run.sh).

In order to run one of the optimizations, execute the shell script or send it to a batch queuing system.

When the shell script is started, the chosen SHARC interface is executed. The interface writes a file called QM. log which
contains details of the computation and progress status. The final results of the computation are written to QM. out,
which can be inspected manually. Alternatively, some basic data (excitation energies, oscillator strengths) can be
computed with QMout_print. py (section 7.37).

7.37 Format Data from QM.out Files: QMout_print.py

With the script QMout_print.py one can print a table with energies and oscillator strengths from a QM. out file, as it is
produced by the interfaces.

7.37.1 Usage

QMout_print.py is a command line tool, and is executed like this:
user@host> $SHARC/QMout_print.py [options] QM.out

The options are summarized in Table 7.21

Table 7.21: Command-line options for QMout_print. py.

Option Description Default
-h Display help message and quit. —

-i FILENAME Path to QM. in file (to read number of states) —

-s INTEGERS List of numbers of states per multiplicity 1

-n NATOM Number of atoms (usually no need to specify) 1

-e FLOAT Absolute energy shift in Hartree 0.0

-E Compute absolute energies (equivalent to -e 0.0) false

-D Output diagonal states MCH states
-S STATE Initial state index 1

-t N Mode (0: energies and dipoles, 1: only energies) 0

-L Format output in a single line (useful for scans) false

-I Use Dyson norms instead of oscillator strengths false

7.37.2 Output

The script prints a table with state index, state label, energy, relative energy, oscillator strength, and spin expectation
value to standard output.

216

8 Methods and Algorithms

In this chapter different aspects of SHARC simulations are discussed in detail. The topics are ordered alphabetically.

8.1 Absorption Spectrum

Using spectrum.py, an absorption spectrum can be calculated as the sum over the absorption spectra of each individual

initial condition:
Rinit
o(E) = Z o:(E), (8.1)

1

where i runs over the initial conditions.

(44

The spectrum of a single initial condition is the convolution of its line spectrum, defined through a set of tuples (E%, £,

for each electronic state o, where E* is the excitation energy and f%.) is the oscillator strength.

The convolution of the line spectrum can be performed with spectrum.py using either Gaussian or Lorentzian functions.
The contribution of a state « to the absorption spectrum ¢%*(E) is given by:

a\2
0 ussian (E) = (fos) ¢ e (EFF) (8.2)
41n(2
with c¢= _—erlli(w)ﬁ’ (8.3)
or
(fose)i
O.gorentzian() =T - 2 (84)
L(E-Ef) 1
1
with ¢= ZFWHMZ, (8.5)
or
E¥ . ne B)2
Oftognormal (E) = (fose){ fle 55— 2 (In(E)-In(E¢)) , (8.6)
2
FWHM + \[FWHM? + 4(E{)?
with c=|ln , (8.7)

2E7

where FWHM is the full width at half maximum.

8.2 Active and inactive states
SHARC allows to “freeze” certain states, which then do not participate in the dynamics. Only energies and dipole
moments are calculated, but all couplings are disabled. In this way, these states are never visited (hence also no gradients

and nonadiabatic couplings are calculated, making the inclusion of these states cheap). Example:

nstates 2 0 2
actstates 2 0 1

In the example given, state T; is frozen. The corresponding Hamiltonian looks like:

217

SHARC Manual 8 Methods and Algorithms | 83 Amdahl’s Law

E(So) Ay dgp bsy bgy o1 Qo2
E(S1) ay ap by, b, an ap
ao1 an E(Ty) pl, =43,
_ a2 arp pz2 E(T2) 4,
H= bo1 by -q12 E(Th) —q; ®8

bz bia q12 E(T;) q,
ag, ay, -q1z E(T1) pi2
ap aj, 912 P, E(D)

where all matrix elements marked red are deleted, since T, is frozen.

The corresponding matrix elements are also deleted from the nonadiabatic coupling and overlap matrices. For propaga-
tion including laser fields, also the corresponding transition dipole moments are neglected, while the transition dipole
moments still show up in the output (in order to characterize the frozen states).

Active and frozen states are defined with the states and actstates keywords in the input file. Note that only the
highest states in each multiplicity can be frozen, i.e., it is not possible to freeze the T; while having T; active. However,
it is possible to freeze all states of a certain multiplicity.

8.3 Amdahl’s Law

Some of the interfaces (SHARC_MOLCAS. py, SHARC_ADF.py SHARC_GAUSSIAN.py, SHARC_ORCA.py) use Amdahl’s law to
predict the most efficient way to run multiple calculations in parallel, where each calculation itself is parallelized. For
example, in SHARC_GAUSSIAN.py it might be necessary to compute the gradients of five states, using four CPU cores.
The most efficient way to run these five jobs depends on how well the GAussIAN computation scales with the number
of cores—for bad scaling, running four jobs on one core each followed by the fifth job might be best, whereas for
good scaling, running each job on four cores subsequently is better because no core is idle at any time. In order to
automatically distribute the jobs efficiently, the interfaces use Amdahl’s law, which can be stated as:

T(”core) = T(l) (1 -r+ " !) . (8.9)

Here, T(1) is the run time of the job with one CPU core, and r is the fraction of T(1) which benefits from parallelization.
The parameter r can be given to the interfaces; it is between 0 and 1, where 0 means that the calculation does not get
faster at all with multiple cores, whereas 1 means that the run time scales linearly with the number of cores.

8.4 Bootstrapping for Population Fits

Bootstrapping, in the context of population fitting, is a statistical method to obtain the statistical distribution of the fitted
parameters, which can be used to infer the error associated with the fitted parameter. The general idea of bootstrapping
is to take the original sample (the set of trajectories in the ensemble), and generate new samples (resamples) by randomly
drawing trajectories “with replacement” from the original ensemble. These resamples will differ form the original
ensemble by containing some trajectories multiple times while other trajectories might be missing. For each of the
resamples, the fitting parameter are obtained normally and saved for later analysis.

After many resamples, we obtain a list of many “alternative” parameters, which can be plotted in a histogram to see the
statistical distribution of the fitting parameter. The number of resamples should generally be large (several hundred or
thousand resamples), although with bootstrap.py, one can inspect the convergence of the fitting parameters/errors to
decide how many resamples are sufficient.

From the computed list of parameters, error measures can be computed. Assume that {x;} is the set of fitting parameters
obtained. bootstrap.py and make_fit.py compute the arithmetic mean and standard deviation like this:

Xarith = N Z Xi, (8.10)

N

Garith (%) = Z (x -)7 (8.11)

218

SHARC Manual 8 Methods and Algorithms | 8.5 Computing electronic populations

Because the distribution of {x;} might be skewed (e.g., contains some very large values but few very small ones), the
script also computes the geometric mean and standard deviation like this:

Xgeom = eN ¥ ln(x,) (8.12)

Vs 2N (n(x) -In(x))2 (8.13)

Ggeom(x) =€

Note that the geometric standard deviation is a dimensionless factor (unlike the arithmetic standard deviation, which
has the same dimension as the mean). Therefore, within bootstrap.py and make_fit.py the geometric errors are
always displayed with separate upper and lower bounds as i_;’z(l‘/’é’(‘))(;i)l) Note that bootstrap.py and make_fit.py

will always report one times the standard deviation in the output. If larger confidence intervals are desired, simply
= +x(o(x)%-1)

multiply the arithmetic error as usual. For the geometric error, use for example X £(1/0(x)2-1)"

8.5 Computing electronic populations

The electronic populations from SHARC trajectories can be obtained in different ways. This is primarily due to the fact
that in surface hopping one could either consider the active state or the electronic wave function coefficients. This issue
is discussed in detail in [73], where it is shown that the optimal way to obtain the electronic populations is actually a
combination of both kinds of information in a Wigner-like transformation. Hence, there are three options in SHARC: (i)
based on classical active state, (ii) based on electronic wave function coefficients, and (iii) based on Wigner-transform.
Additionally, the populations can be analyzed in different representations (diagonal, MCH, diabatic).

Diagonal representation The diagonal representation, there is no basis transformation involved, and hence the
equations are very simple. For a single trajectory, the three possible populations can be obtained by:

p;hag(l) 5]0[, (8.14)
pfiag(ii) _ |cqiag|2’ (8.15)
p;hag(nl) 6](1’ (8.16)

where « is the active diagonal state.

MCH representation To obtain the MCH representation, one needs to transform the populations with the matrix U.
Hence, one obtains:

CH(i
PIHD = U, (8.17)
CH(ii di
p;\/{ H(ii) _ |Z Ujkcklag|2; (8.18)
k
pMCH(lll) |U]a|2 +ZZRG(UJkU* dlag dlag*) (819)
k<l

Diabatic representation To obtain the diabatic representation, one needs to transform the populations with the
appropriate transformation matrix T, which in SHARCc is obtained as the matrix product of reference overlap matrix,
time-ordered overlap matrices, and U for the current time step. Hence, one obtains:

MCH (i
pj @ _ |Tjo¢|2’ (8.20)
MCH (ii di
DRy YRS a1
k
pMCH(uz) |Ta|2 +22Re(]*l ng d1ag*) (8.22)
k<l

219

SHARC Manual 8 Methods and Algorithms | 8.6 Damping

8.6 Damping

If damping is activated in SHARC (keyword dampeddyn), in each time step the following modification to the velocity
vector is made
v =v-\NC (8.23)

where C is the damping factor given in the input. Hence, in each time step the kinetic energy is modified by
E, = Exin-C (8.24)

The damping factor C must be between 0 and 1.

8.7 Decoherence

In surface hopping, without any corrections the coherence between the states is usually too large [21]. A trajectory
in state 5, but where state @ has a large coefficient, will still travel according to the gradient of state f. However, the
gradients of state a are almost certainly different to the ones of state 5. As a consequence, too much population of
state « is following the gradient of state 8. Decoherence corrections damp in different ways the population of all states
a # f, so that only population of 8 follows the gradient of state f5.

Currently, in SHARC there are two decoherence corrections implemented, “energy-based decoherence”, or EDC, as given
in [94] and “augmented fewest-switches surface hopping”, or AFSSH, as described in [39].
8.7.1 Energy-based decoherence

In this scheme, after the surface hopping procedure, when the system is in state f, the coefficients are updated by the
following relation

1 Ea _E C !
¢ =cq - eXp _EAt% (1 oy) . a#p (8.25)
1
2
7 C)B 7’
G =esl” 1—Z|ca|2 (8.26)

|C‘B a#f

where C is the decoherence parameter. The decoherence correction can be activated with the keyword decoherence in
the input file. The decoherence parameter C can be set with the keyword decoherence_param (the default is 0.1 hartree,
as suggested in [94]).

8.7.2 Augmented FSSH decoherence

Augmented FSSH by Subotnik and coworkers is described in [39]. For SHARC, the augmented FSSH algorithm was
adjusted to the case of the diagonal representation.

The basic idea is that besides the actual trajectory, the program maintains an auxiliary trajectory for each state. The
auxiliary trajectories are propagated using the gradients of the associated (not active) state, and because the gradients
are different, the auxiliary trajectories eventually diverge from each other and from the main trajectory. From this
diverging, one can compute decoherence rates which can be used to stochastically set the electronic coefficients of the
diverging state to zero.

First, we compute two matrices:

sde (¢t + Ar) = UT(£)S(t, t + ADU(t + Ab), (8.27)
HOMdae (1 4 Ap) = UT(0)S(t, 1 + ADHMH (¢t + ADST (8, £ + ADU(D), (8.28)

where S is the overlap matrix, as used in 8.33. Hence, Sdiag(t, t + At) is the overlap matrix in the diagonal basis and
Ho'ddi2e (+ 4 At) is the Hamiltonian at time ¢ + At expressed in the diagonal basis of time step t.

220

SHARC Manual 8 Methods and Algorithms | 8.8 Essential Dynamics Analysis

We then propagate the auxiliary trajectories for each state j, considering that the active state is a. For this, we need the
gradient matrix G428 from section 8.11. We define:

oj =le; (D)) (8.29)
We do the X step of the velocity-Verlet algorithm:

((GY%8); = (G™*®)qa)a

al,(t) = - : (8.30)
A MA
A . A 1
R/ (t + At) = RI(t) + v/ (1) At + Eaf(t)Atzaj, (8.31)
where A goes over the atoms. Then, we compute the new gradient:
gl (1 +AL) = —(GUE) g + 3" (S™E(, 1 + AL)) ;1 (GHE) . (8.32)
i
We then carry out the v step:
j 1 (g/(t+ A1)
al, (t+At) = Eai‘(t) B (8.33)
vl (t+ At) = v/ (1) + a (¢ + At) Ata;. (8.34)

We then perform a diabatization of the auxiliary trajectories (e.g., for a trivially avoided crossing, the moments between
the crossing states are interchanged):

R/ = (st ¢ + A1), (8.35)
v =) (STR(L 4 AV, (8.36)
(8.37)

to transform the data back into the adiabatic basis at time t + At.

Finally, we carry out the decoherence correction procedure for each auxiliary trajectory. We compute the displacement
from the auxiliary trajectory of the active state:

D=R/-R* (8.38)
We compute two rate constants:
i1
rn=-g (t+ At) - D, (8.39)
r) =2|(G%®),; - D], (8.40)
or if no nonadiabatic coupling vectors are available:
1ddi
j |H2 j “ID.v
rz = ZTW (8.41)

We draw a random number (identical for all states) r between 0 and 1. If r < At(r{ - rg), then we collapse state j, by

setting its coefficient to zero and enlarging the coefficient of the active state such that the total norm is conserved; we
also set the moments R/ and v/ to zero. If no collapse occurred, if r < —Atr{ , we set the moments R’/ and v/ to zero.

After a surface hop occurred, we reset all auxiliary trajectories.

8.8 Essential Dynamics Analysis
As an alternative to normal mode analysis (see section 8.19), essential dynamics analysis can be used to identify important

modes in the dynamics. This procedure is a principal component analysis of the geometric displacements.[65, 66]
Unlike normal mode analysis, it does not depend on the availability of the normal mode vectors.

221

SHARC Manual 8 Methods and Algorithms | 8.9 Excitation Selection

The covariance matrix is computed from the following equation (1 and v are indices over the 3N, degrees of freedom):

) 1 Niraj kend i
R, = Niraj(kend = Kstart) IZ:; k;mn Ry (kA (842
and 1 - | |
Apr = Niraj(kend = Kstart) i=1 k;ﬂm RF(kAt)RV(kAt) o
as a matrix C with elements:
Cuv = Ay — RyR,. (8.44)

Diagonalization of the symmetric matrix C gives a set of eigenvalues and eigenvectors. The eigenvectors represent
the essential dynamics modes, and the corresponding eigenvalues are the variances of the modes. Modes with large
variances show strong motion in the dynamics, whereas small variances are found for modes which show weak motion.
Because the modes are uncorrelated, the few modes with the largest variance describe most of the molecular motion,
which shows that essential dynamics analysis can be used to for data reduction.

8.9 Excitation Selection

excite.py can select initial active states for the dynamics based on the excitation energies Ej , and the oscillator
strengths f”°" for each initial condition k and excited state a.

First, for all excited states of all initial conditions, the maximum value pyax of

0SC
_Jka

Pka = ? (8.45)
Nt
is found. Then for each excited state, a random number ry , is picked from [0, 1]. If
reg < Dha (8.46)

max

then the excited state is selected as a valid initial condition. This excited-state selection scheme is taken from [106].

Within excite. py it is possible to restrict the selection to a subset of all excited states (only certain adiabatic states/within
a given energy range). In this case, also pyay is only determined based on this subset of excited states.

8.9.1 Excitation Selection with Diabatization

The active states can be selected based on a diabatization. This necessitates the wave function overlaps between a
reference geometry (ICOND_00000/) and the current initial condition k.

The overlap matrix with elements
SYF = (% (Ro) % (Ry)) (8.47)

can be computed with wfoverlap.x (calculations can be setup with setup_init.py). This overlap matrix is rescaled
during the excitation selection procedure such S?{‘ is equal to one (by dividing all elements by |S?f |). Then, assume
we want to start all trajectories in the state which corresponds to state x at the reference geometry. The excitation
selection will select a state y as initial state if 52]; > 0.5.

8.10 Global fits and kinetic models

In this section, we specify the basic assumptions of the chemical kinetic models used with the scripts make_fitscript.py
and make_fit.py and the globals fits of these models to data.

222

SHARC Manual 8 Methods and Algorithms | 8.10 Global fits and kinetic models

8.10.1 Reaction networks

The kinetic models used by make_fitscript.py and make_fit.py are based on a chemical reaction network, where
chemical species react via unimolecular reactions.

The reaction networks allowed in the script are a simple directed graphs, where the species are the vertices and the
reactions are the directed edges. Each reaction is characterized by an associated rate constant and connects exactly one
reactant species to exactly one product species.

In order to obtain rate laws which can be integrated easily, there are a number of restrictions imposed on the network
graphs. Some restrictions and possible features of the graphs are depicted exemplarily in Figure 8.1. First, each species
and each reaction rate needs to have a unique label. There cannot be two species with the same label, but there can
be two reactions with the same reaction rate constant. Second, the graph must be a simple directed graph, hence
there cannot be any (self-) loops or more than one reaction with the same initial and the same final species. All
restrictions marked as “Not allowed” in the Figure are enforced in the input dialogue of make_fitscript.py However,
back reactions are allowed (as a back reaction has a different initial and a different final species as the corresponding
reaction). Except from these restrictions, the graph may contain combinations of sequential and parallel reactions. The
graph may also be disjoint, i.e., it can be the union of several independent sub-networks. Disjoint graphs with repeated
reaction labels can be useful to fit population data from ensembles with identical settings but different initial conditions
(in this case, merge the population files with paste before starting the fit.

There are two kinds of cycles possible, called here parallel pathways and closed walks. Parallel pathways are independent
sequences of reactions with the same initial and final species (e.g., A — Cand A — B — C). A closed walk is a sequence
of reactions where the initial species is equal to the final species. These cycles can sometimes lead to problems. If you
use make_fitscript.py, then it is necessary that the system of differential equations of the rate laws can be integrated
in closed form by Maxima. Since make_fit.py solves the differential equation system numerically, it is not necessary
that the solution can be given in closed form. However, cycles can also lead to problems in the fitting procedure (rate
constants in parallel pathways can be strongly correlated and cause large errors and bad convergence in fitting).

An example reaction network graph is shown in Figure 8.2. In this graph, there are 5 species (Sz, S1, So, T2, and T;) and
6 reactions, each with a rate constant (ks, kgyx, k22, k11, k21, k12). This graph shows some features which are allowed in
the reaction networks for make_fitscript.py: sequential reactions, parallel reactions, back reactions, and converging
reaction pathways. Note that this reaction network is likely to cause problems in the fitting step (large errors).

8.10.2 Kinetic models

Based on the reaction network graph, a system of differential equations describing the rate laws of all species can be
setup. The system of equations (equivalently, the matrix differential equation) can be written as:

%s(t) —A-s(t), (8.48)

where s is the vector of the time-dependent populations of each species and A is the matrix containing the rate constants.
In order to construct A, start with A = 0 and, for each reaction from species i to species j with rate k, substract k from
Aii and add k to Aj,'.

In order to integrate this system of equations, in practice one also needs to define initial conditions. In the present
context, the initial conditions are fully specified by s(t = 0) = s, where sy are constant expressions defined by the user.

Solving (8.48) yields (in not too complicated cases) the closed-form expressions for the functions s(#), which contain as
parameters all rate constants k and all initial values s.

8.10.3 Global fit

Suppose there is a data set p(t) = (p1(t), p2(t),...) of time-dependent populations of several states k = 1,2,... and
which is given at several points of time {#; : 0 < #; < fyax}. We can fit to one data set pi(t) a function s;(t) from s(¢) by
optimizing the parameters (mainly the rate constants) such that >; |px(t;) — s;(t;)|* becomes minimal.

In order to perform global fit including several species | and several states k, we construct piecewise global functions
from p(t) and s(¢) and then optimize the parameters accordingly.

223

SHARC Manual 8 Methods and Algorithms | 8.11 Gradient transformation

Not allowed

® ® ' ()
a A @ an
®

® ®

Repeated Repeated Loop Repeated
species label label reaction
Allowed
(») QP (™ ©
b a a a @ b C a C
b
Back Repeated Sequential Parallel Disjoint
reaction rate label reactions reactions network

Problematic

® ®
® 0 6 0O

Parallel Closed
pathways walks

Figure 8.1: Forbidden and allowed features of the reaction network graphs.

Figure 8.2: Example reaction network graph. For explanation see text.

8.11 Gradient transformation

8.11.1 Nuclear gradient tensor transformation scheme

Since the actual dynamics is performed on the PESs of the diagonal states, also the gradients have to be transformed to
the diagonal representation. To this end, first a generalized gradient matrix GM®H is constructed from the gradients

224

SHARC Manual 8 Methods and Algorithms | 8.11 Gradient transformation

g’SfCH = —VRHQAO?H and the nonadiabatic coupling vectors K%IQCH:
g1 —(Hy1 — Hyp2)Kiz —(Hin — H33)Kys
GMCH _ ~(Hzz = Hi1)Kyy 82 —(Hy; — H33)Kyps

—(Hs3 — H11)K3; —(Has3 — Hy3)K3 g3 (8.49)

Note that all quantities in the matrix are in the MCH representation, the superscripts were omitted for brevity.

GMCH

The matrix is subsequently transformed into the diagonal representation, using the transformation matrix U:

Gleg = yTGgMCHy, (8.50)

The diagonal elements of G%28 now contain the gradients of the diagonal states, while the off-diagonal elements contain
the scaled nonadiabatic couplings —(H;l;g - Hil,f?g)K?Zg . The gradients are needed in the Velocity Verlet algorithm in
order to propagate the nuclear coordinates. The nonadiabatic couplings are necessary if the velocity vector is to be

rescaled along the nonadiabatic coupling vector.

Since the matrix GM®™ contains elements which are itself vectors with 3N components, the transformation is done

component-wise (e.g. first a matrix Gy atom1 is constructed from the x components of all gradients (and nonadiabatic
couplings) for atom 1, this matrix is transformed and written to the x, atom 1 component of G428 then this is repeated
for all components).

Since the calculation of the nonadiabatic couplings K%AO?H might add considerable computational cost, there is the input

keyword nogradcorrect which tells SHARC to neglect the K%AO?H in the gradient transformation.

From SHARC3.0 onwards, this scheme is called nuclear gradient tensor scheme, or NGT scheme. The NGT scheme can
be turned on by using keyword gradcorrect alone, or followed by options, i.e. gradcorrect ngt.

8.11.2 Time derivative matrix transformation scheme

Alternatively, one can obtain the energy conserving force in diagonal representation by using the time derivative matrix
scheme, or TDM scheme. In TDM scheme, no computation of nonadiabatic coupling vectors are required, and therefore
it is more efficient. And TDM is especially recommended for overlap-based algorithms and curvature-driven algorithms
because one of the advantages of these algorithms is that they do not require computating of nonadiabatic coupling
vectors. See section 8.34.

One can turn on TDM scheme by using keyword gradcorrect tdm

The TDM scheme utilizes the time derivative matrix K, with matrix elements given by

= (g0 | o o) =acp e (o00

where GB denotes that this is a general basis which can be either diagonal or MCH representation, superscript SOC
denotes the spin-orbit coupling terms, and

dHSOC
dt

d
_Helec
dt

¢/§*B>, (8.51)

dHF
GB _ GB GB
kaﬁ_< " _t‘d)ﬂ >, (8.52)

where superscript SF denotes spin-free. One can show that,

elec[diag]
. dH lecldi . .
iag aa elec[diag] elec[diag] diag
7(daﬁ = —bup - (Hm ~ Hyg) Ty (8.53)
and
JMCH _ dHﬁl;[MCH] s gSFIMCH] _ ;SFIMCH]) 7MCH 8.54
e T of - (8:54)

Similar as in the NGT scheme, we now neglect %HSOC. This gives the TDM scheme

Kdieg ~ yTKMCHy, (8.55)

225

SHARC Manual 8 Methods and Algorithms | 8.12 Internal coordinates definitions

Therefore, elec[diag]
% © gcling (8.56)
and) i iag]| ! i
; ;;g N (H;ﬁec[dlag] ~ HZIUe[c[dlag]) (K;i;g (8.57)

elec[diag]
This is very useful, because it allows us to compute —#4—— without computing nonadiabatic coupling vectors.

One can show that the only requirement a diagonal gradient needs to be fulfilled to conserve energy is,

elec[diag]
sdiag dHgg
Prg R = -—— (8.58)

- diag . . . clecldiag] . . .
where PTSEI is the diagonal force. Therefore, by knowing =—=25—— one can obtain an alternative energy conserving

force as -
_dH;Z(C[iag]

- diag dt
P = ——Fgaa. 8.59
TSH R-F,, (8.59)
The above diagonal force conserves energy for any real and nonzero vector Fg, that is not normal to R. In SHARC3.0,
we use the following physically motivated choice of F,,

SF[MCH]
oH
Fug = YZ—REFMCH, (8.60)

where state y is a state in the MCH basis that corresponds to state « in the diagonal basis.

d H;]ZC [diag]

In SHARC3.0, the default is to use different approaches to compute —<%— for different algorithms. For overlap-based

algorithms,
dHOS!I;[MCH] aHOS!l;[MCH] _
= R (8.61)
dt oR

This defines k™™ for overlap-based algorithm, and one transform k™™ to K42¢ with equation (8.55). This is called
gradient approach, and can be turned on by using keyword tdm_method gradient.

. . . . X dHSF[MCH] dHelec[diag]
The default for curvature-driven algorithms is that we employ finite differences to compute both ==¢$— and =24,
For the first and second time steps, we use first-order backward finite differences
dHp P () 1 acs A[GB
e = (HA (0 - 1 (2 -), (5.62)

where superscript A can be SOC, SF, or elec (full Hamiltonian, includong both SF and SOC). And for later steps, we use
second-order backward finite differences

SHALGBD (1) _ 4ALOBL (1 Ap) 4 HALGBT (4 _ 2At)) . (8.63)

d 2At
This is called the energy approach, and can be turned on by using keyword tdm_method energy.

dHpe ™ (1) _ 1 (

8.11.3 Dipole moment derivatives

For strong laser fields, the derivative of the dipole moments might be a non-negligible contribution to the gradients. In
this case, they should be included in the gradient transformation step:

. . 7}
Glieg — gyt [GMCH _ e(t) - ﬁ” U. (8.64)

This can be activated with the keyword dipole_grad in the SHARC input file.

8.12 Internal coordinates definitions

In this section, the internal coordinates available in geo.py are defined.

226

SHARC Manual 8 Methods and Algorithms | 8.13 Kinetic energy adjustments

Bond length The bond length between two atoms a and b is:

Fab = \/(xa - xp)? + (Ya — yb)z + (24 — 2p)? (8.65)
Bond angle The bond angle for atoms a, b and c is defined as the angle

6 = cos™! (M) (8.66)
[Voal * Vil

where vy, is the vector from atom b to atom a.

Dihedral The dihedral angle is defined via the vectors w; and wy:
Wi = Vgp X Ve and Wy = Vpe X Veg. (8.67)

The dihedral is given as the angle between w; and w; according to equation (8.66). In order to distinguish left- and
right-handed rotation, also the vector Q = w; X w; is computed, and if the angle between Q and vy, is larger than 90°
then the value of the dihedral is multiplied by -1.

Pyramidalization angle The pyramidalization angle is defined via the vectors v;, and
W1 = Vpe X Vpg. (8.68)
The pyramidalization angle is then given as 90° — 8(vp,, w1). This definition of the pyramidalization angle works best

for nearly planar arrangements, like in amino groups.

An alternative definition of the pyramidalization angle works better for strongly pyramidalized situations (e.g., fac-
arranged atoms in a octahedral metal complex). This pyramidalization angle is defined as 180° minus the angle between
vgp and the average of vy, and vpg.

Cremer-Pople parameters The definitions of the Cremer-Pople parameters for 5- and 6-membered rings is described
in [62].

Boeyens classification For 6-membered rings, the Boeyens classification scheme is described in [63].

Angle between two rings In order to compute angles between the mean planes of two rings, we compute the
normal vector of the two rings as in [62]. We then compute the angle between the two normal vectors.

8.13 Kinetic energy adjustments

There are several options how to adjust the kinetic energy after a surface hop occurred. The simplest option is to not
adjust the kinetic energy at all (input: ekincorrect none), but this obviously leads to violation of the conservation of
total energy.

Alternatively, the velocities of all atoms can be rescaled so that the new kinetic energy and the potential energy of the

new state f§ again sum up to the total energy.
Etotal — Eﬂ
f= /E— (8.69)
kin

v =fv (8.70)

Eyin = f*Exin (8.71)

Within this methodology, when the energy of the old state @ was lower than the energy of the new state f the kinetic
energy is lowered. Since the kinetic energy must be positive, this implies that there might be states which cannot be

reached (their potential energy is above the total energy). A hop to such a state is called “frustrated hop” and will be
rejected by SHARC. Rescaling parallel to the nuclear velocity vector is requested with ekincorrect parallel_vel.

227

SHARC Manual 8 Methods and Algorithms | 8.13 Kinetic energy adjustments
Alternatively, according to Tully’s original formulation of the surface hopping method [14], after a hop from « to f only
the component of the velocity along the direction of the nonadiabatic coupling vector Kg, should be rescaled. With

Natom
Kgei - Kga,i
a= Z pai " 2pa. (8.72)

- 2M;
Natom
b= Z Vi Kpai (8.73)
the available energy can be calculated:
A =4a (E, — Ep) + b°. (8.74)
If A < 0, the hop is frustrated and will be rejected. Otherwise, the scaled velocities v’ can be calculated as
K.
v, = v —f% (8.75)
b+VA b<0
with f=14 2%~ ’ 8.76
/ {”‘Z;’E, b>o. (479

This procedure can be requested with ekincorrect parallel_nac. Note that in this case SHARC will request the
nonadiabatic coupling vectors, even if they are not used for the wave function propagation.

8.13.1 Reflection for frustrated hops

As suggested by Tully [14], during a frustrated hop one might want to reflect the trajectory (i.e., invert some component of
the velocity vector). In SHARC, there are three possible options to this, the first being no reflection (reflect_frustrated
none). Alternatively, one can invert the total velocity vector v := —v (reflect_frustrated parallel_vel).

As this leads to a nearly complete time reversal and might be inappropriate, as a third option one can choose to only

reflect the velocity component parallel to the nonadiabatic coupling vector between the active state and the state to
which the frustrated hop was attempted. The condition for reflection in this case is based on three scalar products:

ki = go - taf, (8.77)

ko = gf - tag, (8.78)

ks = > Mava(tap)a, (8.79)
A

Reflection is only carried out if k1k; < 0 and kyks < 0. In order to reflect, we compute:

va - ta

Vpi=Vy —2 ta. (8.80)

ta - ta

where t4 is the component of t, corresponding to atom A.

8.13.2 Choices of momentum adjustment direction

In addition to previously mentioned choices of vectors to adjustment momentum, namely, velocity vector, and nonadi-
abatic coupling vector, in SHARC3.0 we have several new choices of momentum adjustment vectors. A complete list
includes: velocity vector, projected velocity vector (vibrational velocity vector), nonadiabatic coupling vector, projected
nonadiabatic coupling vector, difference gradient vector, effective nonadiabatic coupling vector, and projected effective
nonadiabatic coupling vector.

Note that using the projected vectors is recommended choice because these vectors can conserve angular momentum and
center of mass motion. Section 8.31 introduces the effective nonadiabatic coupling vector, and Section 8.14 introduces
the projection operator.

Section 8.34 distinguishes different types of nonadiabatic dynamics algorithms based on the coupling types to be
computed. Although using nonadiabatic coupling vector as momentum adjustment direction is most accurate, one of
the advantages of not using nonadiabatic coupling vector as momentum adjustment direction is that one can utilize
the advantages of overlap-based algorithms and curvature-driven algorithms that nonadiabatic coupling vector is not
needed in propagating electronic and nuclear equations of motion.

228

SHARC Manual 8 Methods and Algorithms | 8.14 Projection operator

8.14 Projection operator

The projection operator projects out the translational and rotational components of a vector, i.e., nonadiabatic coupling
vector (NAC vector). The projected NAC, is expressed as

K9, = (1-Q)Kap, (8.81)

where 1 and Q are the identity operator and projection operator, respectively, and A and B are indices of electronic
states.

The projection operator is a 3Nx3N matrix with elements

Qiyiry = yy/ + Z Z Z Z €apyRia []ﬁﬁ’ Z Z carpry Ria, (8.82)
a B a B

where indices i and i’ label the nuclei and vary from 1 to N, @, B, y, «’, f’, and y’ take on the values x, y, and z.
TI is the inverse of matrix I. Matrix I is same as moment of inertia matrix with all masses set to 1, and ¢ is the
completely antisymmetric third-order unit pseudotensor, whose elements are the Levi-Civita symbols. The first term of
the projection operator projects onto the three directions corresponding to overall translation, and the second term
projects onto the three directions corresponding to overall rotation.

8.15 Fewest switches with time uncertainty

The fewest switches with time uncertainty (FSTU) propagation is identical to the FS algorithm except when there is a
frustrated hop. The FSTU looks for nonlocal hops to reduce the number of frustrated hops.

At time £, the FSTU algorithm computes the potential energy differences between the active state K and the rest of the
states,
AV (t) = Vi (1) = Ve (1), (8.83)

where V, (t) is the adiabatic potential energy of state « at time t. In SHARC3.0, the velocity is rescaled aftera K — «

hop according to

hgaa (1)
VA (t)|postK—>a =Vva (t)|preK—>oc - fM—A’ (8.84)

where va, hgqa, and My are respectively the velocity vector, momentum adjustment vector, and the atomic mass of
atom A, and f is a unitless factor to be computed.

The factor f is computed by requiring energy conservation after a hop

1 2 1 2
; EMA (VA (t)lpostK—nx) + Vo (t) = ; EMA (VA (t)|preK—>0() +Vk (t) . (885)
Therefore,
EKe (1) + \/(EK“ (t)) +4EK® (1) AV (1)
f= _ , (8.86)
2E§nh ()
where
EK (1) = 3" (va (Dl B (1)) (887)
A
and ’ |2
Ka _ 1 hKa,A (t)
Eyinn = ; 2 ML (8.88)

To have a real solution of f; the following condition must be fulfilled:

Ka 2
AEK® (1) = ®

K
4Eku(i(h ()

+ AVike (1) > 0. (8.89)

229

SHARC Manual 8 Methods and Algorithms | 8.16 Laser fields

At time t;, when one encounters a K — f hop that is frustrated by the FS algorithm, one computes the FSTU uncertainty
time for this unconfirmed hop as

h
AtKP = _ 8.90
2IAEP (1) (8:50)

where the absolute value is needed because AEX? (1,) is negative. Then FSTU algorithm looks for energy accessible
K — p hop within this time uncertainty region.

8.16 Laser fields

The program laser.x can calculate laser fields as superpositions of several analytical, possibly chirped, laser pulses. In
the following, the laser parametrization is given (see [107] for further details).

8.16.1 Form of the laser field

In general, the laser field €(t) is a linear superposition of a number of laser pulses [;(¢):
e(t) = " pili(1), (8.91)
i

where p; is the normalized polarization vector of pulse i.

A pulse [(t) is formed as the product of an envelope function and a field function.

I(t) =&()f (1) (8.92)

8.16.2 Envelope functions

There are two types of envelope function defined in laser.x, which are Gaussian and sinusoidal.

The Gaussian envelope is defined as:

E(t) = e Pl (8.93)
41n2

= — 8.94

p FWHM? (8.94)

where & is the peak field strength, FWHM is the full width at half maximum and ¢, is the temporal center of the pulse.

The sinusoidal envelope is defined as:

0 if t < to,
sin? (g’((t‘j‘:]))) ifty <t <t
E(t)=6p41 ifte <t < te, (8.95)
cos? (;((ti__tt‘:z))) ifty <t<t,
0 ift, <t

where again & is the peak field strength, t; and ¢, define the interval where the field strength increases, and f.; and ¢,
define the interval where the field strength decreases. Figure 8.3 shows the general form of the envelope functions and
the meaning of the temporal parameters t, t., t2c and t,.

8.16.3 Field functions

The field function f(t) is defined as: A
f(t) — el(wo(t_tc)""/’), (896)

where wy is the central frequency and ¢ is the phase of the pulse. Even though the laser field is complex in this
expression, in the propagation of the electronic wave function in SHARC only the real part is used.

230

SHARC Manual 8 Methods and Algorithms | 8.17 Laser interactions

a) Gaussian

W

= te

w 1

[

o

o) 1

E 1

> 1

= 1

w 1

1
b) Sinusoidal

o
~ to te te2 te
b\) 1 1 1 1
[9) | 1
8- 1 1
T) 1 1
> ! 1
c 1 1
w 1 1

Time t

Figure 8.3: Types of laser envelopes implemented in laser.x.

8.16.4 Chirped pulses

In order to apply a chirp to the laser pulse I(t), it is first Fourier transformed to the frequency domain, giving the
function /(w). The chirp is applied by calculating:

P (o) = i(w)e—i[h|w—wo|+%<w—wo>2+%3<w—wo>3+’;—3(w—wo>4]

(8.97)

The chirped laser in the time domain [’(t) is then obtained by Fourier transform of the chirped pulse I (w).

8.16.5 Quadratic chirp without Fourier transform

If 1aser.x was compiled without the FFTW package, the only accessible chirps are quadratic chirps for Gaussian pulses:

1() =86e*ﬁ’(t7tc)2e7i(wo(tftc)+“72(tftc)2+¢) (8.98)
4In2
B = FWHME (8.99)
1
m— 8.100
1 4p? (8.100)
b
4 =——— (8.101)
4_ﬁ2 + b2

1
&) =Eg | ———— 8.102
070 \/ 2ibyB + 1 (8.102)

Other chirps are only possible with the Fourier transformation.

8.17 Laser interactions

The laser field € is included in the propagation of the electronic wave function. In each substep of the propagation, the
interaction of the laser field with the dipole moments is included in the Hamiltonian. The contribution V; is in each
time step added to the Hamiltonian in equations (8.193) or (8.198), respectively:

Vi=-Re(y; - €), (8.103)
i
=M @)+~ (M (4 A — MO () (8.104)
€; =€ (t + iAt) (8.105)
n

231

SHARC Manual 8 Methods and Algorithms | 8.18 Linear/Quadratic Vibronic Coupling Models

where i, n t and At are defined as in section 8.33.

8.17.1 Surface Hopping with laser fields

If laser fields are present, there can be two fundamentally different types of hops: laser-induced hops and nonadiabatic
hops. The latter ones are the same hops as in the laser-free simulations, and demand that the total energy is conserved.
The laser-induced hops on the other hand demand that the momentum (kinetic energy) is conserved. Hence, SHARC
needs to decide for every hop whether it is laser-induced or not.

Consider a previous state @ and a new state 5. Currently, the hop is classified based on the energy gap AE = | Eziag _Egiag |
and the instantaneous central energy of the laser pulse w. The hop is assumed to be laser-induced if

IAE — | < W, (8.106)

where W is a fixed parameter. W can be set using the input keyword laserwidth.

If a hop has been classified as laser-free, the momentum is adjusted according to the equations given in section 8.13.

8.18 Linear/Quadratic Vibronic Coupling Models
In the vibronic coupling model [102] the diabatic energy and coupling matrix V is constructed as

V(0) = Vo (0)1+W(Q), (8.107)

where VO(Q) is the reference potential and W(é) includes the state-specific vibronic terms.

Within SHARc, the reference potential is chosen to be a harmonic oscillator. The reference potential is expressed in
dimensionless mass-frequency-scaled normal coordinates, which can be computed from the Cartesian coordinates r4 as

Qi = Vi » KaivMa (rA - riff) (8.108)
A

where w; is the frequency of normal mode i, M, is an atomic mass, and K,; denotes the conversion matrix between
mass-weighted Cartesian and normal coordinates. Using these coordinates, the harmonic reference potential is given as

Vo(Q) = Z %Q?- (8.109)

In the case of the quadratic vibronic coupling model, one additionally considers the following state-specific terms that
constitute the W matrix.

Wea(Q) = €+ D 1V Qs+ > 117 010, (8.110)
i ij

Wap(Q) = ap + § AP0+ E yl-(fﬁ)Qin, a#p (8.111)
i ij

Here the €, are the vertical excitation energies, the 1,5 are the SOC constants, and the Ki(a) and)tl.(aﬁ) are termed

intrastate and interstate linear vibronic coupling constant [102]. The yl.(;xﬁ) terms are quadratic vibronic coupling
constants, where there are different types (inter/intra-state as well as quadratic/bilinear).

Within SHARc4, the SOCs can also have a linear dependence:
Sep(0) = nap +). AP Q; (8.112)

These are called lambda_soc in the LVC. template file.

Also within SHARCY, one can use LVC in the presence of solvent point charges, in an electrostatic embedding fashion [36].
Here, a solvent-charge-dependent term is added to W (including the diagonal aa):

WEMM(G7,) = Wep(D) + D @b D > Pl Taps(Ras7s) (8.113)
b a p

232

SHARC Manual 8 Methods and Algorithms | 8.18 Linear/Quadratic Vibronic Coupling Models

where 7 is the vector of the point charge coordinates, g collects the point charge values, and the sum is evaluated in
real space, not in normal mode coordinates (therefore the equation shows R rather than é) Here, T is the geometric
tensor [36] that is computed from the positions of all involved atoms, and P*# is the tensor of the multipole charges for
the state density (aa) or transition density (af). For each af, there are 10n,4,, multipole charges.

Note that the solvent-dependent term is computed considering the relative orientation of the current and reference
geometry, by means of the Kabsch algorithm.

8.18.1 Obtaining LVC parameters from ab initio data

All LVC parameters are either constant or linear, implying that they can be obtained from either a single ab initio

computation or from some first derivative. The following equations show how the parameters €4, 7744, X;), and A(aﬁ)
are obtained.

The parameters €, are simply the vertical excitation energies at the reference geometry:
= HMOH(Q = 0) = HMCH (ref) — pref, (8.114)

where E™ is some reference energy. Likewise, the SOC parameters Nap are simply the SOC matrix elements at the
reference geometry:
Nap = Hiyg ' (Q = 0) = Hyg M (7). (8.115)

These two equations hold because in the LVC model we assume that at the reference geometry diabatic basis and MCH

basis coincide.

The intrastate linear vibronic coupling term K‘i(a) is the gradient of the diabatic energy of state n. Since at the reference

geometry, diabatic and MCH basis coincide, this is equivalent to the gradient of the corresponding MCH state. This
gradient needs only be transformed from Cartesian coordinates into normal mode coordinates:

K aHMCH
K@ Al e (8.116)

= G 2

TA y=pref

A(aﬁ)

The interstate linear vibronic coupling term is the gradient of the diabatic coupling between states n and m.

If analytical nonadiabatic coupling vectors are available, these parameters can be obtained—similarly as the K(a)

parameters—by coordinate transformation of the energy-difference-scaled nonadiabatic coupling vector:
(af) _ Kai MCH (ref MCH (ref
AP @ Z i (HW Fref) — HYICH (e >) <¢n ¢m>

If gradients or nonadiabatic coupling vectors are not available, then the Kl.(a) and /ll.(aﬁ) parameters can be obtained

numerically. To this end, one performs ab initio calculations at displaced geometries +6Q;, where

(8.117)

F=pref

+i _ _ref 5QiKAi
Py =Ty —.
VMaw;
The ab initio calculations at these geometries provide the energies H, yacH(rf‘i) and the wave function overlaps S

(lﬁMCH(_’ref)WMCH(ri")). From these data, the K;a) values can be computed as:

(8.118)

+i _

af —

(@) _ 1 +i >+ +i —i =>—i -1
5= 2500 ((S HMH () (S)T) 4 — (STHMH(F)(S)T)W), (8.119)
and the Agaﬁ) as
(aﬁ) +i 2+ +i i —i i
A = 5o ((STHMOH) (8T (5THVH) (51)T) 1) (8.120)

The Agaﬁ) terms are evaluated similarly from the diabatized SOCs. The multipolar charges are evaluated by means of a
RESP fit; the diabatic multipolar charges in the LVC template file are assumed identical to the charges at the reference
geometry.

233

SHARC Manual 8 Methods and Algorithms | 8.19 Normal Mode Analysis

8.19 Normal Mode Analysis

The normal mode analysis can be used to find important vibrational modes in the excited-state dynamics.[64, 65]

Given a matrix Q containing the normal mode vectors and a reference geometry R™', calculate for each trajectory

Ri(t) = Q7'(Ri(t) — R (8.121)

to obtain the displacements in normal mode coordinates. Averaging over the displacements gives the average trajectory:
1 Ntraj

R(t) = Ri(1) (8.122)
Ntraj i=1

which should contain only coherent motion, since random motion cancels out in an ensemble.
A measure for the coherent activity in a mode is the standard deviation (over time) of the average trajectory:
2

kend kend
1 _ 1 _
Ry = Y RGAD—|—— Y R(kAD| (8.123)
coh kend - kstart K=k kend - kstart K=k

start start

where kgtart and kepg are the start and end time steps for the analysis. Reon a vector with one number per normal mode,
where larger number mean that there is more coherent activity in this mode.

A measure for the total motion in a mode is the total standard deviation:

1 Niraj kend 1 Niraj kend
A Ri(kADY? | ———— Ri(kAt) | . (8.124)
total Ntraj(kend - kstart) ; k; . Ntraj(kend - kstart) ; k; \

8.20 Optimization of Crossing Points

With orca_External it is possible to optimize different kinds of crossing points. In all cases, these optimizations involve
the energies of the lower state E; and upper state E,, the energy difference AE = E,, — Ej, the gradients of the lower
state g; and upper state g,,, the gradient difference vector d, and/or the nonadiabatic coupling vector t.

The simplest case is the optimization of minimum-energy crossing points between states of different multiplicity,
because in this case the nonadiabatic coupling vector is zero and the branching space is one-dimensional. In this case
[68], the energy to optimize is E, inside the intersection space, and AE inside the branching space. The corresponding
gradient to follow F can be written as:

gu-d

d
- Sdr (B B) g

d]’

More complicated is the optimization of a conical intersection, between states of the same multiplicity, because the
branching space is two-dimensional. The corresponding gradient to follow F is:

gu'd gut d
- d- t+2(E, — E)—,
1 ad Tt 2T

F=g, (8.125)

F=g, (8.126)

where d and t need to be orthogonalized.
If no nonadiabatic coupling vector is available because the interface cannot deliver them, conical intersections are
optimized with the penalty function method of Levine et al. [69]. The effective energy to optimize is defined as:
El+E, (E.—E)*
+0 .
2 E,-E+a

Eeff = (8.127)
This equation is a combination of the two main targets of the optimization, the average energy and the energy gap. The
parameter o allows prioritizing either of the two, with a larger ¢ leading to smaller energy gaps. The parameter « is
there to avoid the discontinuity at E,, = E;. The corresponding gradient to follow F is:

E, - E 1(E, - E)2 q

_mre, | B-B 1
E,—-E+a 2\E,-E+a

2

F 20 (8.128)

Note that o and a might strongly influence the quality (i.e., with the penalty function method the optimization will not
converge to the true minimum energy conical intersection point) of the result and the convergence behavior. A large o
and a small ¢ will improve the quality of the result, but make the optimization harder to converge.

234

SHARC Manual 8 Methods and Algorithms | 821 Phase tracking

8.21 Phase tracking

8.21.1 Phase tracking of the transformation matrix

A Hermitian matrix HMH can always be diagonalized. Its eigenvectors form the rows of a unitary matrix U, which can

be used to transform between the original basis and the basis of the eigenfunctions of H.
HYee = yTHMCHy, (8.129)

However, the condition that U diagonalizes H'“! is not sufficient to define U uniquely. Each normalized eigenvector u

can be multiplied by a complex number on the unit circle and still remains a normalized eigenvector.

Hu = hu and uu=1 (8.130)
leads to ‘ A ‘ A
H (e‘¢u) = ¢ (Hu) = e?hu=h (e‘¢u) (8.131)
and :
(ei‘ﬁu) (ei¢’u> =u'e Pefu=ulu=1 (8.132)

Thus, for all diagonal matrices ® with elements Sﬁaei¢ﬁ , also the matrix U’ = U® diagonalizes HMH (if U diagonalizes
it).

The propagation of the coefficients in the diagonal basis is written as (see section 8.33):

c¥98 (¢t + Ar) = UT (¢ + A RMOU (¢ + At, 1)U (2) %28 (1) (8.133)

Rdiag (£+Az,2)

where U(t) and U(t + At) are determined independently from diagonalizing the matrices HMH () and HMH (¢ + At),
respectively. However, depending on the implementation of the diagonalization, U(t) and U(¢+ At) may carry unrelated,
random phases. Even if HMCH () and HMH (¢ + At) were identical, U(t) and U(t + At) might still differ, e.g.:

U(t):((l) (1)) and U(t+At)=((i) fl) (8.134)

The result is that the coefficients ¢ pick up random phases during the propagation, leading to random changes in the
direction of population transfer, invalidating the whole propagation.

In order to make the phases of U(t) and U(¢ + At) as similar as possible, SHARC employs a projection technique. First,
we define the overlap matrix V between U(t) and U(t + At):

V=U'(t+ AH)U(¢) (8.135)

For At = 0, clearly
U(t+At)V =U(1) (8.136)

and V can be identified with the phase matrix .

For At # 0, we must now find a matrix P so that
U(t+At)P =U'(t + At) (8.137)
still diagonalizes HCH (¢ + At), but which minimizes the phase change with regard to U(t). The matrix P has elements
Pga = VoS (Eg — Eq) - (8.138)

where Ej is the f-th eigenvalue of HMCH (1 + Ap).

Within the SHARC algorithm, the phase of U(t + At) is adjusted to be most similar to U(¢) by calculating first V,
generating P from V and the eigenvalues of HM“H (¢ + At) and calculating the phase-corrected matrix U’ (t + At) as
U(t + At)P.

235

SHARC Manual 8 Methods and Algorithms | 822 Random initial velocities

8.21.2 Tracking of the phase of the MCH wave functions

Additionally, within the quantum chemistry programs, the phases of the electronic wave functions may change from
one time step to the next one. This will result in changes of the phase of all off-diagonal matrix elements (spin-orbit
couplings, transition dipole moments, nonadiabatic couplings). SHARC has several possibilities to correct for that:

« The interface can provide wave function phases through QM. out.

« If the overlap matrix is available, its diagonal contains the necessary phase information.

« Otherwise the scalar products of old and new nonadiabatic couplings and the relative phase of SOC matrix
elements can be used to construct phase information.

8.22 Random initial velocities

Random initial velocities are calculated with a given amount of kinetic energy E per atom a. For each atom, the velocity
is calculated as follows, with two uniform random numbers 6 and ¢, from the interval [0, 1[:

cos 6sin ¢

v =+/2E/m,| sin 0 sin ¢ (8.139)

cos¢

This procedure gives a uniform probability distribution on a sphere with radius /2E/m,.

Note that the translational and rotational components of random initial velocities are not projected out in the current
implementation.

Random initial velocities can be requested in the input with veloc random E, where E is a float defining the kinetic
energy per atom (in eV).

8.23 Representations

Within SHARc, two different representations for the electronic states are used. The first is the so-called MCH basis,
which is the basis of the eigenfunctions of the molecular Coulomb Hamiltonian. The molecular Coulomb Hamiltonian
is the standard electronic Hamiltonian employed by the majority of quantum chemistry programs. It contains only the
kinetic energy of the electrons and the potential energy arising from the Coulomb interaction between the electrons
and nuclei.

AN = K, + Vee + Ve + Vi, (8.140)

With this hamiltonian, states of the same multiplicity couple via the nonadiabatic couplings, while states of different
multiplicity do not interact at all.

The second representation used in SHARC is the so-called diagonal representation. It is the basis of the eigenfunctions
of the total Hamiltonian.
A = g+ {7 (8.141)

The term H:lo P contains additional couplings not contained in the molecular Coulomb Hamiltonian. The most common
couplings are spin-orbit couplings and interactions with an external electric field.
Hy" = B — pe™ (8.142)

Both of these couplings introduce off-diagonal elements in the total Hamiltonian. Thus, the eigenfunctions of the
molecular Coulomb Hamiltonian are not the eigenfunctions of the total Hamiltonian.

Within SHARc, usually quantum chemistry information is read in the MCH representation, while the surface hopping is
performed in the diagonal one.

8.23.1 Current state in MCH representation

Oftentimes, it is very useful to know to which MCH state the currently active diagonal state corresponds. If FI:IO " is

small or the state separation is large, then each diagonal state approximately corresponds to one MCH state. Only in
the case of large couplings and/or near-degenerate states are the MCH states strongly mixed in the diagonal states.

236

SHARC Manual 8 Methods and Algorithms | 824 Sampling from Wigner Distribution

In order to obtain for a given time step from the currently active diagonal state f§ the corresponding MCH state «, a

diag _ S

vector 48 with ¢; © = d;p is generated. The vector is transformed into the MCH representation

MCH = yediag, (8.143)

The corresponding MCH state « is the index of the (absolute) largest element of vector cMCH.

8.24 Sampling from Wigner Distribution

The sampling is based on references [55, 56].

Besides the equilibrium geometry R.q, the optimization plus frequency calculation provides a set of vibrational frequen-
cies {v;} and the corresponding normal mode vectors {n;}, where i runs from 1 to N = 3n,om.

The normal mode vectors need to be provided in terms of mass-weighted Cartesian normal modes, in atomics units
(Bohrs times square root of electron mass, i.e., ag - 4/m.). Most quantum chemistry programs follow different conventions
when writing MOLDEN files. MoLPRO and MoLcas write these files with unweighted Cartesian normal modes, with
units of ag (Bohrs). Gaussian, TurBoMOLE, Q-CHEM, ADF, and Orca employ what could be called the "Gaussian
convention”, which are normalized Cartesian normal modes. COLUMBUS uses yet another convention in the output
of their suscal.x module. The script wigner.py automatically transforms these different conventions; it does so by
applying all possible transformations to the input data until it finds one transformation which produces an orthonormal
normal mode matrix. The latter one is then used for the Wigner sampling.

In order to create an initial condition (R, v), the following procedure is applied. Initially, Ry = Req and vo = 0. Then, for
each normal mode i, two random numbers P; and Q; are chosen uniformly from the interval [—5, 5]. The value of a
ground state quantum Wigner distribution for these values is calculated:

W; = e PitQD) (8.144)

W; is compared to a uniform random r; number from [0, 1]. If W; > r;, then P; and Q; are accepted. Subsequently, the
coordinates: 0
R,=R;_1 + \/?Vini (8145)

and velocities

PJvi
n;

Vi=Vj_1+ W (8.146)
are updated. The random number procedure and updates are repeated for all normal modes, until (Ry, v)y is obtained,
which constitutes one initial condition. Finally, the center of mass is restored and translational and rotational components
are projected out of v. The harmonic potential energy is given by:

1
Epot = 5 Z v;0° (8.147)

i

8.24.1 Sampling at Non-zero Temperature

In the case of a non-zero temperature, the molecule might not be in the vibrational ground state of the harmonic
oscillator, but rather in an excited vibrational state. For a given mode i, the probability to be in any given vibrational
state j (j = 0 is the ground state) is:

]

_y \71
o _ .y €
wij=e ¥ (1—ey) , (8.148)

where y is v; divided by kgT. In order to find the vibrational state for mode i, a random number is drawn (from [0, 1])
and used as in equation (8.154).

The displacements and velocity contributions for mode i in state j are then obtained as in equations (8.145) and (8.146),
except that the Wigner distribution for state j is calculated as:

J

237

SHARC Manual 8 Methods and Algorithms | 825 Scaling

8.25 Scaling

The scaling factor (keyword scaling) applies to all energies and derivatives of energies. Hence, the full Hamiltonian is
scaled, and the gradients are scaled. Nothing else is scaled (no dipole moments, nonadiabatic couplings, overlaps, etc).

8.26 Seeding of the RNG

The standard Fortran 90 random number generator (used for sharc.x, but not for the auxiliary scripts) is seeded by a
sequence of integers of length n, where n depends on the computer architecture. The input of SHARC, however, takes
only a single RNG seed, which must reproducibly produce the same sequence of random numbers for the same input.
In order to generate the seed sequence from the single input x, the following procedure is applied:

 Query for the number n,

« Generate a first seed sequence s with s; = x + 37i + 1742,

« Seed with the sequence s,

« Obtain a sequence r of n random numbers on the interval [0, 1],

« Generate a second seed sequence s’ with s] = int (65536(r; — %))

« Reseed with the sequence s’.

The fifth step will generate a sequence of nearly uncorrelated numbers, distributed uniformly over the full range of
possible integer values.

8.27 Selection of gradients and nonadiabatic couplings

In order to increase performance, it is possible to omit the calculation of certain gradients and nonadiabatic couplings.
An energy-gap-based algorithm selects at each time step a subset of all possible gradients and nonadiabatic couplings

to be calculated. Given the diagonal energy E?iag of the current active state £, the gradient gh“"! of MCH state « is

calculated if: A
‘E?ag - EQ,ACH‘ < Egrad (8.150)

where €444 is the selection threshold.

KMCH

fa is calculated if:

Similarly, a nonadiabatic coupling vector

‘Egiag - EQACH| < €nac and ‘E?ag - E%CH| < Enac (8.151)

with selection threshold .

Neither gMH nor K%AUSH are ever calculated if o or f are frozen states.

There is only one keyword (eselect) to set the selection threshold, so egrad and e, are the same in most cases.

8.28 State ordering

The canonical ordering of MCH states of different S and Mg in SHARC is as follows. In the innermost loop, the quantum
number is increased; then Ms and finally S. Example:

nstates 3 0 3

In this example, the order of states is given as:

238

SHARC Manual 8 Methods and Algorithms | 8.29 Surface Hopping

Number Label S Ms n
1 S 0 0 1
2 5 0 0 2
3.8 0 0 3
4 T 2 -1 1
5 T, 2 -1 2
6 T, 2 -1 3
7 T 2 0 1
8 T 2 0 2
9 T 2 0 3

10 T 2 +1 1
2 2

—_
—_
~

+

w

12 T 2 +1

The canonical ordering of states is for example important in order to specify the initial state in the MCH basis (using
the state keyword in the input file).

Note that the diagonal states do not follow the same prescription. Since the diagonal states are in general not
eigenfunctions of the total spin operator, they do not have a well-defined multiplicity. Hence, the diagonal states are
simply ordered by increasing energy.

8.29 Surface Hopping

Given two coefficient vectors ¢#28(t) and c¢%28(¢ + At) and the corresponding propagator matrix R348 (¢ + At, t), the
surface hopping probabilities are given by

. 2 . . *

cdlag(t+At)| Re [ci‘ag(HAt)R* (cdmg(t))]

5 ap \p

Pposw =|1= X —— - . (8.152)
iag iag _ iag * 1ag

ch (t)) & (t)| Re[cﬁ (t+At)Rﬁﬂ(cﬁ (t))]

where, however, Pg_,5 = 0 and all negative Pg_,, are set to zero. This equation is the default in SHARC, and can be used
with hopping_procedure sharc.

Alternatively, the hopping probabilities can be obtained with the “global flux surface hopping” method by Prezhdo and
coworkers [51]. The equation is:

diag 2 di di
P (t+0) lea™ (1 + AN ~ e (I (5.15)
—a — - 2 0 pr . .
Cg,lag(t)‘ ZimaX 0, _(lcilag(t + At)|2 - |Cilag(t)|2)

As above, Pg_,5 = 0 and all negative Pg_,, are set to zero. This equation and can be used with hopping_procedure
gfsh.

In any case, the hopping procedure itself obtains a uniform random number r from the interval [0, 1]. A hop to state «
is performed, if

a-1 a—1
D Ppi<r < Ppat) Ppo (8.154)
i=1 i=1

See section 8.13.1 for further details on how frustrated hops (hops according to the hopping probabilities, but where not
enough energy is available to execute the hop) are handled.

8.30 Self-Consistent Potential Methods

In trajectory surface hopping (TSH) methods, the trajectory is propagating on a single potential energy surface at
each segment of time. Contrary, in the self-consistent potential (SCP) methods, trajectories are propagating on a SCP
which is an "averaged” potential. The SCP methods are also self-consistent in terms of electronic and nuclear equations
of motion (EOMs), and therefore, does not suffer from the notorious frustrated hops problem of TSH. The starting

239

SHARC Manual 8 Methods and Algorithms | 830 Self-Consistent Potential Methods

point of advanced SCP methods like CSDM is semiclassical Ehrenfest (SE), which is derivable from the time-dependent
Schrodinger equation (TDSE).

Consider a wave function that is a product of electronic and nuclear wave functions
¥ (1, R, t) =0 (r, £;R) y™° (R, 1) . (8.155)

Inserting the above molecular wave function into the TDSE, employing the independent trajectory approximation, and
treating electrons as quantum particles by expanding the electronic wave function in a general basis (GB),

Netales

oee= " o8 (1) ¢ (R(D)). (8.156)

=

With some mathematical manipulation, one obtains the equation of motion of generalized semiclassical Ehrenfest (GSE)
dynamics. The electronic equation of motion of GSE is identical to that of surface hopping,

N; states

d dlag elec[dlag] diag diag) diag
dt (1) = Hpq e (1) — ; (Taﬁ)Cﬂ (t). (8.157)

Nuclear equation of motion involves two terms, namely, the adiabatic force and nonadiabatic force.

Pdlag pAldiag] FNA[dlag] (8.158)

where adiabatic force and nonadiabatic force are, respectively,

Nstates elec[diag]
Aldiag] _ _ diag 0Hyq
F = Za: Paa — o (8.159)
and
Nitates di Jec[diag] Jec[diag] i
di 14 elec|dia; elec|dia, 13,
ap
where K, 4i28 i< the nonadiabatic coupling vector (NAC). Alternatively, one can use an effective nonadiabatic coupling

vector (effective NAC), Gups which is defined as a combination of the difference gradient vector and the velocity vector:

diag elec[diag] elec[diag] dlag diag
Nitates pP (Haa -H) G
FNAldiag] _ Z Re Ba dlagﬁﬂ af “ap (8.161)
Gost R

8.30.1 Decoherence in SCP methods

Whereas TSH dynamics involve the coherent propagation of a trajectory on a single potential energy surface, which is
stochastically switched, SCP methods include decoherence by considering a combination of coherent and decoherent
propagation of a trajectory on the self-consistent potential. This approach leads to the so-called decay of mixing methods.
In this framework, the electronic equation of motion is:

deq | deq(2)
dt | dr

(8.162)

deq(t)]
dt |4

co

where the coherent term is the same as in the GSE electronic equation of motion (as well as in the TSH equation). The
decoherent contribution is introduced to drive the density matrix elements of the state 5, which survives to decoherence
(called the pointer state), to unity, while all other density matrix elements decay to zero within a relaxation time known
as the decoherence time:

Zraﬁca(t) a#p
[dﬁ (8.163)

dtL: N peet) _
) %ﬁzrﬂ?“) pop(n () @ =P

240

SHARC Manual 8 Methods and Algorithms | 830 Self-Consistent Potential Methods

This decoherent term also determines a force in the equation of motion of the nuclei and drives the trajectory to a pure
electronic state (i.e., the pointer state):

F= [F]CO + [F]de (8164)

where [F], is identical to the GSE nuclear equation of motion, and the decoherent force contribution is:

N —
[Flg = Z P ”‘“l(;) (Haa — Hyp) Sup (8.165)

T S Vv
azfp & ap

where s is the decoherence vector.[40, 96]
Switchung Procedure The pointer state is switched during the dynamics with a switching probability that can be

computed in three different ways. In the natural decay of mixing (ndm) method [96], the decay of mixing electronic
density is used to calculate the switching probability according to the fewest-switches criterion:

(dppe/dt) dt dt,o) = max —(d (p; i +p§2‘) /dt) dt,o . (8.166)

Pg ¢ = max |-
Ppp Ppp

The self-consistent decay of mixing (scdm)[40] method, instead, locally eliminates the decoherent contribution in the

electronic density within the switching algorithm:

(dpgs, /de) e
Ppq =max|-—~—— T 0o (8.167)
Ppp

In contrast to scdm, in the coherent switching with decay of mixing (csdm)[30] method, the decoherent contribution to
the electronic density matrix used in the switching probability is switched off over an entire region of strong coupling:

(dppa/dt) dt O) (8.168)

Pg ¢ = max |- —
Ppp

where pg, are the density matrix elements associated to the coherent amplitudes and they are initialized to the decay

+ pg‘;) at each local minimum of the coupling strenght defined by:

co

of mixing quantities (p e

N
Dg(t) = Z|Kaﬁ| (8.169)

a#f

Decoherence Time The decoherence time in equation (8.163) can be computed using three different approaches.
The energy-based decoherence (EDC) correction computes 7,4 as:

h C
D€ = 1+— (8.170)
@f "~ E,—Ep T

"where T is the total kinetic energy, and C is a parameter usually set to 0.1 Hartree [94]. Alternatively, 7,4 can be
evaluated in the SCDM framework using the internal vibrational kinetic energy (T5;) instead of the total kinetic energy:

h h
SCDM
=C + 8.171
o (Ea—Eﬁ 4Tvib) ®171)

where C is a user-defined parameter, usually set in the range of 6-9 [40]. The csdm method, instead, accounts for
momentum constraints in the decoherence process:

241

SHARC Manual 8 Methods and Algorithms | 831 Effective Nonadiabatic Coupling Vector

i E
LCSDM _ 14 2 (8.172)
ap Eq - Ep Tom
where E, is 1 Hartree and
(P n " Sap '7)2
Ty = Y L b (8.173)

with Py, $q.,, and M, representing the nth component of the nuclear momentum, the 7th component of the decoherence
direction, and the atomic mass corresponding to the nth component of the nuclear degree of freedom, respectively.[30]

8.31 Effective Nonadiabatic Coupling Vector

The effective nonadiabatic coupling vector G, is a mixture of difference gradient vector and velocity vector.
Gap = gap +cv (8.174)
where
0H,e ©OHgpp
Bap = ~T5n
JdR JdR

and c is a coefficient. The coefficient c is determined by requiring that the dot product between effective nonadiabatic
coupling vector and velocity vector equals time derivative coupling:

(8.175)

Gop - v=Typ (8.176)

8.32 Velocity Verlet

The nuclear coordinates of atom A are updated according to the Velocity Verlet algorithm [108], based on the gradient
of state § at R(t) and R(¢ + At):

aa(t) = - — Vi, Ep(R(1)) (8.177)
ma
an(t +At) = — — Ve, E5(R(t + Ab)) (8.178)
ma
Ru(t+At) =Ry (1) + va(t)AL + %aA(t)Atz (8.179)
VA(t+AE) =va(t) + % [au(t) +au(t + AD)] At (8.180)

Currently, there are no other integrators for the nuclear motion implemented in SHARC.

8.33 Wavefunction propagation

The electronic wave function is needed in order to carry out surface hopping. The electronic wave function is expanded
in the basis of the so-called model space S, which includes the few lowest states |¢/}/H!) of the multiplicities under
consideration (e.g. the 3 lowest singlet and 2 lowest triplet states).

Wa(t) = > cNCH[yheH) (8.181)

aeS
All multiplet components are included explicitly, i.e., the inclusion of an MCH triplet state adds three explicit states to
the model space (the three components of the triplet).

Within SHARc, the wave function is represented just by the vector ¢M“H. The Hamiltonian HMH is represented in
matrix form with elements:
MCH _ <¢MCH
e B

Ttotal
Hel

QACH> (8.182)

242

SHARC Manual 8 Methods and Algorithms | 8.33 Wavefunction propagation

From the MCH representation, the diagonal representation can be obtained by unitary transformation within the model
space S (UTHMCHU = H28 and UTcMCH = cdiag).

Fa(t) =) i 3iag> (8.183)
aeS
and
dlag < I//dlag Htotal d1ag> (8.184)
. .

The propagation of the electronic wave function from time ¢ to ¢+ At can then be written as the product of a propagation
matrix with the coefficients at time ¢:

cB28 (¢ 4 Ar) = R (¢t + Ar, 1)ct28 (1) (8.185)

or
ct98 (¢t + At) = UT (¢ + A)RME (¢ 4+ At, 1)U (2) 428 (1) (8.186)

RAAg (t+AL,t)

In order to calculate RMCH (¢ + At, t), SHARC uses (unitary) operator exponentials.

8.33.1 Propagation using nonadiabatic couplings

Here we assume that in the dynamics the interaction between the electronic states is described by a matrix of time-
derivative couplings TMCH(¢), such that

() <¢ﬁ<t)

¢a(t)> (8.187)

or

(ro) = <¢ﬁ(t>

In equation (8.187), the time-derivative couplings are directly calculated by the quantum chemistry program (use
coupling ddt in the SHARC input), while in (8.188) the matrix TMCH(t) is obtained from the scalar product of the
nuclear velocity and the nonadiabatic coupling vectors (use coupling ddr in the input).

lﬁoc(l‘)> =v Ky (8.188)

The propagation matrix can then be written as

t+At

RMOH (¢ 4 At 1) = Texp —/ (%HMCH(T)+V(T)-KMCH(T))dT (8.189)

with the time-ordering operator <. For small time steps At, HMCH(7) and KM°H(7) can be interpolated linearly

HMCH () 4 2 HMCH(t+At) +v(t) - KMCH(t)+v(t+At)KMCH(t+At)) At] (8.190)

RMCH (¢ 4 At) = exp [(h

And in order to have a sufficiently small time step for this to work, the interval (¢, t + At) is further split into subtime
steps At = %.

RMCH (¢ 4 At 1) =1_[R,~ (8.191)
i=1

R; =exp |- (%H, +v- Ki) AT] (8.192)

H; =HMCH (1) + L (HMCH(t + AL - HMCH(t)) (8.193)

v-K; =v(t) - KMCH(p) + i (v(t + AL -KMCH(s 4 AL —v(E) - KMCH(t)) (8.194)

243

SHARC Manual 8 Methods and Algorithms | 8.33 Wavefunction propagation

8.33.2 Propagation using overlap matrices - Local diabatization

In many situations, the nonadiabatic couplings in KM®H are very localized on the potential hypersurfaces. If this is the
case, in the dynamics very short time steps are necessary to properly sample the nonadiabatic couplings. If too large
time steps are used, part of the coupling may be missed, leading to wrong population transfer. The local diabatization
algorithm gives more numerical stability in these situations. It can be requested with the line coupling overlap in the
input file.

Within this algorithm, the change of the electronic states between time steps is described by the overlap matrix
SMCH (¢ ¢ 4+ Ar)

(SMCH(t,t+At))ﬁa = (YD)t + AL)) (8.195)

With this, the propagator matrix can be written as

n
RMCH (¢ 4 At 1) =SMCH(1 ¢ + Af)T l—[R; (8.196)
i=1
R; =exp —%HiAT] (8.197)
H, =HVCH (1) + L (HﬁffH - HMCH(t)) (8.198)
n
HMCH —gMCH (¢ 4 4 AtyHMH (¢ + AD)SMCH (1,1 4+ AT (8.199)

8.33.3 Propagation using overlap matrices - Norm-preserving interpolation

Alternatively, one can use accurate interpolation of time derivative coupling from overlap matrices. Propagating the
coefficients can be written as,

n

MCH
[]7ei

I=1

o9 (1 + At) =U" (+ At) U (1) et (1), (8.200)

where n is the number of substeps (which can be set up by keyword nsubsteps), and [is the index of substep, with
substep propagator Pg[ICH defined as,

i At
P = exp (— (iHl + T,) —) (8.201)
, i n
where,

l
H, = Helec[MCH] (t) + = (Helec[MCH] (t + At) _ Helec[MCH] (l’)) i (8.202)
n

i.e., one linearly interpolates the MCH Hamiltonian HelecIMCH] hetween time ¢ and ¢ + At.

In SHARC3.0, the T; has variants definitions, and these variants define most of the options available in SHARC3.0 keyword
eeom. One can have the following possible definitions:

TMCH (1) constant interpolation
T, = TMCH (1) + é (TMCH (t + At) — TMCH (1)) linear interpolation (8.203)
TMCH (t + lATt) norm preserving interpolation

where TMCH (t + lATt) is the TDC at time ¢ + IAT[which is not computed from electronic structure software, but instead

it is from a norm preserving interpolation [93]. During time ¢ and t + At, TDC at time 7 writes

) = (AR (1) -0r)

P (x; R(t))> , (8.204)

where © (7") is a time-dependent transformation matrix that interpolates the MCH (adiabatic) electronic wave functions
between time ¢ and t + At:
g (R (T) = © (T) '™ (1R (1)) (8.205)

244

SHARC Manual 8 Methods and Algorithms | 8.34 Time Derivative Couplings and Curvature Approximation

with
—t
Ouq (T7) = cos (cos_l (S%CH (t,t+ At)) %) (8.206)
and
44 (T) = sin |sin (Saﬁ (t,t+At)) | (8.207)
where Sg/IﬁCH is the overlap integral defined in equation equation (8.195).

8.34 Time Derivative Couplings and Curvature Approximation

One of the key ingredients in propagating electronic and nuclear EOMs for GSE and electronic EOM for TSH is time
derivative coupling (TDC) in MCH representation. And TDC serves the role as the electronic interstate coupling in the
nonadiabatic dynamics. Because TDC cannot be computed directly from electronic structure software, TDC is evaluated
by postprocessing quantum chemistry data. There are three ways to compute TDC: NAC-based, overlap-based, and
curvature-driven. These three ways of computing TDC corresponds to the three types of algorithms respectively. And
controlling the method of TDC evaluation in SHARC3.0 is done by using keyword coupling.

NAC-based TDC The NAC-based TDC is computed according to equation (8.188), which means a requirement of
computing NACs KMCH in MCH representation from quantum chemistry software. Notice that KM“H computational
cost scales quadratically as the number of electronic states involved. Therefore it is expensive. In addition, it limits the
choices of electronic structure theory, because there is only very limited number of electronic structure theories for
which the analytical implementation of NAC is available. Using NAC-based algorithm is enabled by using keyword
coupling nacdr or coupling ddr.

Overlap-based TDC There are three ways to compute overlap-based TDC, all based on overlap integrals defined in
equation (8.195). Therefore, to compute overlap-based TDC, one needs to compute electronic wave functions but not
NAC:s from quantum chemistry software. Tully and Hammes-Schiffer first recognized that TDC can be evaluated based
on overlaps. And this is called the Hammes-Schiffer-Tully (HST) scheme of evaluation of TDC from overlaps:

1
T%CH (t+ At) AT (SMCH (t,t+At) — SMCH (t, t+At)) (8.208)

where ¢ is time, and At is the time step. The HST scheme is improved by considering high-order finite difference:
1
MCH ~ MCH MCH MCH MCH
Taﬁ (t+At) ~ o (35,5 (tt+At) - 35 (t,t +At) — Saﬁ (t — At t) +Sﬁa (t — At, t)). (8.209)

And TDC is most accurately evaluated by a norm-preserving interpolation (NPI) scheme

t+At
TMCH (44 = At / TMCH (7)dT, (8.210)
ap At),

where TOI:%CH (7)) is defined in equation (8.205). The current implementation of SHARC3.0 employs the NPI scheme to
compute overlap-based TDC. However, how TDC is actually used in propagation of electronic EOM is controlled by the
keyword eeom and is discussed in section 8.33.

One of the advantages of using NPI scheme over HST or high-order finite difference scheme is that it is more accurate for
a situation where the nonadiabatic coupling vector is narrowly peaked (note that NAC is related to TDC), which is often
called trivial crossings. It is also more accurate in propagating electronic EOM compared to NAC-based algorithms.

Also notice that the subtle difference between an NPI scheme to evaluate TDCs and the NPI algorithm to propagate
electronic EOM. These two are closely related but different.

Using an overlap-based algorithm is enabled by using keyword coupling overlap.

245

SHARC Manual 8 Methods and Algorithms | 8.34 Time Derivative Couplings and Curvature Approximation

Curvature-driven TDC The curvature-driven TDC is an approximated TDC that is evaluated from the curvature of
potential energy surfaces. Therefore, to compute curvature-driven TDC, one only needs to compute potential energies,
neither electronic wave functions nor NACs/overlaps are need from quantum chemistry software. As pointed out by
Baeck and An, NAC in a one-dimensional system can be approximated by

1/2
Be (VSF _ VSF)
gBacck-An _ [McH d gMCH 1 * B 1 (8.211)
@ S\ dg|"F |~ 2 dg? Vet - V;’F '
For simplicity we have defined
VSF = pelecldiag], (8.212)

where ¢ is a one-dimensional nuclear coordinate, and we have also adapted the original Baeck and An NAC to the
current notation, i.e., the original Baeck and An NAC was considering only for internal conversion processes. We
recognized that a trajectory is in fact propagating on a one-dimensional coordinate which is time. Combining this
observation with Baeck and An one-dimensional approximation of NAC gives the definition of curvature-driven TDC
(xTDC)

1/2
d2 VSF _ VSF
TMCH(t) MCH d FMCH) 1 (@ B) 1 fora > (8.213)
dt | 7P 2 dt? Vet =V '
with
TMCH () = TMCH (t) fora>p. (8.214)

Evaluation of the curvature of potential energy with respective to time can be done in two ways, namely by computing
first-order differentiation of the time derivative of potential energies from backward finite difference (which is called
gradient method), or second-order time derivative of potential energies from backward finite difference (which is called
energy method).

We first discuss the gradient method. The gradient method is controlled by using keyword ktdc_method gradient. In
thte gradient method, we employ the chain rule

dviF () aVEF (1)

T TR “R(p). (8.215)
Therefore, (8.213) can be written as
VSF(t) dVﬁSF(l‘) 12
1 d —dr dt 1
TMCH (t) -
2 dt VI (1) - VﬂSF (t)
5 N . 12
1 d(avi(t) . 1
= - 5 5 fora > f. (8.216)
2 dt VPR () -Vt (1)
If we define
AVSF (t) = V¥ (1) - VﬁSF (1) (8.217)
and o
V() . Vg @)
AVSF (1) =) R-2 ‘R, (8.218)
JR JR
then Equation (8.216) is approximated by backward finite difference as
e AVSE (1) = AVSE (1 = At) 1 12
T (t) = S5 S5 for a > p. (8.219)
At VE(t) - Vﬁ (1)

246

SHARC Manual 8 Methods and Algorithms | 8.34 Time Derivative Couplings and Curvature Approximation

Equations (8.218) and (8.219) define the gradient method. We can see that gradient method requires computation of
gradients of all electronic states.

Next we discuss the energy method. The energy method is controlled by using keyword ktdc_method energy. In

the energy method, we compute the curvature of potential energy with respective to time directly by backward finite
difference as

& (VQF (t) - VsF (t))

1
— o [AV0§§ (1) — 2AVSE (1 — A) + AVSE (¢ - ZAt)] . (8.220)
Starting from the fourth step, we can use
(Vo -vFm)
— v [zAVg; (1) = SAVSE (1 — At) + SAVSE (+ — 21) — SAVSE (¢ - 3At)] . (8.221)

Which method is more practical depends on the details of the simulation. For TSH without SOCs, only one gradient is
needed per time step. Hence, the gradient method—which requires all gradients—adds significant extra cost and thus
for TSH without SOCs it is more convenient to use the energy method. For TSH with SOCs (and without gradient
selection) or for SCP, all gradients are computed anyways, so using the gradient method does not add extra cost. Thus,
the more accurate gradient method is recommended in these cases.

Using the curvature-driven algorithm is enabled by using keyword coupling ktdc. And one can optionally use keyword
ktdc_method to select either gradient or energy method to compute KTDC. Otherwise, the default options for TSH is
ktdc_method energy, and for SCP is ktdc_method gradient.

247

Bibliography

(1]
(2]

(3]

[10]

[11]

[12]

M. Kasha: ¢ “Characterization of electronic transitions in complex molecules”. Discuss. Faraday Soc., 9, 14 (1950).

C. M. Marian: ¢ “Spin-orbit coupling and intersystem crossing in molecules”. WIREs Comput. Mol. Sci., 2, 187-203
(2012).

I. Wilkinson, A. E. Boguslavskiy, J. Mikosch, D. M. Villeneuve, H.-J. Wérner, M. Spanner, S. Patchkovskii, A. Stolow:
7 “Non-adiabatic and intersystem crossing dynamics in SO, I: Bound State Relaxation Studied By Time-Resolved
Photoelectron Photoion Coincidence Spectroscopy”. J. Chem. Phys., 140, 204 301 (2014).

S. Mai, P. Marquetand, L. Gonzélez: i “Non-Adiabatic Dynamics in SO;: II. The Role of Triplet States Studied by
Surface-Hopping Simulations”. J. Chem. Phys., 140, 204 302 (2014).

C. Lévéque, R. Taieb, H. Képpel: 7 “Communication: Theoretical prediction of the importance of the 3B, state in
the dynamics of sulfur dioxide”. J. Chem. Phys., 140, 091101 (2014).

T. J. Penfold, R. Spesyvtsev, O. M. Kirkby, R. S. Minns, D. S. N. Parker, H. H. Fielding, G. A. Worth: & “Quantum
dynamics study of the competing ultrafast intersystem crossing and internal conversion in the "channel 3” region
of benzene”. J. Chem. Phys., 137, 204310 (2012).

R. A. Vogt, C. Reichardt, C. E. Crespo-Hernandez: i “Excited-State Dynamics in Nitro-Naphthalene Derivatives:
Intersystem Crossing to the Triplet Manifold in Hundreds of Femtoseconds”. J. Phys. Chem., 117, 6580-6588
(2013).

C. E. Crespo-Hernandez, B. Cohen, P. M. Hare, B. Kohler: &7 “Ultrafast Excited-State Dynamics in Nucleic Acids”.
Chem. Rev., 104, 1977-2020 (2004).

M. Richter, P. Marquetand, J. Gonzalez-Vazquez, L. Sola, L. Gonzélez: ¢ “Femtosecond Intersystem Crossing in the
DNA Nucleobase Cytosine”. J. Phys. Chem. Lett., 3, 3090-3095 (2012).

L. Martinez-Fernandez, L. Gonzalez, I. Corral: 7 “An Ab Initio Mechanism for Efficient Population of Triplet
States in Cytotoxic Sulfur Substituted DNA Bases: The Case of 6-Thioguanine”. Chem. Commun., 48, 2134-2136
(2012).

S. Mai, P. Marquetand, M. Richter, J. Gonzalez-Vazquez, L. Gonzalez: 7 “Singlet and Triplet Excited-State Dynamics
Study of the Keto and Enol Tautomers of Cytosine”. ChemPhysChem, 14, 2920-2931 (2013).

C. Reichardt, C. E. Crespo-Hernandez: 2 “Ultrafast Spin Crossover in 4-Thiothymidine in an Ionic Liquid”. Chem.
Commun., 46, 5963-5965 (2010).

[13] J. C. Tully, R. K. Preston: ¢ “Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The

Reaction of H* with D,”. J. Chem. Phys., 55, 562-572 (1971).

[14] J. C. Tully: & “Molecular dynamics with electronic transitions”. §. Chem. Phys., 93, 1061-1071 (1990).

[15]

[16]

[17]

(18]

M. Barbatti: @ “Nonadiabatic dynamics with trajectory surface hopping method”. WIREs Comput. Mol. Sci., 1,
620-633 (2011).

J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, N. Bellonzi: @ “Understanding the Surface Hopping View
of Electronic Transitions and Decoherence”. Annu. Rev. Phys. Chem., 67, 387-417 (2016).

L. Wang, A. Akimov, O. V. Prezhdo: & “Recent Progress in Surface Hopping: 2011-2015". J. Phys. Chem. Lett., 7,
2100-2112 (2016).

N. L. Doltsinis: “Molecular Dynamics Beyond the Born-Oppenheimer Approximation: Mixed Quantum-Classical
Approaches”. In J. Grotendorst, S. Bliigel, D. Marx (editors), Computational Nanoscience: Do It Yourself!, volume 31
of NIC Series, 389-409, John von Neuman Institut for Computing, Jiilich (2006).

248

http://dx.doi.org/10.1039/df9500900014
http://dx.doi.org/10.1002/wcms.83
http://dx.doi.org/10.1063/1.4875035
http://dx.doi.org/10.1063/1.4875035
http://dx.doi.org/10.1063/1.4875036
http://dx.doi.org/10.1063/1.4875036
http://dx.doi.org/10.1063/1.4867252
http://dx.doi.org/10.1063/1.4867252
http://dx.doi.org/10.1063/1.4767054
http://dx.doi.org/10.1063/1.4767054
http://dx.doi.org/10.1063/1.4767054
http://dx.doi.org/10.1021/jp405656n
http://dx.doi.org/10.1021/jp405656n
http://dx.doi.org/10.1021/cr0206770
http://dx.doi.org/10.1021/jz301312h
http://dx.doi.org/10.1021/jz301312h
http://dx.doi.org/10.1039/C2CC15775F
http://dx.doi.org/10.1039/C2CC15775F
http://dx.doi.org/10.1002/cphc.201300370
http://dx.doi.org/10.1002/cphc.201300370
http://dx.doi.org/10.1039/C0CC01181A
http://dx.doi.org/doi:10.1063/1.1675788
http://dx.doi.org/doi:10.1063/1.1675788
http://dx.doi.org/10.1063/1.459170
http://dx.doi.org/10.1002/wcms.64
http://dx.doi.org/10.1146/annurev-physchem-040215-112245
http://dx.doi.org/10.1146/annurev-physchem-040215-112245
http://dx.doi.org/10.1021/acs.jpclett.6b00710

SHARC Manual Bibliography | Bibliography

[19]

[20]

[21]

(34]

[35]

[36]

(37]

(38]

N. L. Doltsinis, D. Marx: ¢ “First Principles Molecular Dynamics Involving Excited States And Nonadiabatic
Transitions”. J. Theor. Comput. Chem., 1, 319-349 (2002).

S. Hammes-Schiffer, J. C. Tully: & “Proton transfer in solution: Molecular dynamics with quantum transitions”. .
Chem. Phys., 101, 4657-4667 (1994).

G. Granucci, M. Persico: ¢7 “Critical appraisal of the fewest switches algorithm for surface hopping”. 7. Chem.
Phys., 126, 134 114 (2007).

M. Thachuk, M. Y. Ivanov, D. M. Wardlaw: & “A semiclassical approach to intense-field above-threshold dissocia-
tion in the long wavelength limit”. 7. Chem. Phys., 105, 4094-4104 (1996).

B. Maiti, G. C. Schatz, G. Lendvay: 7 “Importance of Intersystem Crossing in the S(3P, 1D) + H2 — SH + H
Reaction”. J. Phys. Chem. A, 108, 8772-8781 (2004).

G. A. Jones, A. Acocella, F. Zerbetto: 7 “On-the-Fly, Electric-Field-Driven, Coupled Electron-Nuclear Dynamics”.
7. Phys. Chem. A, 112, 96509656 (2008).

R. Mitri¢, J. Petersen, V. Bonaci¢é-Koutecky: 7 “Laser-field-induced surface-hopping method for the simulation
and control of ultrafast photodynamics”. Phys. Rev. A, 79, 053 416 (2009).

G. Granucci, M. Persico, G. Spighi: 7 “Surface hopping trajectory simulations with spin-orbit and dynamical
couplings”. . Chem. Phys., 137, 22A501 (2012).

B.F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli: 7 “Local Control Theory using Trajectory Surface
Hopping and Linear-Response Time-Dependent Density Functional Theory”. Chimia, 67, 218-221 (2013).

G. Cui, W. Thiel: @@ “Generalized trajectory surface-hopping method for internal conversion and intersystem
crossing”. J. Chem. Phys., 141, 124101 (2014).

S. Mai, F. Plasser, P. Marquetand, L. Gonzalez: & “General trajectory surface hopping method for ultrafast
nonadiabatic dynamics”. In M. Vrakking, F. Lepine (editors), Attosecond Molecular Dynamics, chapter 10, 348-385,
The Royal Society of Chemistry (2018).

C. Zhu, S. Nangia, A. W. Jasper, D. G. Truhlar: 7 “Coherent switching with decay of mixing: An improved
treatment of electronic coherence for non-Born-Oppenheimer trajectories”. J. Chem. Phys., 121, 7658-7670 (2004).

Y. Shu, L. Zhang, S. Mai, S. Sun, L. Gonzélez, D. G. Truhlar: 7 “Implementation of Coherent Switching with Decay
of Mixing into the SHARC Program”. J. Chem. Theory Comput., 16, 3464-3475 (2020).

Y. Shu, L. Zhang, X. Chen, S. Sun, Y. Huang, D. G. Truhlar: & “Nonadiabatic Dynamics Algorithms with Only
Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-
Driven Trajectory Surface Hopping”. J. Chem. Theory Comput., 18, 1320-1328 (2022).

X. Zhao, L. C. D. Merritt, R. Lei, Y. Shu, D. Jacquemin, L. Zhang, X. Xu, M. Vacher, D. G. Truhlar: & “Nonadia-
batic Coupling in Trajectory Surface Hopping: Accurate Time Derivative Couplings by the Curvature-Driven
Approximation”. J. Chem. Theory Comput., 19, 6577-6588 (2023).

S. Mausenberger, S. Polonius, S. Mai, L. Gonzélez: & “Efficient, Hierarchical, and Object-Oriented Electronic
Structure Interfaces for Direct Nonadiabatic Dynamics Simulations”. Chemarxiv (2025).

F. Plasser, S. Goméz, S. Mai, L. Gonzalez: 7 “Highly efficient surface hopping dynamics using a linear vibronic
coupling model”. Phys. Chem. Chem. Phys., Advance Article, DOI:10.1039/C8CP05 662E (2018).

S. Polonius, O. Zhuravel, B. Bachmair, S. Mai: & “LVC/MM: A Hybrid Linear Vibronic Coupling/Molecular
Mechanics Model with Distributed Multipole-Based Electrostatic Embedding for Highly Efficient Surface Hopping
Dynamics in Solution”. J. Chem. Theory Comput., 19, 7171-7186 (2023).

S. Polonius, D. Lehrner, L. Gonzalez, S. Mai: 7 “Resolving Photoinduced Femtosecond Three-Dimensional
Solute-Solvent Dynamics through Surface Hopping Simulations”. J. Chem. Theory Comput., 20, 4738—4750 (2024).

J. Pittner, H. Lischka, M. Barbatti: ¢z “Optimization of mixed quantum-classical dynamics: Time-derivative
coupling terms and selected couplings”. Chem. Phys., 356, 147 — 152 (2009).

249

http://dx.doi.org/10.1142/S0219633602000257
http://dx.doi.org/10.1142/S0219633602000257
http://dx.doi.org/10.1063/1.467455
http://dx.doi.org/10.1063/1.2715585
http://dx.doi.org/10.1063/1.472281
http://dx.doi.org/10.1063/1.472281
http://dx.doi.org/10.1021/jp049143o
http://dx.doi.org/10.1021/jp049143o
http://dx.doi.org/10.1021/jp805360v
http://dx.doi.org/10.1103/PhysRevA.79.053416
http://dx.doi.org/10.1103/PhysRevA.79.053416
http://dx.doi.org/10.1063/1.4707737
http://dx.doi.org/10.1063/1.4707737
http://dx.doi.org/doi:10.2533/chimia.2013.218
http://dx.doi.org/doi:10.2533/chimia.2013.218
http://dx.doi.org/10.1063/1.4894849
http://dx.doi.org/10.1063/1.4894849
http://dx.doi.org/10.1039/9781788012669-00348
http://dx.doi.org/10.1039/9781788012669-00348
http://dx.doi.org/10.1063/1.1793991
http://dx.doi.org/10.1063/1.1793991
http://dx.doi.org/10.1021/acs.jctc.0c00112
http://dx.doi.org/10.1021/acs.jctc.0c00112
http://dx.doi.org/10.1021/acs.jctc.1c01080
http://dx.doi.org/10.1021/acs.jctc.1c01080
http://dx.doi.org/10.1021/acs.jctc.1c01080
http://dx.doi.org/10.1021/acs.jctc.3c00813
http://dx.doi.org/10.1021/acs.jctc.3c00813
http://dx.doi.org/10.1021/acs.jctc.3c00813
http://dx.doi.org/10.26434/chemrxiv-2025-vj85v
http://dx.doi.org/10.26434/chemrxiv-2025-vj85v
http://dx.doi.org/10.1039/C8CP05662E
http://dx.doi.org/10.1039/C8CP05662E
http://dx.doi.org/10.1021/acs.jctc.3c00805
http://dx.doi.org/10.1021/acs.jctc.3c00805
http://dx.doi.org/10.1021/acs.jctc.3c00805
http://dx.doi.org/10.1021/acs.jctc.4c00169
http://dx.doi.org/10.1021/acs.jctc.4c00169
http://dx.doi.org/10.1016/j.chemphys.2008.10.013
http://dx.doi.org/10.1016/j.chemphys.2008.10.013

SHARC Manual Bibliography | Bibliography

(39]

[40]

[41]

(48]

[49]

[54]

A. Jain, E. Alguire,]J. E. Subotnik: 7 “An Efficient, Augmented Surface Hopping Algorithm That Includes
Decoherence for Use in Large-Scale Simulations”. J. Chem. Theory Comput., 12, 5256-5268 (2016).

C. Zhu, A. W. Jasper, D. G. Truhlar: & “Non-Born-Oppenheimer Trajectories with Self-Consistent Decay of
Mixing”. J. Chem. Phys., 120 (2004).

M. Ruckenbauer, S. Mai, P. Marquetand, L. Gonzalez: 7 “Revealing Deactivation Pathways Hidden in Time-
Resolved Photoelectron Spectra”. Sci. Rep., 6, 35 522 (2016).

F. Plasser, M. Wormit, A. Dreuw: @ “New tools for the systematic analysis and visualization of electronic
excitations. I. Formalism”. J. Chem. Phys., 141, 024 106 (2014).

F. Plasser, S. A. Bippler, M. Wormit, A. Dreuw: “New tools for the systematic analysis and visualization of
electronic excitations. II. Applications”. J. Chem. Phys., 141, 024 107 (2014).

F. Plasser: “TheoDORE: A package for theoretical density, orbital relaxation, and exciton analysis”. http://theodore-
qc.sourceforge.net (2017).

D. Farkhutdinova, S. Polonius, P. Karrer, S. Mai, L. Gonzalez: 7 “Parametrization of Linear Vibronic Coupling
Models for Degenerate Electronic States”. J. Phys. Chem. A, 129, 2655-2666 (2025).

S. Mai, P. Marquetand, L. Gonzalez: ¢ “Nonadiabatic dynamics: The SHARC approach”. WIREs Comput. Mol. Sci.,
8, 1370 (2018).

S. Mai, B. Bachmair, L. Gagliardi, H.-G. Gallmetzer, L. Griinewald, M. R. Hennefarth, N. M. Hayer, F. A. Korsaye,
S. Mausenberger, M. Oppel, T. Pitesa, S. Polonius, E. S. Gil, Y. Shu, N. K. Singer, M. X. Tiefenbacher, D. G. Truhlar,
D. Vords, L. Zhang, L. Gonzalez: “SHARC4.0: Surface Hopping Including Arbitrary Couplings — Program Package
for Non-Adiabatic Dynamics”. https://sharc-md.org/ (2025).

M. Richter, P. Marquetand, J. Gonzalez-Vazquez, 1. Sola, L. Gonzalez: & “SHARC: Ab Initio Molecular Dynamics
with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings”. . Chem. Theory Comput.,
7,1253-1258 (2011).

M. Richter, P. Marquetand, J. Gonzélez-Vazquez, 1. Sola, L. Gonzalez: i “Correction to SHARC: Ab Initio Molecular
Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings”. . Chem. Theory
Comput., 8, 374-374 (2012).

S. Mai, P. Marquetand, L. Gonzalez: &2 “A General Method to Describe Intersystem Crossing Dynamics in Trajectory
Surface Hopping”. Int. J. Quantum Chem., 115, 1215-1231 (2015).

L. Wang, D. Trivedi, O. V. Prezhdo: & “Global Flux Surface Hopping Approach for Mixed Quantum-Classical
Dynamics”. J. Chem. Theory Comput., 10, 3598-3605 (2014).

G. Granucci, M. Persico, A. Toniolo: ¢ “Direct Semiclassical Simulation of Photochemical Processes with Semiem-
pirical Wave Functions”. J. Chem. Phys., 114, 10 608-10 615 (2001).

F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico, H. Lischka: ¢ “Surface Hopping Dynamics using a
Locally Diabatic Formalism: Charge Transfer in The Ethylene Dimer Cation and Excited State Dynamics in the
2-Pyridone Dimer”. . Chem. Phys., 137, 22A514 (2012).

F. Plasser, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. Gonzalez: ¢ “Efficient and Flexible Computation
of Many-Electron Wave Function Overlaps”. J. Chem. Theory Comput., 12, 1207 (2016).

[55] J. P. Dahl, M. Springborg: “The Morse oscillator in position space, momentum space, and phase space”. J. Chem.

[56]

(57]

Phys., 88, 4535-4547 (1983).

R. Schinke: Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules. Cambridge
University Press (1995).

M. Barbatti, K. Sen: 7 “Effects of different initial condition samplings on photodynamics and spectrum of pyrrole”.
Int. J. Quantum Chem., 116, 762-771 (2016).

250

http://dx.doi.org/10.1021/acs.jctc.6b00673
http://dx.doi.org/10.1021/acs.jctc.6b00673
http://dx.doi.org/10.1063/1.1648306
http://dx.doi.org/10.1063/1.1648306
http://dx.doi.org/10.1038/srep35522
http://dx.doi.org/10.1038/srep35522
http://dx.doi.org/10.1063/1.4885819
http://dx.doi.org/10.1063/1.4885819
http://dx.doi.org/10.1063/1.4885820
http://dx.doi.org/10.1063/1.4885820
http://dx.doi.org/10.1021/acs.jpca.4c07472
http://dx.doi.org/10.1021/acs.jpca.4c07472
http://dx.doi.org/10.1002/wcms.1370
http://dx.doi.org/10.1021/ct1007394
http://dx.doi.org/10.1021/ct1007394
http://dx.doi.org/10.1021/ct2005819
http://dx.doi.org/10.1021/ct2005819
http://dx.doi.org/10.1002/qua.24891
http://dx.doi.org/10.1002/qua.24891
http://dx.doi.org/10.1021/ct5003835
http://dx.doi.org/10.1021/ct5003835
http://dx.doi.org/10.1063/1.1376633
http://dx.doi.org/10.1063/1.1376633
http://dx.doi.org/10.1063/1.4738960
http://dx.doi.org/10.1063/1.4738960
http://dx.doi.org/10.1063/1.4738960
http://dx.doi.org/10.1021/acs.jctc.5b01148
http://dx.doi.org/10.1021/acs.jctc.5b01148
http://dx.doi.org/doi:10.1063/1.453761
http://dx.doi.org/10.1002/qua.25049

SHARC Manual Bibliography | Bibliography

(58]

[59]

M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksié, H. Lischka: ¢z “The on-
the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic
photodynamics of benchmark systems”. J. Photochem. Photobiol. A, 190, 228-240 (2007).

J. J. Bajo, J. Gonzalez-Vazquez, L. Sola, J. Santamaria, M. Richter, P. Marquetand, L. Gonzélez: & “Mixed Quantum-
Classical Dynamics in the Adiabatic Representation to Simulate Molecules Driven by Strong Laser Pulses”. J.
Phys. Chem. A, 116, 2800-2807 (2012).

P. Marquetand, M. Richter, J. Gonzalez-Vazquez, L. Sola, L. Gonzélez: 7 “Nonadiabatic ab initio molecular dynamics
including spin-orbit coupling and laser fields”. Faraday Discuss., 153, 261-273 (2011).

M. Heindl, L. Gonzalez: 7 “Validating fewest-switches surface hopping in the presence of laser fields”. J. Chem.
Phys., 154 (2021).

D. Cremer, J. A. Pople: 7 “General definition of ring puckering coordinates”. J. Am. Chem. Soc., 97, 13541358
(1975).

[63] J. C. A. Boeyens: 7 “The conformation of six-membered rings”. J. Cryst. Mol. Struct., 8, 317 (1978).

[64]

[65]

(68]

[69]

(73]

[74]

[75]

[76]

(77]

L. Kurtz, A. Hofmann, R. de Vivie-Riedle: & “Ground state normal mode analysis: Linking excited state dynamics
and experimental observables”. J. Chem. Phys., 114, 6151-6159 (2001).

F. Plasser: Dynamics Simulation of Excited State Intramolecular Proton Transfer. Master’s thesis, University of
Vienna (2009).

A. Amadei, A. B. M. Linssen, H. J. C. Berendsen: @ “Essential dynamics of proteins”. Proteins: Struct., Funct.,
Bioinf,, 17, 412-425 (1993).

S. Nangia, A. W. Jasper, T. F. Miller, D. G. Truhlar: 2 “Army Ants Algorithm for Rare Event Sampling of Delocalized
Nonadiabatic Transitions by Trajectory Surface Hopping and the Estimation of Sampling Errors by the Bootstrap
Method”. J. Chem. Phys., 120, 3586-3597 (2004).

M. J. Bearpark, M. A. Robb, H. B. Schlegel: &z “A direct method for the location of the lowest energy point on a
potential surface crossing”. Chem. Phys. Lett., 223, 269 (1994).

B. G. Levine, J. D. Coe, T. J. Martinez: 7 “Optimizing Conical Intersections without Derivative Coupling Vectors:
Application to Multistate Multireference Second-Order Perturbation Theory (MS-CASPT2)”. J. Phys. Chem. B,
112, 405-413 (2008).

M. Ruckenbauer, S. Mai, P. Marquetand, L. Gonzélez: i “Photoelectron spectra of 2-thiouracil, 4-thiouracil, and
2,4-dithiouracil”. . Chem. Phys., 144, 074 303 (2016).

F. Plasser, L. Gonzalez: 2 “Communication: Unambiguous comparison of many-electron wavefunctions through
their overlaps”. J. Chem. Phys., 145, 021 103 (2016).

S. Gémez, M. Heindl, A. Szabadi, L. Gonzélez: 7 “From Surface Hopping to Quantum Dynamics and Back. Finding
Essential Electronic and Nuclear Degrees of Freedom and Optimal Surface Hopping Parameters”. J. Phys. Chem.
A, 123, 8321-8332 (2019).

B. R. Landry, M. J. Falk, J. E. Subotnik: ¢ “Communication: The correct interpretation of surface hopping
trajectories: How to calculate electronic properties”. J. Chem. Phys., 139, 211 101 (2013).

J. Westermayr, M. Gastegger, P. Marquetand: & “Combining SchNet and SHARC: The SchNarc Machine Learning
Approach for Excited-State Dynamics”. J. Phys. Chem. Lett., 11, 3828-3834 (2020).

Y. Shu, L. Zhang, S. Sun, D. G. Truhlar: ¢ “Time-Derivative Couplings for Self-Consistent Electronically Nonadia-
batic Dynamics”. . Chem. Theory Comput., 16, 4098-4106 (2020).

Y. Shu, L. Zhang, Z. Varga, K. A. Parker, S. Kanchanakungwankul, S. Sun, D. G. Truhlar: @ “Conservation of
Angular Momentum in Direct Nonadiabatic Dynamics”. J. Phys. Chem. Lett., 11, 1135-1140 (2020).

Y. Shu, L. Zhang, D. Wu, X. Chen, S. Sun, D. G. Truhlar: “New Gradient Correction Scheme for Electronically
Nonadiabatic Dynamics Involving Multiple Spin States”. J. Chem. Theory Comput. (2023).

251

http://dx.doi.org/10.1016/j.jphotochem.2006.12.008
http://dx.doi.org/10.1016/j.jphotochem.2006.12.008
http://dx.doi.org/10.1016/j.jphotochem.2006.12.008
http://dx.doi.org/10.1021/jp208997r
http://dx.doi.org/10.1021/jp208997r
http://dx.doi.org/10.1039/c1fd00055a
http://dx.doi.org/10.1039/c1fd00055a
http://dx.doi.org/10.1063/5.0044807
http://dx.doi.org/10.1021/ja00839a011
http://dx.doi.org/10.1007/BF01200485
http://dx.doi.org/10.1063/1.1355658
http://dx.doi.org/10.1063/1.1355658
http://dx.doi.org/10.1002/prot.340170408
http://dx.doi.org/10.1063/1.1641019
http://dx.doi.org/10.1063/1.1641019
http://dx.doi.org/10.1063/1.1641019
http://dx.doi.org/10.1016/0009-2614(94)00433-1
http://dx.doi.org/10.1016/0009-2614(94)00433-1
http://dx.doi.org/10.1021/jp0761618
http://dx.doi.org/10.1021/jp0761618
http://dx.doi.org/10.1063/1.4941948
http://dx.doi.org/10.1063/1.4941948
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1021/acs.jpca.9b06103
http://dx.doi.org/10.1021/acs.jpca.9b06103
http://dx.doi.org/10.1063/1.4837795
http://dx.doi.org/10.1063/1.4837795
http://dx.doi.org/10.1021/acs.jpclett.0c00527
http://dx.doi.org/10.1021/acs.jpclett.0c00527
http://dx.doi.org/10.1021/acs.jctc.0c00409
http://dx.doi.org/10.1021/acs.jctc.0c00409
http://dx.doi.org/10.1021/acs.jpclett.9b03749
http://dx.doi.org/10.1021/acs.jpclett.9b03749

SHARC Manual Bibliography | Bibliography

(78]

(84]

(85]

[86]

(87]

(88]

A. W. Jasper, S. N. Stechmann, D. G. Truhlar: 7 “Fewest-switches with time uncertainty: A modified trajectory
surface-hopping algorithm with better accuracy for classically forbidden electronic transitions”. J. Chem. Phys.,
116, 5424-5431 (2002).

X. Zhao, Y. Shu, L. Zhang, X. Xu, D. G. Truhlar: 7 “Direct Nonadiabatic Dynamics of Ammonia with Curvature-
Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An
Mlustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops”. J. Chem. Theory
Comput., 19, 1672-1685 (2023).

E.J. Baerends, N. F. Aguirre, N. D. Austin, J. Autschbach, F. M. Bickelhaupt, R. Bulo, C. Cappelli, A. C. T. van
Duin, F. Egidi, C. Fonseca Guerra, A. Forster, M. Franchini, T. P. M. Goumans, T. Heine, M. Hellstrém, C. R.
Jacob, L. Jensen, M. Krykunov, E. van Lenthe, A. Michalak, M. M. Mitoraj, J. Neugebauer, V. P. Nicu, P. Philipsen,
H. Ramanantoanina, R. Riiger, G. Schreckenbach, M. Stener, M. Swart, J. M. Thijssen, T. Trnka, L. Visscher,
A. Yakovlev, S. van Gisbergen: 2 “The Amsterdam Modeling Suite”. J. Chem. Phys., 162 (2025).

T. Shiozaki: 7 “BAGEL: Brilliantly Advanced General Electronic-structure Library”. WIREs Comput. Mol. Sci., 8,
e1331 (2018).

H. Lischka, T. Miller, P. G. Szalay, L. Shavitt, R. M. Pitzer, R. Shepard: 2 “Columbus — a program system for
advanced multireference theory calculations” WIREs Comput. Mol. Sci., 1, 191-199 (2011).

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A.
Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci,
H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi,
J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers,
K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin,
K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox: “Gaussian16 Revision A.03” (2016), gaussian Inc. Wallingford
CT.

G. Li Manni, I. Fdez. Galvan, A. Alavi, F. Aleotti, F. Aquilante, J. Autschbach, D. Avagliano, A. Baiardi, J. J. Bao,
S. Battaglia, L. Birnoschi, A. Blanco-Gonzalez, S. I. Bokarev, R. Broer, R. Cacciari, P. B. Calio, R. K. Carlson,
R. Carvalho Couto, L. Cerdan, L. F. Chibotaru, N. F. Chilton, J. R. Church, L. Conti, S. Coriani, J. Cuéllar-Zuquin,
R. E. Daoud, N. Dattani, P. Decleva, C. de Graaf, M. G. Delcey, L. De Vico, W. Dobrautz, S. S. Dong, R. Feng, N. Ferré,
M. Filatov(Gulak), L. Gagliardi, M. Garavelli, L. Gonzélez, Y. Guan, M. Guo, M. R. Hennefarth, M. R. Hermes,
C. E. Hoyer, M. Huix-Rotllant, V. K. Jaiswal, A. Kaiser, D. S. Kaliakin, M. Khamesian, D. S. King, V. Kochetov,
M. Krosnicki, A. A. Kumaar, E. D. Larsson, S. Lehtola, M.-B. Lepetit, H. Lischka, P. Lopez Rios, M. Lundberg,
D. Ma, S. Mai, P. Marquetand, L. C. D. Merritt, F. Montorsi, M. Moérchen, A. Nenov, V. H. A. Nguyen, Y. Nishimoto,
M. S. Oakley, M. Olivucci, M. Oppel, D. Padula, R. Pandharkar, Q. M. Phung, F. Plasser, G. Raggi, E. Rebolini,
M. Reiher, I. Rivalta, D. Roca-Sanjuan, T. Romig, A. A. Safari, A. Sanchez-Mansilla, A. M. Sand, I. Schapiro, T. R.
Scott, J. Segarra-Marti, F. Segatta, D.-C. Sergentu, P. Sharma, R. Shepard, Y. Shu, J. K. Staab, T. P. Straatsma,
L. K. Serensen, B. N. C. Tenorio, D. G. Truhlar, L. Ungur, M. Vacher, V. Veryazov, T. A. Vof, O. Weser, D. Wu,
X. Yang, D. Yarkony, C. Zhou, J. P. Zobel, R. Lindh: & “The OpenMolcas Web: A Community-Driven Approach to
Advancing Computational Chemistry”. J. Chem. Theory Comput., 19, 6933-6991 (2023).

H.-J. Werner, P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heflelmann, D. Kats, A. Kéhn, T. Korona, D. A.
Kreplin, Q. Ma, T. F. Miller, A. Mitrushchenkov, K. A. Peterson, I. Polyak, G. Rauhut, M. Sibaev: 7 “The Molpro
quantum chemistry package”. J. Chem. Phys., 152 (2020).

J.J. P. Stewart: @ “MOPAC: A semiempirical molecular orbital program”. Journal of Computer-Aided Molecular
Design, 4, 1-103 (1990).

G. Granucci, M. Persico, D. Accomasso, E. Sangiogo Gil, S. Corni, J. Fregoni, T. Laino, M. Tesi, A. Toniolo: “MOPAC-
PI: a program for excited state dynamics simulations based on nonadiabatic trajectories and semiempirical
electronic structure calculations” (2024).

E. Apra, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam,
Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E.

252

http://dx.doi.org/10.1063/1.1453404
http://dx.doi.org/10.1063/1.1453404
http://dx.doi.org/10.1021/acs.jctc.2c01260
http://dx.doi.org/10.1021/acs.jctc.2c01260
http://dx.doi.org/10.1021/acs.jctc.2c01260
http://dx.doi.org/10.1063/5.0258496
http://dx.doi.org/10.1002/wcms.1331
http://dx.doi.org/10.1002/wcms.25
http://dx.doi.org/10.1002/wcms.25
http://dx.doi.org/10.1021/acs.jctc.3c00182
http://dx.doi.org/10.1021/acs.jctc.3c00182
http://dx.doi.org/10.1063/5.0005081
http://dx.doi.org/10.1063/5.0005081
http://dx.doi.org/10.1007/bf00128336

SHARC Manual Bibliography | Bibliography

(89]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauét, Y. Chen, G. N.
Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning, M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer,
A. Fonari, H. Friichtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. G6tz, J. Hammond,
V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. Jénsson, R. A. Kendall,
M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J.
Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin,
T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la Roza, B. Palmer, A. Panyala,
T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton,
D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G.
Truhlar, K. Tsemekhman, T. Van Voorhis, A. Vazquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis,
D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Wolinski, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias,
Z. Zhang, Y. Zhao, R. J. Harrison: 2 “NWChem: Past, present, and future”. J. Phys. Chem., 152 (2020).

Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, J. J.
Eriksen, Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J. D.
McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J. Robinson, E. Ronca, E. R. Sayfutyarova,
M. Scheurer, H. F. Schurkus, J. E. T. Smith, C. Sun, S.-N. Sun, S. Upadhyay, L. K. Wagner, X. Wang, A. White,
J. D. Whitfield, M. J. Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C. Berkelbach, S. Sharma, A. Y. Sokolov,
G. K.-L. Chan: 7 “Recent developments in the PySCF program package”. J. Phys. Chem., 153 (2020).

M. R. Hennefarth, D. G. Truhlar, L. Gagliardi: 7 “Semiclassical Nonadiabatic Molecular Dynamics Using Linearized
Pair-Density Functional Theory”. J. Chem. Theory Comput., 20, 8741-8748 (2024).

F. Neese: 7 “Software update: the ORCA program system, version 4.0”. WIREs Comput. Mol. Sci., 8, e1327 (2017).
“TURBOMOLE V7.0, A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH” (2015).

G. A. Meek, B. G. Levine: @ “Evaluation of the Time-Derivative Coupling for Accurate Electronic State Transition
Probabilities from Numerical Simulations”. J. Phys. Chem. Lett., 5, 2351-2356 (2014).

G. Granucci, M. Persico, A. Zoccante: & “Including quantum decoherence in surface hopping”. J. Chem. Phys.,
133, 134111 (2010).

A. W. Jasper, D. G. Truhlar: & “Improved treatment of momentum at classically forbidden electronic transitions
in trajectory surface hopping calculations”. Chem. Phys. Lett., 369, 60 — 67 (2003).

M. D. Hack, D. G. Truhlar: ¢ “A natural decay of mixing algorithm for non-Born-Oppenheimer trajectories”. The
Journal of Chemical Physics, 114, 9305-9314 (2001).

A. W. Jasper, D. G. Truhlar: ¢ “Non-Born-Oppenheimer molecular dynamics of Na- - - FH photodissociation”. .
Chem. Phys., 127, 194306 (2007).

Y. Shu, D. G. Truhlar: 7 “Decoherence and Its Role in Electronically Nonadiabatic Dynamics”. J. Chem. Theory
Comput. (2023).

C. Zhu, A. W. Jasper, D. G. Truhlar: & “Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution
of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent
Switching”. J. Chem. Theory Comput., 1, 527-540 (2005).

U. C. Singh, P. A. Kollman: ¢ “An approach to computing electrostatic charges for molecules”. J. Comp. Chem., 5,
129-145 (1984).

M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar: 7 “Consistent van der Waals Radii for the
Whole Main Group”. 7. Phys. Chem. A, 113, 5806-5812 (2009).

H. Koppel, W. Domcke, L. S. Cederbaum: “Multimode molecular dynamics beyond the Born-Oppenheimer
approximation”. Adv. Chem. Phys., 57, 59-246 (1984).

H. M. Senn, W. Thiel: & “QM/MM Methods for Biomolecular Systems”. Angew. Chem. Int. Ed., 48, 1198-1229
(2009).

T. Pitesa, S. Polonius, L. Gonzélez, S. Mai: ¢ “Excitonic Configuration Interaction: Going Beyond the Frenkel
Exciton Model”. 7. Chem. Theory Comput., 20, 5609-5634 (2024).

253

http://dx.doi.org/10.1063/5.0004997
http://dx.doi.org/10.1063/5.0006074
http://dx.doi.org/10.1021/acs.jctc.4c01061
http://dx.doi.org/10.1021/acs.jctc.4c01061
http://dx.doi.org/10.1002/wcms.81
http://dx.doi.org/10.1021/jz5009449
http://dx.doi.org/10.1021/jz5009449
http://dx.doi.org/10.1063/1.3489004
http://dx.doi.org/10.1016/S0009-2614(02)01990-5
http://dx.doi.org/10.1016/S0009-2614(02)01990-5
http://dx.doi.org/10.1063/1.1368388
http://dx.doi.org/10.1063/1.2798763
http://dx.doi.org/10.1021/acs.jctc.2c00988
http://dx.doi.org/10.1021/ct050021p
http://dx.doi.org/10.1021/ct050021p
http://dx.doi.org/10.1021/ct050021p
http://dx.doi.org/10.1002/jcc.540050204
http://dx.doi.org/10.1021/jp8111556
http://dx.doi.org/10.1021/jp8111556
http://dx.doi.org/10.1002/anie.200802019
http://dx.doi.org/10.1021/acs.jctc.4c00157
http://dx.doi.org/10.1021/acs.jctc.4c00157

SHARC Manual Bibliography | Bibliography

[105] T. Pitesa, S. Mai, L. Gonzalez: 7 “Efficient Excitonic Configuration Interaction for Large-Scale Multichromophoric
Systems Using the Resolution-of-Identity Approximation”. J. Phys. Chem. Lett., 16, 2800-2807 (2025).

[106] M. Barbatti, G. Granucci, M. Ruckenbauer, F. Plasser, J. Pittner, M. Persico, H. Lischka: “NEWTON-X: a package
for Newtonian dynamics close to the crossing seam, version 1.2”. www.newtonx.org (2011).

[107] P. Marquetand: Vectorial properties and laser control of molecular dynamics. Ph.D. thesis, University of Wiirzburg
(2007), http://opus.bibliothek.uni-wuerzburg.de/volltexte/2007/2469/.

[108] L. Verlet: & “Computer "Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones
Molecules”. Phys. Rev., 159, 98-103 (1967).

254

http://dx.doi.org/10.1021/acs.jpclett.5c00065
http://dx.doi.org/10.1021/acs.jpclett.5c00065
http://opus.bibliothek.uni-wuerzburg.de/volltexte/2007/2469/
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.159.98

List of Tables

2.1

4.1

6.1
6.2
6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41

7.1
7.2

Environment variables for SHARC testjobs. Lo L Lo 28
Input keywords for sharc.x/driver.py. e 44
Overview over capabilities of SHARc4 interfaces.o 73
Overview over files of SHARC interfaces. 74
General keywords for the resource files. Which keywords are actually used depends on the interface. . 75
Auxiliary-program-related keywords for the resource files. Which keywords are actually used depends

ontheinterface. L 75
RESP-fitting-related keywords for the resource files. Which keywords are actually used depends on the

Interface. L e 76
Keywords for the SPAINN.templatefile. 85
Keywords for the SPAINN.resources file. 85
Keywords for the GAUSSIAN.templatefile. 88
Keywords for the GAUSSIAN.resourcesfile. 89
Keywords for the ORCA.templatefile. 91
Keywords for the ORCA.resources file. 92
Keywords for the NWCHEM. template file. 93
Keywords for the NWCHEM.resources file. 93
Keywords for the TURBOMOLE . templatefile. 95
Keywords for the TURBOMOLE.resources file. 96
Keywords for the MOLCAS.templatefile. 98
Keywords for the MOLCAS.resources file. e 99
Keywords for the MNDO. templatefile. L 101
Keywords for the MNDO.resources file. 102
Keywords for the MOPACPI.templatefile. 103
Keywords for the MOPACPI.resources file. 104
Keywords for the LEGACY.templatefile. 106
Keywords for the LEGACY.resources file. e 106
Keywords for the AMS_ADF.templatefile. 108
Keywords for the AMS_ADF.resources file. 109
Keywords for the COLUMBUS.resources file. 112
Keywords for the BAGEL.template file. 114
Keywords for the BAGEL.resources file. L 115
Keywords for the MOLPRO.resources inputfile. 118
Keywords for the PYSCF.templatefile. 123
Keywords for the ASE_DB. template inputfile. 125
Keywords for the UMBRELLA.template file. 126
Keywords for the UMBRELLA.resources file. 127
Keywords for the NUMDIFF.templatefile. 129
Keywords for the NUMDIFF.resourcesfile. 129
Keywords for the QMMM. template file. L 131
Keywords for the ADAPTIVE.templatefile., 145
Keywords for the FALLBACK. templatefile. 147
Control keywords for SHARC interfaces. L L 150
Request keywords for SHARC interfaces. L L L L L L 150
List of keywords given in the inputfile. L oo 157
Command-line options for script wigner.py. 162
Command-line options for script wigner_state_selected.py. 164

255

SHARC Manual List of Tables | List of Tables

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21

Command-line options for script bimolecular_collision.py. 166
Command-line options for script amber_to_initconds.py. 167
Command-line options for script sharctraj_to_initconds.py. 169
Command-line options for restartnc_to_xyz.py. 169
Command-line options for sharctraj_to_xyz.py. 170
Command-line options for script spectrum.py. 177
List of the settings for diagnostics.py. L 188
Command-line options for data_extractor.x. L 190
Content of the files written by data_extractor.x. 190
Possible types of internal coordinates in geo.py. 195
Command-line options for geo.py. 195
Command-line options for geo_NM.py.. L 196
Output format of geo_NM.py. e 196
Analysis modes for populations.py. e 197
Analysis modes for transition.py. 199
Command-line options for frames_to_RDF.py. 210
Command-line options for frames_to_dx.py. 211
Command-line options for RDF_to_scattering.py. 212
Command-line options for QMout_print.py. L L 216

256

List of Figures

1.1

2.1

3.1
3.2
3.3

6.1
6.2
6.3

6.4
6.5

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

Jablonski diagram showing the conceptual photophysical processes. 11
Directory tree containing a complete SHARC installation. 26
Input files for a SHARC dynamics simulation. L L L Lo L 32
Files of a SHARC dynamics simulation after running. L L Lo 33
Typical basic workflow for conducting excited-state dynamics simulations with Smarc. 34
Communication between sharc.x, driver.py, the interfaces, and the quantum chemistry codes. 71
Example directory structure of the CoLumBUSs template directory 113
Flow chart for the SHARC-ADAPTIVE interface after executing all children and calculating deviations

for given properties. e 145
Flow chart for the SHARc FALLBACK interface. 147
Workflow of the wavefunction overlap program. 156
Directory structure created by setup_init.py. L 173
Directory structure created by setup_traj.py. 185
Color code for plots generated with the use of make_gnuscript.py. 193
Possible workflows in data_collector.py. 205
Communication between ORcA, orca_External, the interfaces, and the quantum chemistry codes. The

scheme works nearly identically for otool_external. 215
Forbidden and allowed features of the reaction network graphs. 224
Example reaction network graph. For explanation seetext. 224
Types of laser envelopes implemented in laser.x. e 231

257

	Title Page
	Contact
	Contents
	Introduction
	Capabilities
	New features in Sharc Version 4.0

	References
	Authors
	Eternal list of contributors
	List of contributors to Sharc 4

	Suggestions and Bug Reports
	Notation in this Manual
	Terms of Use

	Installation
	How To Obtain
	Installation
	Libraries
	WFoverlap Program
	Test Suite
	Additional Programs
	Quantum Chemistry Programs

	Execution
	Running a single trajectory
	Input files
	Running the dynamics code
	Output files

	Typical workflow for an ensemble of trajectories
	Initial condition generation
	Setting up the dynamics simulations
	Running the dynamics simulations
	Analysis of the dynamics results

	Programs and Scripts of the Sharc Suite
	Setup and Preparation
	Trajectory Running and Management
	Analysis
	Others
	Interfaces

	The Sharc dynamics drivers
	Original driver: sharc.x
	PySHARC driver: driver.py

	Input files
	Main input file
	General remarks
	Input keywords
	Detailed Description of the Keywords
	Example

	Geometry file
	Velocity file
	Coefficient file
	Laser file
	Atom mask file
	RATTLE file
	Frozen atoms file
	Droplet atoms file
	Thermostat settings file

	Output files
	Log file: output.log
	Listing file: output.lis
	Data file: output.dat
	Specification of the data file

	Data file in NetCDF format: : output.dat.nc
	Separate nuclear data file in NetCDF format: output_NUC.dat.nc
	XYZ file: output.xyz

	Interfaces
	Overview over Interfaces
	Assoiated File Names and Example Directory
	Generic keywords in resource files of many interfaces
	Do-Nothing Interface
	QMout Interface
	Analytical PESs Interface
	Parametrization
	Template file: ANALYTICAL.template
	Template file: ANALYTICAL.resources
	During setup

	LVC Interface
	Input files
	Resource file
	During setup
	Template File Setup: setup_LVCparam.py, create_LVCparam.py, modify_LVC_template.py

	SPaiNN Interface
	Template file: SPAINN.template
	Resource file: SPAINN.resources
	During setup

	SCHNARC Interface
	Template file: SCHNARC.template
	Template file: SCHNARC.template
	During setup

	OpenMM Interface
	Template file
	Resource file
	During setup

	Gaussian Interface
	Template file: GAUSSIAN.template
	Resource file: GAUSSIAN.resources
	During setup
	Extracting normal modes: GAUSSIAN_freq.py

	Orca Interface
	Template file: ORCA.template
	Resource file: ORCA.resources
	During setup
	Extracting normal modes: ORCA_hess_freq.py

	NWChem Interface
	Template file: NWCHEM.template
	Resource file: NWCHEM.resources
	During setup

	Turbomole Interface
	Template file: TURBOMOLE.template
	Resource file: TURBOMOLE.resources
	During setup

	OpenMolcas Interface
	Template file: MOLCAS.template
	Resource file: MOLCAS.resources
	During setup
	Template file generator: molcas_input.py

	MNDO Interface
	Template file: MNDO.template
	Resource file: MNDO.resources
	During setup

	MOPAC-PI Interface
	Template file: MOPACPI.template
	Resource file: MOPACPI.resources
	Reparametrized Hamiltonians, definition of microstates and additional potentials: ext_param
	QM/MM force field files
	QM/MM connection table file: MOPACPI_tnk.xyz
	QM/MM force field file: e.g. oplsaa.prm
	QM/MM additional force field definition file: MOPACPI_tnk.key
	During setup

	LEGACY Interface
	Template file: LEGACY.template
	Resource file: LEGACY.resources
	During setup

	AMS–ADF Interface
	Template file: AMS_ADF.template
	Resource file: AMS_ADF.resources
	During setup
	Frequencies converter: AMS_ADF_freq.py

	COLUMBUS Interface
	Template input
	Resource file: COLUMBUS.resources
	Template setup
	During setup

	Bagel Interface
	Template file: BAGEL.template
	Resource file: BAGEL.resources
	During setup

	MOLPRO Interface
	Template file: MOLPRO.template
	Resource file: MOLPRO.resources
	Error checking
	Things to keep in mind
	During setup
	Molpro input generator: molpro_input.py

	PySCF Interface
	Template file: PYSCF.template
	Resource file: PYSCF.resources
	During setup

	ASE Database Interface
	Template file: ASE_DB.template
	During setup

	Umbrella Sampling Interface
	Template file: UMBRELLA.template
	Restraints file
	Resource file: UMBRELLA.resources
	During setup

	Numerical Differentiation Interface
	Template file: NUMDIFF.template
	Resource file: NUMDIFF.resources
	During setup

	QM/MM Interface
	Template file: QMMM.template
	Resource file: QMMM.resources
	Connectivity and QM/MM type file: QMMM.table
	During setup

	ECI Interface
	Theory and implementation
	QM directory of ECI interface
	Template file: ECI.template
	Resources file: ECI.resources
	Standard output of SHARC_ECI.py
	During setup

	Adaptive Sampling Interface
	Template file: ADAPTIVE.template
	Resources file: ADAPTIVE.resources
	During setup

	Fallback Interface
	Template file: FALLBACK.template
	During setup

	File-based Interface Specifications
	QM.in Specification
	QM.out Specification
	Further Specifications
	Save Directory Specification

	The WFoverlap Program
	Installation
	Workflow
	Calling the program
	Input data
	Output

	Auxilliary Scripts
	Wigner Distribution Sampling: wigner.py
	Usage
	Normal mode types
	Non-default masses
	Sampling at finite temperatures
	Output

	Vibrational State Selected Sampling: wigner_state_selected.py
	Usage
	Major options
	Template
	Normal mode types
	Non-default masses
	Output

	Initial condition for collision dynamics: bimolecular_collision.py
	Usage
	Usage

	Amber Trajectory Sampling: amber_to_initconds.py
	Usage
	Time Step
	Atom Types and Masses
	Output

	Sharc Trajectory Sampling: sharctraj_to_initconds.py
	Usage
	Random Picking of Time Step
	Output

	Creating an XYZ file from an Amber restart file: restartnc_to_xyz.py
	Usage
	Input
	Output

	Creating an XYZ file from a Sharc trajectory: sharctraj_to_xyz.py
	Usage
	Input
	Output

	Setup of Initial Calculations: setup_init.py
	Usage
	Input
	Interface-specific input
	Input for Run Scripts
	Output

	Excitation Selection: excite.py
	Usage
	Input
	Output
	Specification of the initconds.excited file format

	Calculation of Absorption Spectra: spectrum.py
	Input
	Output
	Error Analysis

	Laser field generation: laser.x
	Usage
	Input

	Preparing QM/MM calculations: setup_from_prmtop.py
	Usage
	Input
	Output

	Setup of Trajectories: setup_traj.py
	Input
	Interface-specific input
	Running and output control
	Run script setup
	Output

	File transfer: retrieve.sh
	Resetting trajectories: clean_traj.sh
	Usage

	Ensemble Diagnostics Tool: diagnostics.py
	Usage
	Input

	Data Extractor: data_extractor.x
	Usage
	Output

	Data Extractor for NetCDF: data_extractor_NetCDF.x
	Usage
	Output

	Data Converter for NetCDF: data_converter.x
	Usage
	Output

	Data Converter from NetCDF to ASCII: data_converter_to_ASCII.x
	Usage
	Output

	Data Converter from NetCDF nuclear files to XYZ: data_extractor_NUC_xyz.py
	Usage
	Output

	Plotting the Extracted Data: make_gnuscript.py
	Internal Coordinates Analysis: geo.py
	Input
	Options

	Normal Mode Analysis: geo_NM.py
	Input
	Output Format

	Calculation of Ensemble Populations: populations.py
	Usage
	Output

	Calculation of Numbers of Hops: transition.py
	Usage

	Fitting population data to kinetic models: make_fit.py
	Usage
	Input
	Output

	Obtaining Special Geometries: crossing.py
	Usage
	Output

	Essential Dynamics Analysis: trajana_essdyn.py
	Usage
	Input
	Output

	General Data Analysis: data_collector.py
	Usage
	Input
	Output

	Handling large sets of coordinate data: align_and_reorder_traj.py
	Usage
	Input
	Output

	Producing radial distribution functions: frames_to_RDF.py
	Usage
	Input
	Options
	Output
	Obtaining mask files

	Producing 3D distributions: frames_to_dx.py
	Usage
	Input
	Options
	Output

	Computing X-ray scattering: RDF_to_scattering.py
	Usage
	Input
	Options
	Output

	Optimizations: otool_external and setup_orca_opt.py
	Usage
	Input
	Output
	Description of orca_External and otool_external

	Single Point Calculations: setup_single_point.py
	Usage
	Input
	Output

	Format Data from QM.out Files: QMout_print.py
	Usage
	Output

	Methods and Algorithms
	Absorption Spectrum
	Active and inactive states
	Amdahl's Law
	Bootstrapping for Population Fits
	Computing electronic populations
	Damping
	Decoherence
	Energy-based decoherence
	Augmented FSSH decoherence

	Essential Dynamics Analysis
	Excitation Selection
	Excitation Selection with Diabatization

	Global fits and kinetic models
	Reaction networks
	Kinetic models
	Global fit

	Gradient transformation
	Nuclear gradient tensor transformation scheme
	Time derivative matrix transformation scheme
	Dipole moment derivatives

	Internal coordinates definitions
	Kinetic energy adjustments
	Reflection for frustrated hops
	Choices of momentum adjustment direction

	Projection operator
	Fewest switches with time uncertainty
	Laser fields
	Form of the laser field
	Envelope functions
	Field functions
	Chirped pulses
	Quadratic chirp without Fourier transform

	Laser interactions
	Surface Hopping with laser fields

	Linear/Quadratic Vibronic Coupling Models
	Obtaining LVC parameters from ab initio data

	Normal Mode Analysis
	Optimization of Crossing Points
	Phase tracking
	Phase tracking of the transformation matrix
	Tracking of the phase of the MCH wave functions

	Random initial velocities
	Representations
	Current state in MCH representation

	Sampling from Wigner Distribution
	Sampling at Non-zero Temperature

	Scaling
	Seeding of the RNG
	Selection of gradients and nonadiabatic couplings
	State ordering
	Surface Hopping
	Self-Consistent Potential Methods
	Decoherence in SCP methods

	Effective Nonadiabatic Coupling Vector
	Velocity Verlet
	Wavefunction propagation
	Propagation using nonadiabatic couplings
	Propagation using overlap matrices - Local diabatization
	Propagation using overlap matrices - Norm-preserving interpolation

	Time Derivative Couplings and Curvature Approximation

	Bibliography
	List of Tables
	List of Figures

