» W&HAamm o

SHARC2.1:
Surface Hopping Including
Arbitrary Couplings

Manual

AG Gonzalez
Institute of Theoretical Chemistry
University of Vienna, Austria

Vienna, 01.09.2019

http://sharc-md.org
mailto:sharc@univie.ac.at

Contents

1

Introduction
1.1 Capabilities L
1.1.1 New features in SHARC Version 2.0
1.1.2 New features in SHARC Version 2.1ottt i e i e
1.2 References
13 Authors o e
1.4 Suggestionsand Bug Reports L
1.5 NotationinthisManual e
Installation
21 HowToObtain
22 Termsof Use oo e
23 Installation e e
23.1 WFOVERLAP Program
232 Libraries e
233 TestSuite
2.3.4 Additional Programs
235 Quantum Chemistry Programs
Execution
3.1 Running a single trajectory L
3.1.1 Inputfiles L e
3.1.2 Running the dynamicscode L L e
3.1.3 Outputfiles e
3.2 Typical workflow for an ensemble of trajectories Lo o
3.2.1 Initial condition generation
3.2.2 Running the dynamics simulations L L L L
3.23 Analysis of the dynamicsresults L L L L
3.3 Auxilliary Programs and Scripts L
331 Setup e e e e e e e
332 Analysis
333 Interfaces L
334 Others e
3.4 The PysHARC dynamics driver
Input files
4.1 Maininputfile L e
411 Generalremarks
41.2 Inputkeywords L
4.1.3 Detailed Description of the Keywords
414 Exampleo
4.2 Geometry file e
43 Velocity file L e
4.4 Coefficientfile L e
45 Laserfile e

11
11
12
13
13
14
14

15
15
15
22
24
24
24
25
26

27
27
27
28
28
29
29
30
31
31
31
32
33
33
34

35
35
35
35
39
44
45
45
45
46

SHARC Manual Contents | Contents

4.6

Atommask file e

5 Output files

5.1
5.2
5.3

5.4
5.5

6 Interfaces

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Logfile o o
Listing file o e
Datafile e
5.3.1 Specification of thedatafile
Data file in NetCDF format e e e e
XYZfile. . . . o e
Interface Specifications
6.1.1 QM.in Specification
6.1.2 QM.out Specification L
6.1.3 Further Specifications L
6.1.4 Save Directory Specification L
Overview over Interfaces e e e e e e e
6.2.1 Example Directory e
MOLPRO Interface o e e e e e e e
6.3.1 Template file: MOLPRO.template i
6.3.2 Resource file: MOLPRO.F@SOUICES o v vttt et et et e e
6.3.3 Error checking
6.34 Thingstokeepinmind. L L e
6.3.5 Molpro input generator: molpro_input.py
MOLCAS Interface o o i e e e e e e e e e
6.4.1 Template file: MOLCAS.template
6.4.2 Resource file: MOLCAS.F@SOUICES v v v v i e e e e e e e e e e e e e e e e e e
6.4.3 Template file generator: molcas_input.py
6.44 QM/MM Kkey file: MOLCAS.qmmm.KeY i e e e
6.4.5 QM/MM connection table file: MOLCAS.qmmm.table
COLUMBUS Interface o i e e e e e e e e e e e e
6.5.1 Templateinput
6.5.2 Resource file: COLUMBUS.F@SOUICES v v v v o e e e e e e e e e e e e s
6.53 Templatesetup L e
Analytical PESs Interface
6.6.1 Parametrization e e e
6.6.2 Template file: Analytical.template,
ADFInterface o o o i e e
6.7.1 Template file: ADF.template e
6.7.2 Resource file: ADF.F@SOUFCES v v v v v i i e et e e e e e e e e
6.7.3 QM/MM force field file: ADF.qmmm.fF
6.74 QM/MM connection table file: ADF.qmmm.table
6.7.5 Input file generator: ADF_input.py
6.7.6 Frequencies converter: ADF_freq.py
RICC2 Interface o o i e e e e e e e e e e
6.8.1 Template file: RICC2.template i ittt e
6.8.2 Resource file: RICC2.F@SOUICES v v v v v vt e e et e e e e e e e e e e e e
6.83 OM/MM forcefieldfile e
6.8.4 QM/MM connection table file: RICC2.gmmm.table
LVCInterface o i i i e e e e
6.9.1 Inputfiles
6.9.2 Template File Setup: wigner.py, setup_LVCparam.py, and create_LVCparam.py
GAUSSIAN Interface L e
6.10.1 Template file: GAUSSIAN.template
6.10.2 Resource file: GAUSSIAN.FE@SOUICES v v v v v e e e e e e e e e e e e e
Orcalnterface e
6.11.1 Template file: ORCA.template i

47
47
47
48
48
49
50

51
51
52
52
56
56
57
57
58
58
59
59
60
61
62
63
63
65
65
66
66
66
67
68
69
69
69
71
71
73
73
75
77
77
78
78
79
80
80
80
80
82
83
83
83
85
85

SHARC Manual Contents | Contents

7

6.11.2 Resource file: ORCA.F@SOUrCESttt ittt it et e e 85
6.11.3 QM/MM force fieldfile 88
6.11.4 QM/MM connection table file: ORCA.qmmm.table 88
6.12 BAGEL Interface e 88
6.12.1 Template file: BAGEL.template e 89
6.12.2 Resource file: BAGEL.F@SOUICES o o v e vt i it it et et et e e 89
6.13 The WFOVERLAP Program et ittt e e e 91
6.13.1 Installation e 91
6.13.2 Workflow e 92
6.13.3 Calling the program e 92
6.13.4 Inputdata e e 93
6.13.5 Output e e e 95
Auxilliary Scripts 97
7.1 Wigner Distribution Sampling: wigner.py L 97
711 USaBe . . o v o e e e e e e e e e e 97
7.1.2 Normalmode types o i e 98
7.1.3 Non-default masses e 98
7.1.4 Sampling at finite temperatures L L 98
715 Output e e e e e e e 99
7.2 AMBER Trajectory Sampling: amber_to_initconds.py. 99
721 Usage e e 99
7.22 TimeStep L 99
7.23 Atom Types and Masses o v i e e e 100
724 Output e e e e e e e 100
7.3 SHARC Trajectory Sampling: sharctraj_to_initconds.py 100
731 USaBe . . . o e e e e e 100
7.3.2 Random Picking of Time Step 101
733 Output 101
7.4 Setup of Initial Calculations: setup_init.py L 101
741 Usage . . . o oo e e 101
7.4.2 Input . ..o e 102
7.4.3 Interface-specificinput 102
744 InputforRunScripts e 108
7.4.5 0utput e e e e e e e e 108
7.5 Excitation Selection: excite.py e e e 109
751 USABE . . o v o e e e e e e e e e e 109
752 Input . ..o 109
7.53 Matrix diagonalization L L e 111
754 Outputo 111
7.5.5 Specification of the initconds.excited file format L. 111
7.6 Setup of Trajectories: setup_traj.py o o o i 112
7.6.1 Input e 113
7.6.2 Interface-specificinput 115
7.63 Outputcontrol e 115
7.6.4 Runscriptsetup. L e 115
7.65 OULPUL . o . ot ot e e 115
7.7 Laser field generation: Taser.X e 116
7701 USaBe . . . o o e e e e 116
772 Input e 116
7.8 Calculation of Absorption Spectra: spectrum.py 117
7.8.1 Input e 117
7.8.2 0Output e e e e e e 118
7.83 Error Analysis. e 118
7.9 File transfer: retrieve.sh e 119
7.10 Data Extractor: data_extractor.x o oo 119
7.10.1 Usage e e 119

SHARC Manual Contents | Contents

7.11

7.12

7.13
7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.10.2 Output e e e e e e e e 119
Data Extractor for NetCDF: data_extractor_NetCDF.xot 121
7111 USage . . . o oo i e 122
7112 0utput e e e e e 122
Data Converter for NetCDF: data_converter.x 122
7121 USae . . o o e e e e e 122
7.12.2 0utput e e e 122
Plotting the Extracted Data: make_gnuscript.py o 122
Ensemble Diagnostics Tool: diagnostics.py L e 123
7141 Usage e e e e e 123
7.14.2 Input e 124
Calculation of Ensemble Populations: populations.py 125
7151 UsSage o e e e e e e 125
7152 Outputo 127
Calculation of Numbers of Hops: transition.py 127
7.16.1 USae . . . o e e e e e e e e 128
Fitting population data to kinetic models: make_fit.py 128
7171 USABE . . o o ot e e e e e e e e e 129
707.2 Input . .o 129
7173 0utput o e e e e e e 130
Fitting population data to kinetic models: make_fitscript.py 130
7181 UsSage . . o o o i i e e 131
7.18.2 Input e e e 131
7183 Output . . . L L 132
Estimating Errors of Fits: bootstrap.py e 132
7.19.1 Usage e e e 132
7.19.2 Input e e 133
7.19.3 Output . . . L e e e e e e 133
Obtaining Special Geometries: CrosSING.PY« o v vt v vt i e 134
7.20.1 USage e 134
7.20.2 0Output o e e e 134
Internal Coordinates Analysis: ge0.PYy o o 135
7211 INPUE . . o o 135
7.21.2 Options e e e e e e e e 136
Essential Dynamics Analysis: trajana_essdyn.py L o e 136
7.22.1 Usage e e e 136
7222 INPUL . . o oo 136
7.22.3 0utput L e e e e e e 137
Normal Mode Analysis: trajana_nma.pyottt e 137
7.23.1 Usage e e e 137
7232 Input e 137
7233 OULPUL . o . o v oo e e e e e 138
General Data Analysis: data_collector.py, 139
7241 Usage o oo e e e e 139
7.24.2 Input 139
7.243 Output L 142
Optimizations: orca_External and setup_orca_opt.py, 143
7.25.1 USage o o e e e e 143
7.25.2 Inpubt e e 143
7.253 0utput . . . L e e e 144
7.25.4 Description of orca_External. L 145
Single Point Calculations: setup_single_point.py 145
7.26.1 USAe o e e e e e 145
7.26.2 Input e e 145
7.26.3 Output e e e e 146
Format Data from QM.out Files: QMout_print.py 0 i i ittt e 146
7.27.1 USage e 146

SHARC Manual Contents | Contents

7.27.2 0utput e e e e e e
7.28 Diagonalization Helper: diagonalizer.x
8 Methods and Algorithms
8.1 Absorption Spectrum e e e
8.2 Activeandinactive states
83 Amdahl'sLaw e
8.4 Bootstrapping for Population Fits L L
8.5 Computing electronic populations L
8.6 Damping e
8.7 Decoherence e
8.7.1 Energy-based decoherence L L L
8.7.2 Augmented FSSH decoherence e
8.8 Essential Dynamics Analysis
8.9 Excitation Selection
8.9.1 Excitation Selection with Diabatization
8.10 Global fits and kineticmodels
8.10.1 Reactionmnetworks
8.10.2 Kineticmodels e
8.10.3 Global fit. e
8.11 Gradient transformation
8.11.1 Dipole moment derivatives
8.12 Internal coordinates definitions
8.13 Kinetic energy adjustments L e
8.13.1 Reflection for frustrated hops
814 Laserfields oL e
8.14.1 Formofthelaserfield
8.14.2 Envelope functions
8.14.3 Field functions e
8.14.4 Chirpedpulses e
8.14.5 Quadratic chirp without Fourier transform
8.15 Laserinteractions
8.15.1 Surface Hopping withlaserfields
8.16 Linear Vibronic Coupling Models e
8.16.1 Obtaining LVC parameters from ab initiodata
8.17 Normal Mode Analysis e
8.18 Optimization of Crossing Points
8.19 Phasetracking e
8.19.1 Phase tracking of the transformation matrix L L oL
8.19.2 Tracking of the phase of the MCH wave functions
8.20 Random initial velocities L
8.21 Representations o i i i e e e e
8.21.1 Current state in MCH representation L
8.22 Sampling from Wigner Distribution L Lo o
8.22.1 Sampling at Non-zero Temperature it i e
8.23 Scaling e
8.24 Seeding of the RNG e
8.25 Selection of gradients and nonadiabatic couplings L L Lo L o
8.26 State ordering e e
8.27 Surface HOppING« o o i i e e
8.28 Velocity Verlet e
8.29 Wavefunction propagation e e
8.29.1 Propagation using nonadiabatic couplings L L Lo Lo o
8.29.2 Propagation using overlap matrices Lo
Bibliography

148
148
148
149
149
150
151
151
151
152
153
153
154
154
154
154
156
156
156
156
157
158
158
158
159
159
160
160
160
160
161
161
162
162
163
163
164
164
165
165
165
166
166
166
167
167
168
168
168
169
170

170

SHARC Manual Contents | Contents

List of Tables 177

List of Figures 178

1 Introduction

When a molecule is irradiated by light, a number of dynamical processes can take place, in which the molecule
redistributes the energy among different electronic and vibrational degrees of freedom. Kasha’s rule [1] states that
radiationless transfer from higher excited singlet states to the lowest-lying excited singlet state (S;) is faster than
fluorescence (F). This radiationless transfer is called internal conversion (IC) and involves a changes between electronic
states of the same multiplicity. If a transition occurs between electronic states of different spin, the process is called
intersystem crossing (ISC). A typical ISC process is from a singlet to a triplet state, and once the lowest triplet is
populated, phosphorescence (P) can take place. In figure 1.1, radiative (F and P) and radiationless (IC and ISC) processes
are summarized in a so-called Jablonski diagram.

E)\

5

51

h

X

R

So e .
Singlet Triplet

Figure 1.1: Jabtonski diagram showing the conceptual photophysical processes. Straight arrows show radiative pro-
cesses: absorption (hv), fluorescence (F), and phosphorescence (P); wavy arrows show radiationless processes:
internal conversion (IC) and intersystem crossing (ISC).

The non-radiative IC and ISC processes are fundamental concepts which play a decisive role in photochemistry and
photobiology. IC processes are present in the excited-state dynamics of many organic and inorganic molecules, whose
applications range from solar energy conversion to drug therapy. Even many, very small molecules, for example O, and
0,, SO,, NO, and other nitrous oxides, show efficient IC, which has important consequences in atmospheric chemistry
and the study of the environment and pollution. IC is also the first step of the biological process of visual perception,
where the retinal moiety of rhodopsin absorbs a photon and non-radiatively performs a torsion around one of the
double bonds, changing the conformation of the protein and inducing a neural signal. Similarly, protection of the human
body from the influence of UV light is achieved through very efficient IC in DNA, proteins and melanins. Ultrafast IC to
the electronic ground state allows quickly converting the excitation energy of the UV photons into nuclear kinetic
energy, which is spread harmlessly as heat to the environment.

ISC processes are completely forbidden in the frame of the non-relativistic Schrédinger equation, but they become
allowed when including spin-orbit couplings, a relativistic effect [2]. Spin-orbit coupling depends on the nuclear charge
and becomes stronger for heavy atoms, therefore it is typically known as a “heavy atom” effect. However, it has been
recently recognized that even for molecules with only first- and second-row atoms, ISC might be relevant and can
be competitive in time scales with IC. A small selection of the growing number of molecules where efficient ISC in a

SHARC Manual 1 Introduction | 1 Introduction

sub-ps time scale has been predicted are SO, [3-5], benzene [6], aromatic nitrocompounds [7] or DNA nucleobases and
derivatives [8-12].

Theoretical simulations can greatly contribute to understand non-radiative processes by following the nuclear motion
on the excited-state potential energy surfaces (PES) in real time. These simulations are called excited-state dynamics
simulations. Since the Born-Oppenheimer approximation is not applicable for this kind of dynamics, nonadiabatic
effects need to be incorporated into the simulations.

The principal methodology to tackle excited-state dynamics simulations is to numerically integrate the time-dependent
Schrédinger equation, which is usually called full quantum dynamics simulations (QD). Given accurate PESs, QD is
able to match experimental accuracy. However, the need for the a priori” knowledge of the full multi-dimensional
PES renders this type of simulations quickly unfeasible for more than few degrees of freedom. Several alternative
methodologies are possible to alleviate this problem. One of the most popular ones is to use surface hopping nonadiabatic
dynamics.

Surface hopping was originally devised by Tully [13] and greatly improved later by the “fewest-switches criterion”[14]
and it has been reviewed extensively since then, see e.g. [15-19]. In surface hopping, the motion of the excited-state
wave packet is approximated by the motion of an ensemble of many independent, classical trajectories. Each trajectory
is at every instant of time tied to one particular PES, and the nuclear motion is integrated using the gradient of this PES.
However, nonadiabatic population transfer can lead to the switching of a trajectory from one PES to another PES. This
switching (also called “hopping”, which is the origin of the name “surface hopping”) is based on a stochastic algorithm,
taking into account the change of the electronic population from one time step to the next one.

The advantages of the surface hopping methodology and thus its popularity are well summarized in Ref. [15]:

« The method is conceptually simple, since it is based on classical mechanics. The nuclear propagation is based
on Newton’s equations and can be performed in Cartesian coordinates, avoiding any problems with curved
coordinate systems as in QD.

« For the propagation of the trajectories only local information of the PESs is needed. This avoids the calculation of
the full, multi-dimensional PES in advance, which is the main bottleneck of QD methods. In surface hopping
dynamics, all degrees of freedom can be included in the simulation. Additionally, all necessary quantities can be
calculated on-demand, usually called “on-the-fly” in this context.

« The independent trajectories can be trivially parallelized.

The strongest of these points of course is the fact that all degrees of freedom can be included easily in the calculations,
allowing to describe large systems. One should note, however, that surface hopping methods in the standard formula-
tion [13, 14]—due to the classical nature of the trajectories—do not allow to treat some purely quantum-mechanical
effects like tunneling, (tunneling for selected degrees of freedom is possible [20]). Additionally, quantum coherence
between the electronic states is usually described poorly, because of the independent-trajectory ansatz. This can be
treated with some ad-hoc corrections, e.g., in [21].

In the original surface hopping method, only nonadiabatic couplings are considered, only allowing for population
transfer between electronic states of the same multiplicity (IC). The SHARC methodology is a generalization of standard
surface hopping since it allows to include any type of coupling. Beyond nonadiabatic couplings (for IC), spin-orbit
couplings (for ISC) or interactions of dipole moments with electric fields (to explicitly describe laser-induced processes)
can be included. A number of methodologies for surface hopping including one or the other type of potential couplings
have been proposed in references [22-28], but SHARC can include all types of potential couplings on the same footing.

The SHARC methodology is an extension to standard surface hopping which allows to include these kinds of couplings.
The central idea of SHARC is to obtain a fully diagonal Hamiltonian, which is adiabatic with respect to all couplings.
The diagonal Hamiltonian is obtained by unitary transformation of the Hamiltonian including all couplings. Surface
hopping is conducted on the transformed electronic states. This has a number of advantages over the standard surface
hopping methodology, where no diagonalization is performed:

« Potential couplings (like spin-orbit couplings and laser-dipole couplings) are usually delocalized. Surface hopping,
however, rests on the assumption that the couplings are localized and hence surface hops only occur in the small
region where the couplings are large. Within SHARc, by transforming away the potential couplings, additional
terms of nonadiabatic (kinetic) couplings arise, which are localized.

« The potential couplings have an influence on the gradients acting on the nuclei. To a good approximation, within
SHARC it is possible to include this influence in the dynamics.

« When including spin-orbit couplings for states of higher multiplicity, diagonalization solves the problem of
rotational invariance of the multiplet components (see [26]).

The SHARC suite of programs is an implementation of the SHARC method. Besides the core dynamics code, it comes
with a number of tools aiding in the setup, maintenance and analysis of the trajectories.

10

SHARC Manual 1 Introduction | 1.1 Capabilities

1.1 Capabilities

The main features of the SHARC suite are:

Non-adiabatic dynamics based on the surface hopping methodology able to describe internal conversion and
intersystem crossing with any number of states (singlets, doublets, triplets, or higher multiplicities).
Algorithms for stable wave function propagation in the presence of very small or very large couplings.
Inclusion of interactions with laser fields in the long-wavelength limit. The derivatives of the dipole moments
can be included in strong-field applications.

Propagation using either nonadiabatic couplings vectors (| % |B) or wave function overlaps {(a(ty)|5(t)) (via the
local diabatization procedure [21]).

Gradients including the effects of spin-orbit couplings (with the approximation that the diabatic spin-orbit
couplings are slowly varying).

Flexible interface to quantum chemistry programs. Existing interfaces to:

Motrpro 2010 and 2012: SA-CASSCF

OpreENMOLCAS 18.0: SA-CASSCF, SS-CASPT2, MS-CASPT2, SA-CASSCF+QM/MM
CorumBus 7: SA-CASSCF, SA-RASSCF, MR-CISD

ADF 2017+: TD-DFT, TD-DFT+QM/MM

TurBOMOLE 7: ADC(2), CC2

GAUsSIAN 09 and 16: TD-DFT

Orca 4.1: TD-DFT

Interface for analytical potentials

Interface for linear-vibronic coupling (LVC) models

Energy-difference-based partial coupling approximation to speed up calculations [29].
Energy-based decoherence correction [21] or augmented-FSSH decoherence correction [30].
Calculation of Dyson norms for single-photon ionization spectra (for most interfaces) [31].
On-the-fly wave function analysis with TheoDORE [32-34] (for some interfaces).

Suite of auxiliary Python scripts for all steps of the setup procedure and for various analysis tasks.
Comprehensive tutorial.

1.1.1 New features in SHARC Version 2.0

These features are new in SHARC Version 2.0 (2018):

» Dynamics program sharc.x:

New methods: AFSSH for decoherence, GFSH for hopping probabilities, reflection after frustrated hop.
Atom masking for size-extensive decoherence and rescaling.

Improved wave function and U matrix phase tracking.

Support for on-the-fly computation of Dyson norms and THEODORE descriptors.

Option to gracefully stop trajectories after any time step.

« Fully integrated, efficient wave function overlap program wfoverlap.x
« Quantum chemistry interfaces:

Motpro: overhauled, uses wfoverlap.x, gives consistent phase between CASSCF and CI wave functions,
can do Dyson norms, parallelizes independent job parts.

Morcas: overhauled, can do (MS)-CASPT2 (only numerical gradients), QM/MM, Cholesky decomposition,
Dyson norms, parallelizes independent job parts, works with OPENMOLCAS version 18.

CorumMmBus: overhauled, uses wfoverlap.x, can use DALTON integrals, can use MoLcaAs orbitals, can do
Dyson norms.

ANALYTICAL: —

TURBOMOLE: new interface, can do ADC(2) and CC2; has SOC (for ADC(2)), uses wfoverlap.x, works with
TrEODORE.

ADF: new interface, can do TD-DFT; has SOC, uses wfoverlap.x, Dyson norms, has QM/MM, works with
TarEODORE.

11

SHARC Manual 1 Introduction | 1.1 Capabilities

— GAuUssIAN: new interface, can do TD-DFT; uses wfoverlap.x, has Dyson norms, works with THEODORE.
— LVC: new interface, can do (analytical) linear vibronic coupling models.
« Auxilliary scripts:
— wigner.py: elevated temperature sampling, LVC model setup.
— amber_to_initconds.py: new script, converts AMBER trajectories to SHARC initial conditions.
— sharctraj_to_initconds.py: new script, converts SHARC trajectories to SHARC initial conditions.
— spectrum.py: log-normal convolution, density of state spectra.
— data_extractor.x: new quantities to extract.
— diagnostics.py: new script, checks all trajectories prior to analysis.
— populations.py: new analysis modes.
— transition.py: new script, computes total number of hops in ensemble.
— make_fitscript.py: new script, prepares kinetic model fits to obtain time constants from populations.
— bootstrap.py: new script, calculates error estimates for time constants.
— trajana_essdyn.py: new script, performs essential dynamics analysis.
— trajana_nma.py: new script, performs normal mode analysis.
— data_collector.py: new script, performs generic data analysis (collecting, smoothing, convolution, inte-
gration).
— orca_External: new script, allows optimization with Orca and SHARc.
— Several input generation helpers.

« Reworked tutorial using OPENMoOLCAS (which is available at no cost).

1.1.2 New features in SHARC Version 2.1

These features are new in SHARC Version 2.1 (2019):
» Dynamics program sharc.x:

— New methods: Rescaling along gradient difference vector, forced hops to ground state.
— Output: Control of output step, writing to NetCDF format

« Dynamics program pysharc:

— Dynamics driver based on Python with C extension, allows to execute the routines of sharc.x directly
within Python, which avoids file-based interface operations. Provides extremely efficient SHARC dynamics
with LVC models.

« Data extraction:

— New options in data_extractor.x (e.g., populations according to [35]).
— New extractor for NetCDF files (data_extractor_NetCDF.x).
— Data converter (ASCII to NetCDF) (data_converter.x), useful for archiving.

« Quantum chemistry interfaces:

— MoLcas: now works with OPENMOLCAS version 18 or MoLcAs 8.3 and 8.4.

TurBOMOLE: now works with TURBOMOLE versions 7.1 to 7.4. Can now do QM/MM with TINKER.

— ORrcaA: new interface, can do TD-DFT; uses wfoverlap.x, has Dyson norms, works with THEODORE, can do
QM/MM with TINKER.

BAGEL: new interface, can do CASSCF, CASPT2, (X)MS-CASPT2 with analytical gradients and nonadiabatic
couplings, has overlaps and Dyson norms from wfoverlap. x.

ADF interface: updated for ADF2019 and newer, not backward compatible with older ADF versions.

« Auxilliary scripts:
— sharcvars.sh, sharcvars.csh: can be sourced to automatically set all relevant environment variables for
sharc.x, pysharc, and programs using NetCDF.
— make_fit.py: new script, more flexible, efficient, and integrated script for kinetic model fitting. Replaces
the scripts make_fitscript.py and bootstrap.py.

— setup_LVCparam.py and create_LVCparam.py: new setup scripts to automatically generate LVC models
from quantum chemistry calculations (also without nonadiabatic coupling vectors).

12

SHARC Manual 1 Introduction | 1.2 References

1.2 References

The following references should be cited when using the SHARC suite:

- [36] S. Mai, P. Marquetand, L. Gonzalez: @ “Nonadiabatic dynamics: The SHARC approach”. WIREs Comput. Mol.
Sci., 8, 1370 (2018).

« [37] S. Mai, M. Richter, M. Heindl, M. F. S. J. Menger, A. J. Atkins, M. Ruckenbauer, F. Plasser, L. M. Ibele, S. Kropf,
M. Oppel, P. Marquetand, L. Gonzalez: “SHARC2.1: Surface Hopping Including Arbitrary Couplings — Program
Package for Non-Adiabatic Dynamics”. sharc-md.org (2019).

Details can be found in the following references:

The theoretical background of SHARCc is described in Refs. [36, 38-43].

Applications of the SHARC code can be found in Refs. [4, 9, 11, 44-70].

Other features implemented in the SHARC suite are described in the following references:

« Energy-based decoherence correction: [21].

« Augmented-FSSH decoherence correction: [30].

« Global flux SH: [71].

« Local diabatization and wave function overlap calculation: [72-74].

« Sampling of initial conditions from a quantum-mechanical harmonic Wigner distribution: [75-77].
« Excited state selection for initial condition generation: [78].

« Calculation of ring puckering parameters and their classification: [79, 80].
« Normal mode analysis [81, 82] and essential dynamics analysis: [82, 83].

« Bootstrapping for error estimation: [84].

« Crossing point optimization: [85, 86]

« Computation of ionization spectra: [31, 87].

« Wave function comparison with overlaps: [88].

« Dynamics with linear vibronic coupling models: [89].

« Computation of electronic populations: [35].

The quantum chemistry programs to which interfaces with SHARC exist are described in the following sources:

« Morpro: [90, 91],

« Morcas: [92-94],

« CoLUMBUS: [95-98],
« ADF: [99],

« TURBOMOLE: [100],

« GAUssIAN: [101, 102],
« Orca: [103],

« BAGEL: [104].

Others:

« THEODORE: [32-34]
« WFOVERLAP: [74, 88]

1.3 Authors

The current version of the SHARC suite has been programmed by Sebastian Mai, Martin Richter, Moritz Heindl,
Maximilian F. S. J. Menger, Andrew Atkins, Felix Plasser, Lea M. Ibele, Simon Kropf, and Philipp Marquetand of the
AG Gonzalez of the Institute of Theoretical Chemistry of the University of Vienna with contributions from Jesus
Gonzalez-Vazquez, Matthias Ruckenbauer, Markus Oppel, Patrick J. Zobel, and Leticia Gonzalez.

13

http://dx.doi.org/10.1002/wcms.1370

SHARC Manual 1 Introduction | 1.4 Suggestions and Bug Reports

1.4 Suggestions and Bug Reports

Bug reports and suggestions for possible features can be submitted to 7 sharc@univie.ac.at.

1.5 Notation in this Manual

Names of programs The SHARC suite consists of Fortran90 programs as well as Python and Shell scripts. The
executable Fortran90 programs are denoted by the extension .x, the Python scripts have the extension .py and the
Shell scripts .sh. Within this manual, all program names are given in bold monospaced font.

Shaded Sections Important sections are given in blue boxes like the following one:

Important sections are given in blue boxes like this one.

On the other hand, examples of input files and command lines are marked like this:

user@host> example example.dat

14

mailto:sharc@univie.ac.at

2 Installation

2.1 How To Obtain

SHARC can be obtained from the SHARC homepage 7 www.sharc-md.org. In the Download section, follow the link to
GITHUB to clone or download the latest SHARC release version.

Note that you accept the Terms of Use given in the following section when you download SHARC.

2.2 Terms of Use

SHARC Program Suite
Copyright ©2019, University of Vienna

SHARC is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

SHARC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

A copy of the GNU General Public License is given below. It is also available at @ www.gnu.org/licenses/.

GNU General Public License
1. Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change
the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all
versions of a program-to make sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities
to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients
the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

15

http://sharc-md.org
http://www.gnu.org/licenses/

SHARC Manual 2 Installation | 2.2 Terms of Use

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer
you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software.
For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems
will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although
the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change
the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict
development and use of software on general-purpose computers, but in those that do, we wish to avoid the special
danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures
that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

2. Terms and Conditions

0. Definitions.
“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a
work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying
a private copy. Propagation includes copying, distribution (with or without modification), making available to
the public, and in some countries other activities as well.
To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere
interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and
prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no
warranty for the work (except to the extent that warranties are provided), that licensees may convey the work
under this License, and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modifications to it. “Object code”
means any non-source form of a work.
A “Standard Interface” means an interface that either is an official standard defined by a recognized standards
body, or, in the case of interfaces specified for a particular programming language, one that is widely used among
developers working in that language.
The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major Component,
and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface
for which an implementation is available to the public in source code form. A “Major Component”, in this context,
means a major essential component (kernel, window system, and so on) of the specific operating system (if any)
on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to
run it.
The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to control

16

SHARC Manual 2 Installation | 2.2 Terms of Use

those activities. However, it does not include the work’s System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files associated with source files for the
work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow between those subprograms and
other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from other parts of
the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable
provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the
unmodified Program. The output from running a covered work is covered by this License only if the output, given
its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as your
license otherwise remains in force. You may convey covered works to others for the sole purpose of having them
make modifications exclusively for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not control copyright. Those
thus making or running the covered works for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of your copyrighted material outside their
relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is
not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling
obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting
or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technological measures
to the extent such circumvention is effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices
stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the
Program.
You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in the form
of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

¢) You must license the entire work, as a whole, under this License to anyone who comes into possession of a
copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of
the work, and all its parts, regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make
them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature

17

SHARC Manual 2 Installation | 2.2 Terms of Use

extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting
copyright are not used to limit the access or legal rights of the compilation’s users beyond what the individual
works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also
convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software
interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or
customer support for that product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a
network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding
Source. This alternative is allowed only occasionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need
not require recipients to copy the Corresponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object
code and Corresponding Source of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is
normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into
a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user, “normally used” refers to a typical or common
use of that class of product, regardless of the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and
the conveying occurs as part of a transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But
this requirement does not apply if neither you nor any third party retains the ability to install modified object
code on the User Product (for example, the work has been installed in ROM).

18

SHARC Manual 2 Installation | 2.2 Terms of Use

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and protocols
for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a
format that is publicly documented (and with an implementation available to the public in source code form), and
must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by making exceptions from one
or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as
though they were included in this License, to the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be used separately under those permissions, but the
entire Program remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions from
that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain
cases when you modify the work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the
Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or
modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these
contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10.
If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License
along with a term that is a further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further restriction does not survive such
relicensing or conveying.
If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or
stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any attempt
otherwise to propagate or modify it is void, and will automatically terminate your rights under this License
(including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60
days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your
receipt of the notice.

19

SHARC Manual 2 Installation | 2.2 Terms of Use

10.

11.

Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated, you
do not qualify to receive new licenses for the same material under section 10.

. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation
of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by
modifying or propagating a covered work, you indicate your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors,
to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance
by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one,
or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity
transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to
the work the party’s predecessor in interest had or could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or
can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License.
For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion
of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which
the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether
already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of
making, using, or selling its contributor version, but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For purposes of this definition, “control” includes
the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the
contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denomi-
nated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent
infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not
to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work
is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be
so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3)
arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying
the covered work in a country, or your recipient’s use of the covered work in a country, would infringe one or
more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring
conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise
of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this
License. You may not convey a covered work if you are a party to an arrangement with a third party that is in
the business of distributing software, under which you make payment to the third party based on the extent of

20

SHARC Manual 2 Installation | 2.2 Terms of Use

12.

13.

14.

15.

16.

17.

your activity of conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered
work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work
so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could satisfy both those
terms and this License would be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work
with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and
to convey the resulting work. The terms of this License will continue to apply to the part which is the covered
work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version
of the GNU General Public License “or any later version” applies to it, you have the option of following the
terms and conditions either of that numbered version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the GNU General Public License, you may
choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version
for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are
imposed on any author or copyright holder as a result of your choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

INNO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according
to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all
civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of
the Program in return for a fee.

21

SHARC Manual 2 Installation | 2.3 Installation

2.3 Installation

In order to install and run SHARC under Linux (Windows and OS X are currently not supported), you need the following:
« A Fortran90 compiler (This release is tested against 2 GNU Fortran 4.4.7 and 7 Intel Fortran 15.0).
« The t7 BLAS, 7 LAPACK and 2 FFTW?3 libraries.
« 7 Python 2 (This release is tested against Python 2.6 and 2.7).
- make.
+ [z Python 3 if using the SHARC-ADF interface or ADF_freq. py (This release is tested against Python 3.5 and 3.6).]
« [Anaconda with several libraries (hdf5, hdf5_h1l, netcdf, mfhdf, df, jpeg) for the pysharc and NetCDF

functionalities.]

Extracting The source code of the SHARC suite is distributed as a zip archive file. In order to install it, first extract
the content of the archive to a suitable directory:

unzip sharc.zip

This should create a new directory called sharc/ which contains all the necessary subdirectories and files. In figure 2.1
the directory structure of the complete SHARC directory is shown.

Compiling and installing (without pysharc) To compile the Fortran90 programs of the SHARC suite, go to the
source/ directory.

cd source/

and edit the Makefile by adjusting the variables in the top part. If you only want to install regular SHARC (no pysharc
or NetCDF), set USE_PYSHARC to false.

Then, inside source/ issuing the command:

make

will compile the source and create all the binaries.

make install

will additionally copy the binary files into the sharc/bin/ directory of the SHARC distribution, which already contains
all the python scripts which come with SHARc.

Compiling and installing (with pysharc) If you intend to perform computations with pysharc (with LVC models)
or with NetCDF functionality, you need to set USE_PYSHARC to true in source/Makefile. Note that in this case, you
also need to set a sensible path for the ANACONDA variable.

Due to a number of dependencies, compiling with pysharc is slightly more complicated than without. The simplest
way to compile both pysharc and the regular executables together is to

1. run make install in pysharc/, then
2. run make install in source/.
Alternatively, you might want to compile the regular executables without pysharc or NetCDF, and then compile
pysharc. To do this:
1. set USE_PYSHARC to false,
run make install in source/,
run make clean in source/,
set USE_PYSHARC to true,
run make install in pysharc/.

DAl S

22

https://gcc.gnu.org/fortran/
https://software.intel.com/en-us/fortran-compilers
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://http://www.fftw.org/
https://www.python.org/downloads/release/python-2716/
https://www.python.org/downloads/release/python-374/
https://www.anaconda.com/distribution/

SHARC Manual 2 Installation | 2.3 Installation

sharc/
—{bin/) =$SHARC
—(data_extractor 0 x)
—(Interface code)

—(Auxilliary scripts
manual.pdf

tutorial.pdf

)

examples/

pysharc/

include/

1lib/

pysharc_src/

sharc_setup/

—(source/]
—{vests/)

INPUT/
Test Cases .../

RESULTS/
Test Cases .../
—| wfoverlap/

scripts/

source

Figure 2.1: Directory tree containing a complete SHARC installation.

Environment setup In order to use the SHARC suite, set the environment variable $SHARC to the bin/ directory of
the SHARC installation. This ensures that all programs of the SHARC suite find the other executables and all calls are
successful. For example, if you have unpacked SHARc into your home directory, just set:

export SHARC=~/sharc/bin (for bourne shell users)

or

setenv SHARC $HOME/sharc/bin (for c-shell type users)

Note that it is advisable to put this line into your shell’s login scripts.

23

SHARC Manual 2 Installation | 2.3 Installation

More comfortably, in SHARC 2.1, you can simply source either of the sharcvars files (generated by make) that are located
in the bin/ directory:

source ~/sharc/bin/sharcvars.sh (for bourne shell users)

or

source ~/sharc/bin/sharcvars.csh (for c-shell type users)

2.3.1 WFoVERLAP Program

The SuARc package contains as a submodule the program WFovERLAP, which is necessary for many functionalities of
SHARC. In order to install and test this program, see section 6.13.

2.3.2 Libraries

SHARC requires the BLAS, LAPACK and FFTW3 libraries. During the installation, it might be necessary to alter the
LDFLAGS string in the Makefile, depending on where the relevant libraries are located on your system. In this way, it is
for example possible to use vendor-provided libraries like the &7 Intel MKL. For more details see the INSTALL file which
is included in the SHARC distribution.

As specified above, users of pysharc and the NetCDF functions will need additional libraries (hdf5, hdf5_h1, netcdf,
mfhdf, df, jpeg), which can, e.g., be obtained through an ANaconDA installation.

2.3.3 Test Suite

After the installation, it is advisable to first execute the test suite of SHARC, which will test the fundamental functionality
of SHARC. Change to an empty directory and execute

$SHARC/tests. py

The interactive script will first verify the Python installation (no message will appear if the Python installation is fine).
Subsequently, the script prompts the user to enter which tests should be executed. The script will also ask for a number
of environment variables, which are listed in Table 2.1.

Their is at least one test for each of the auxiliary scripts and interfaces. Tests whose names start with scripts_ test the
functionality of the auxiliary programs in the SHARC suite. Tests whose names start with ADF_, Analytical_, COLUMBUS_,
GAUSSIAN_, LVC_, MOLCAS_ MOLPRO_, or TURBOMOLE_ run short trajectories, testing whether the main dynamics code, the
interfaces, the quantum chemistry programs, and auxiliary programs (THEODORE, WFovERLAP, ORCA, TINKER) work
together correctly.

If the installation was successful and Python is installed correctly, Analytical_overlap, LVC_overlap, and most tests
named scripts_<NAME> should execute without error.

The test calculations involving the quantum chemistry programs can be used to check that SHARC can correctly call
these programs and that they are installed correctly.

If any of the tests show differences between output and reference output, it is advisable to check the respective files (i.e.,
compare $SHARC/ . ./tests/RESULTS/<job>/ to ./RUNNING_TESTS/<job>/). Note that small differences (different sign
of values or small numerical deviations) in the output can already occur when using a different version of the quantum
chemistry programs, different compilers, different libraries, or different parallization schemes. It should be noted that
along trajectories, these small changes can add up to notably influence the trajectories, but across the ensemble these
small changes will likely cancel out.

24

https://software.intel.com/en-us/intel-mkl

SHARC Manual 2 Installation | 2.3 Installation

Table 2.1: Environment variables for SHARC test jobs. These variables need to be set before the test job execution.

Keyword Description

$ADF Points to the main directory of the ADF installation, which contains the file adfrc.sh and
subdirectory bin/.

$BAGEL Points to the main directory of the BAGEL installation, which contains subdirectories bin/
and lib/.

$COLUMBUS Points to the directory containing the CoLuMBUSs executables, e.g., runls.
$GAUSSIAN Points to the main directory of the GaussiaN installation, which contains the Gaussian
executables (e.g., g09/g16 or 19999.exe).

$MOLCAS Points to the main directory of the OPENMOLCAS installation, containing molcas. rte and
directories basis_library/ and bin/.
$MOLPRO Points to the bin/ directory of the MoLPRo installation, which contains the molpro.exe file.

$TURBOMOLE Points to the main directory of the TURBOMOLE installation, which contains subdirectories
like basen/, bin/, or scripts/.

$ORCA Points to the directory containing the Orca executables, e.g., orca, orca_gtoint, or
orca_fragovl.

$THEODORE Points to the main directory of the THEODORE installation. $THEODORE/bin/ should contain
analyze_tden. py.

$TINKER Points to the main directory of a MorLcas-modified TINKER installation. $TINKER/bin should
contain tkr2qm_s).

$PYQUANTE Points to the main directory of PYQUANTE, containing the PyQuante/ subdirectory that can
be imported by Python as a module.

$molcas Should point to the same location as $MOLCAS, or another MoLrcas installation. Note that
$molcas is only used by some CoLUMBUS test jobs. Also note that $molcas does not need to
point to the MoLcas installation interfaced to CoLumBUS.

$orca Should point to the same location as $0RCA, or another Orca installation. Note that $orca is
only used by some tests where ORrca is used as helper program (e.g., for setup_orca_opt.py
or spin-orbit calculations with SHARC_RICC2. py).

2.3.4 Additional Programs

For full functionality of the SHARC suite, several additional programs are recommended (all of these programs are
currently freely available, except for AMBER):

The Python package @ NumPy.

Optimally, within your Python installation the NumPy package (which provides many numerical methods, e.g.,
matrix diagonalization) should be available. If NUMPY is not available, some parts of the SHARC suite are still
functional, and the affected scripts will fall back to use a small Fortran code (front-end for LAPACK) within the
SHARC package. Since in the Python scripts no large-scale matrix calculations are carried out, there should be no
significant performance loss if NUMPY is not available. NuMPY is mandatory for dynamics with the ADF interface,
with LVC models, and all pysharc functionalities.

The Python package 2 MATPLOTLIB.
If the MAaTPLOTLIB package, some auxiliary scripts (trajana_nma.py and trajana_essdyn.py) can automatically
generate certain plots.

The 7 GNupLOT plotting software.

GNUPLOT is not strictly necessary, since all output files could be plotted using other plotting programs. However,
a number of scripts from the SHARC suite automatically generate GNUPLOT scripts after data processing, allowing
to quickly plot the results.

A molecular visualization software able to read xyz files (e.g. & MOLDEN, 7 GABEDIT, Z MOLEKEL or 7 VMD).
Molecular visualization software is needed in order to animate molecular motion in the dynamics.

The 2 THEODORE wave function analysis suite (version 2.0 or higher).
The wave function analysis package THEODORE allows to compute various descriptors of electronic wave
functions (supported by some interfaces), which is helpful to follow the state characters along trajectories.

25

http://www.numpy.org/
https://matplotlib.org/
http://www.gnuplot.info/
http://www.cmbi.ru.nl/molden/molden.html
http://gabedit.sourceforge.net/
http://molekel.cscs.ch/wiki/pmwiki.php
http://www.ks.uiuc.edu/Research/vmd/
http://theodore-qc.sourceforge.net/

SHARC Manual 2 Installation | 2.3 Installation

« The 7 AMBER molecular dynamics package.
AMBER can be used to prepare initial conditions based on ground state molecular dynamics simulations (instead
of using a Wigner distribution), which is especially useful for large systems.

+ The 7 Orca ab initio package.
ORrca can be employed as external optimizer. In combination with the SHARC interfaces, it is possible to perform
optimizations of minima, conical intersections, and crossing points for any method interfaced to SHARc.

2.3.5 Quantum Chemistry Programs

Even though SHARC comes with two interfaces for analytical potentials (and hence can be used without any quantum
chemistry program), the main application of SHARC is certainly on-the-fly ab initio dynamics. Hence, one of the
following interfaced quantum chemistry programs is necessary:

« 2 MorpRro (this release was checked against MoLprO 2010 and 2012).
+ 0 OPENMOLCAS (this release was checked against OPENMOLCAS 18).

— 07 TINKER, ¢ interfaced to OpENMoOLCAS 18, for QM/MM dynamics.
« 2 Moicas (this release was checked against Morcas 8.3 and 8.4).

— o7 TINKER, ¢ interfaced to Morcas, for QM/MM dynamics.
« 2 COLUMBUS 7

- 7 CoLuMmBUS-MoLcas interface for spin-orbit couplings.

7 AMSTERDAM DENsITY FuncTIONAL (only ADF 2019 or newer)
« 0 TURBOMOLE (this release was checked against TURBOMOLE 6.6, 7.0, 7.1, 7.2, 7.3, and 7.4).

— 7 OrcaA (version 3 or 4) for providing spin-orbit integrals.
— 07 TINKER (this release was checked against version 6.3.3) for QM/MM dynamics.

+ 2 GAUSSIAN (this release was checked against GAussiAN 09 and 16).
« 2 Orca (version 4.1 or 4.2).

— 07 TINKER (this release was checked against version 6.3.3) for QM/MM dynamics.
« 7 BAGEL (commit Oea6b59 from Mar 27, 2019 or newer).
- 07 PyQuante for overlap calculations

See the relevant sections in chapter 6 for a description of the quantum chemical methods available with each of these
programs.

26

http://ambermd.org/
https://orcaforum.kofo.mpg.de
http://www.molpro.net/
https://gitlab.com/Molcas/OpenMolcas/
http://dasher.wustl.edu/tinker/
http://www.molcas.org/documentation/manual/node79.html#SECTION052122010000000000000
http://www.molcas.org/
http://dasher.wustl.edu/tinker/
http://www.molcas.org/documentation/manual/node79.html#SECTION052122010000000000000
http://www.univie.ac.at/columbus/docs_COL70/documentation_main.html
http://www.univie.ac.at/columbus/docs_COL70/columbus_molcas_link.html
http://www.scm.com/ADF
http://www.turbomole.com
https://orcaforum.kofo.mpg.de
http://dasher.wustl.edu/tinker/
http://www.gaussian.com
https://orcaforum.kofo.mpg.de
http://dasher.wustl.edu/tinker/
https://nubakery.org/index.html
http://pyquante.sourceforge.net/

3 Execution

The SHARC suite consists of the main dynamics code sharc.x and a number of auxiliary programs, like setup scripts and
analysis tools. Additionally, the suite comes with interfaces to several quantum chemistry software: MoLPRO, MOLCAS,
CorumBuUS, TURBOMOLE, ADF, GAUSSIAN, ORrcA, and BAGEL.

In the following, first it is explained how to run a single trajectory by setting up all necessary input for the dynamics
code sharc.x manually. Afterwards, the usage of the auxiliary scripts is explained. Detailed infos on the SHARC input
files is given in chapter 4. Chapter 5 documents the different output files SHARC produces. The interfaces are described
in chapter 6 and the auxiliary scripts in chapter 7. All relevant theoretical background is given in chapter 8.

3.1 Running a single trajectory

3.1.1 Input files

SHARC requires a number of input files, which contain the settings for the dynamics simulation (input), the initial
geometry (geom), the initial velocity (veloc), the initial coefficients (coeff) and the laser field (laser). Only the first
two (input, geom) are mandatory, the others are optional. The necessary files are shown in figure 3.1. The content of
the main input file is explained in detail in section 4.1, the geometry file is specified in section 4.2. The specifications of
the velocity, coefficient and laser files are given in sections 4.3, 4.4 and 4.5, respectively.

run.sh

input

geom

<Interface files>)

Figure 3.1: Input files for a SHARC dynamics simulation. Directories are in blue, executable scripts in green, regular
files in white and optional files in grey.

Additionally, the directory QM/ and the script QM/runQM. sh need to be present, since the on-the-fly ab initio calculations
are implemented through these files. The script @M/ runQM. sh is called each time SHARC performs an on-the-fly calculation
of electronic properties (usually by a quantum chemistry program). In order to do so, SHARC first writes the request
for the calculation to QM/QM. in, then calls QM/runQM. sh, waits for the script to finish and then reads the requested
quantities from QM/QM.out. The script QM/runQM.sh is fully responsible to generate the requested results from the
provided input. In virtually all cases, this task is handled by the SHARc-quantum chemistry interfaces (see chapter 6), so
that the script QM/run@M. sh has a particularly simple form:

27

SHARC Manual 3 Execution | 3.1 Running a single trajectory

cd QM/
$SHARC/<INTERFACE> QM.1in

with the corresponding interface name given. Note that the interfaces in all cases need additional input files, which
must be present in QM/. Those input files contain the specifications for the quantum chemistry information, e.g., basis
set, active and reference space, memory settings, path to the quantum chemistry program, path to scratch directories; or
for SHARC_Analytical.py and SHARC_LVC. py the parameters for the analytical potentials. For each interface, the input
files are slightly different. See sections 6.3, 6.4, 6.5, 6.6, 6.8, 6.7, 6.9, 6.10, 6.11, or 6.12 for the necessary information.
3.1.2 Running the dynamics code

Given the necessary input files, SHARC can be started by executing

user@host> $SHARC/sharc.x input

Note that besides the input file, at least the geometry file needs to be present (see chapter 4 for details).

A running trajectory can be stopped after the current time step by creating an empty file STOP:

user@host> touch STOP

This is usually preferable to simply killing SHARC, because the current time step is properly finished and all files are
correctly written for analysis and restart.

3.1.3 Output files

TRAJ

run.sh
input

geom

Hli"

output.lis

output.log

output.dat
output.xyz
restart.ctrl

restart.traj

@)

1

Figure 3.2: Files of a SHARC dynamics simulation after running. Directories are in blue, executable scripts in green,
regular files in white and optional files in grey. Output files are in yellow.

28

SHARC Manual 3 Execution | 3.2 Typical workflow for an ensemble of trajectories

Figure 3.2 shows the content of a trajectory directory after the execution of SHARC. There will be six new files. These
files are output.log, output.lis, output.dat and output.xyz, as well as restart.ctrl and restart.traj.

The file output.log contains mainly a listing of the chosen options and the resulting dynamics settings. At higher print
levels, the log file contains also information per time step (useful for debugging). output.lis contains a table with one
line per time step, giving active states, energies and expectation values. output.dat contains a list of all important
matrices and vectors at each time step. This information can be extracted with data_extractor.x to yield plottable
table files. output.xyz contains the geometries of all time steps (the comments to each geometry give the active state).
For details about the content of the output files, see chapter 5.

The restart files contain the full state of a trajectory and its control variables from the last successful time step. These
files are needed in order to restart a trajectory at this time step (either because the calculation failed, or in order to extend
the simulation time beyond the original maximum simulation time). The restart/ directory contains all persistent files
that are needed for the quantum chemistry interfaces (for restarting, but also between all time steps).

3.2 Typical workflow for an ensemble of trajectories

Usually, one is not interested in running only a single trajectory, since a single trajectory cannot reproduce the branching
of a wave packet into different reaction channels. In order to do so, within surface hopping an ensemble of independent
trajectories is employed.

When dealing with a (possibly large) ensemble of trajectories, setup and analysis need to be automatized. Hence, the
SHARC suite contains a number of scripts fulfilling different tasks in the usual workflow of setting up ensembles of
trajectories. The typical workflow is given schematically in figure 3.3.

(SHARC Workflow)

Optimization [Quantum Chemistryj

Req l

Frequencies [Quantum Chemistryj

Preparations

Req. {vi}, {ni} freq.molden
[Wigner Samplingj |wigner.py |
{(Ryv)i} initconds
Initial Conditionst [Setup setup init.py| | initconds
| Excited-State Calcs. | [Quantum Chemistry]
J{8Es}.{FE5) . out
[Excited—State Selection] |excite.py |

{(R,v,)i} initconds.excited

Setup setup_traj.py

Dynamics Simulations —
Dynamics sharc.x
output.dat, output.xyz
Aftermaths | many tools...

Figure 3.3: Typical workflow for conducting excited-state dynamics simulations with SHARc.

3.2.1 Initial condition generation

In the typical workflow, the user will first create a set of suitable initial conditions. In the context of the SHARC package,
an initial condition is a set of an initial geometry, initial velocity, initial occupied state and initial wave function

29

SHARC Manual 3 Execution | 3.2 Typical workflow for an ensemble of trajectories

coefficients. Many such sets are needed in order to setup physically sound dynamics simulations.

Generation of initial geometries and velocities Currently, within the SHARC suite, initial geometries and velocities
can be generated based on a quantum harmonic oscillator Wigner distribution. The theoretical background is given in
section 8.22. The calculation is performed by wigner. py, which is explained in section 7.1.

As given in figure 3.3, wigner. py needs as input the result of a frequency calculation in MOLDEN format. The calculation
can be performed by any quantum chemistry program and any method the user sees fit (there are some scripts which
can aid in the frequency calculation, see sections 6.3.5, 6.4.3, 6.7.6). wigner.py produces the file initconds, which
contains a list of initial conditions ready for further processing.

Alternatively, initial geometries and velocities can be extracted from molecular dynamics simulations in the ground
state. Currently, it is possible to either convert restart files AMBER to an initconds file (using amber_to_initconds.py,
see section 7.2) or to randomly sample snapshots from SHARC trajectories (using sharctraj_to_initconds.py, see
section 7.3).

Generation of initial coefficients and states In the second preparation step, for each of the sampled initial
geometries it has to be decided which excited state should be the initial one. In simple cases, the user may manually
choose the initial excited state using excite.py (optionally after diabatization; see 7.5). Alternatively, the selection of
initial states can be performed based on the excitation energies and oscillator strengths of the excited states at each
initial geometry (this approximately simulates a delta-pulse excitation).

The latter options (diabatization or energies/oscillator strengths) make it necessary to carry out vertical excitation
calculation before the selection of the initial states. The calculations can be set up with setup_init.py (see section 7.4).
This script prepares for each initial condition in the initconds file a directory with the necessary input to perform the
calculation. The user should then execute the run script (run.sh) in each of the directories (either manually or through
a batch queueing system).

After the vertical excitation calculations are completed, the vertical excitation energies and oscillator strengths of each
calculation are collected by excite.py (see 7.5). The same script then performs the selection of the initial electronic state
for each initial geometry. The results are written to a new file, initconds.excited. This file contains all information
needed to setup the ensemble.

Additionally, spectrum.py (7.8) can calculate absorption spectra based on the initconds.excited file. This may be
useful to verify that the level of theory chosen is appropriate (e.g., by comparing to an experimental spectrum), or to
choose a suitable excitation window for the determination of the initial state.

3.2.2 Running the dynamics simulations

Based on the initial conditions given in initconds.excited, the input for all trajectories in the ensemble can be setup
by setup_traj.py (see section 7.6). The script produces one directory for each trajectory, containing the input files for
SHARC and the selected interface.

In order to run a particular trajectory, the user should execute the run script (run.sh) in the directory of the trajectory.
Since those calculations can run between minutes and several weeks (depending on the level of theory used and the
number of time steps), it is advisable to submit the run scripts to a batch queueing system.

The progress of the simulations can be monitored most conveniently in the output.lis files. If the calculations are
running in some temporary directory, the output files can be copied to the local directory (where they were setup)
with the scp wrapper retrieve.sh (see 7.9). This allows to perform ensemble analysis while the trajectories are still
running.

If a trajectory fails, the temporary directory where the calculation is running is not deleted. The file README will be
created in the trajectory’s directory, giving the time of the failure and the location of the temporary data, so that the
case can be investigated.

In order to signal SHARC to terminate a trajectory after the current time step is completed, the user can create a (possibly
empty) file STOP in the working directory of the trajectory (the directory where sharc.x is running).

The status of the ensemble of trajectories can be checked with diagnostics.py (section 7.14). This script checks the
presence and integrity of all relevant files, the progress of all trajectories, and warns if trajectories behave unexpectedly
(non-conversion of total energy, intruder states, etc).

30

SHARC Manual 3 Execution | 3.3 Auxilliary Programs and Scripts

3.2.3 Analysis of the dynamics results

Each trajectory can be analyzed independently by inspecting the output files (see chapter 5). Most importantly, calling
data_extractor.x (7.10) on the output.dat file of a trajectory creates a number of formatted files which can be plotted
with the help of make_gnuscript.py (7.13) and GNupLOT. The nuclear geometries in output.xyz file can be analyzed in
terms of internal coordinates (bond lengths, angles, ring conformations, etc.) using geo.py (7.21). The manual analysis
of all individual trajectories is usually a good idea to verify that the trajectories are correctly executing, and in order to
find general reaction pathways. The manual analysis often permits to formulate some hypotheses, which can then be
verified with the statistical analysis tools.

For the complete ensemble, the first step should usually be to run diagnoestics.py (section 7.14). This script will
determine how long the different trajectories are, and, more importantly, will check the trajectories for file integrity,
conservation of total energy, and continuity of potential/kinetic energy. Based on a set of customizable criteria, the
script determines for each trajectory a “maximum usable time”. The script then can mark all trajectories with maximum
usable time below a given threshold to be excluded from analysis (by creating a file DONT_ANALYZE in the trajectory’s
directory). The other analysis scripts will then ignore trajectories marked by diagnostics.py. Trajectories can also be
manually excluded from analysis, by creating a file called CRASHED, DEAD, or RUNNING in the respective directory.

After the trajectories were checked and unsuitable ones excluded, the statistical analysis scripts can be used. The script
populations.py (section 7.15) can calculate average excited-state populations. The script transition.py (section 7.16)
can analyze the total number of hops between all pairs of states in an ensemble, allowing to identify relevant relaxation
routes in the dynamics. Using the script make_fit.py (7.17), it is possible to make elaborate global fits of chemical
kinetics models to the populations data, allowing to extract rate constants from the populations, and to compute errors
for these rate constants. The same functionality is also present in the older scripts make_fitscript.py (7.18) and
bootstrap.py (7.19). The script crossing.py (7.20) can find and extract notable geometries, e.g., those geometries where
a surface hop between two particular states occurred. Using trajana_essdyn.py (7.22) and trajana_nma.py (7.23) it is
furthermore possible to perform essential dynamics analysis and normal mode analysis. Finally, data_collector.py can
merge arbitrary tabulated data from the trajectories and perform various analysis procedures (compute mean/standard
deviation, data convolution, summation, integration), which can be used to compute, e.g., time-dependent distribution
functions or time-dependent spectra.

3.3 Auxilliary Programs and Scripts

The following tables list the auxiliary programs in the SHARC suite. The rightmost column gives the section where the
program is documented.

3.3.1 Setup

wigner.py Creates initial conditions from Wigner distribution. 7.1
amber_to_initconds.py Creates initial conditions from Amber restart files. 7.2
sharctraj_to_initconds.py Creates initial conditions from SHARC trajectories. 7.3
setup_init.py Sets up initial vertical excitation calculations. 7.4
excite.py Generates excited state lists for initial conditions and selects initial states. 7.5
setup_traj.py Sets up the dynamics simulations based on the initial conditions. 7.6
laser.x Prepares files containing laser fields. 7.7
molpro_input.py Prepares MoLPRro input files and template files for the Morpro interface. 6.3.5
molcas_input.py Prepares Motcas input files and template files for the Moicas interface. 6.4.3
ADF_input.py Prepares ADF input files. 6.7.5
ADF_freq.py Converts ADF output files of frequency calculations to Molden format. 6.7.6
setup_LVCparam.py Sets up single point calculations for LVC parametrization. 6.9.2
create_LVCparam.py Produces LVC model files from parametrization data. 6.9.2

31

SHARC Manual 3 Execution | 3.3 Auxilliary Programs and Scripts

3.3.2 Analysis

spectrum.py Generates absorption spectra from initial conditions files. 7.8
retrieve.sh scp wrapper to retrieve dynamics output during the simulation. 7.9
data_extractor.x Extracts plottable results from the SHARC output data file. 7.10
data_extractor_NetCDF.x Extracts plottable results from the SHARC output data file in NetCDF format. 7.11
data_converter.x Converts output.dat files to output.dat.nc files. 7.12
make_gnuscript.py Creates gnuplot scripts to plot trajectory data. 7.13
diagnostics.py Checks ensembles for integrity, progress, energy conservation. 7.14
populations.py Calculates ensemble populations. 7.15
transition.py Calculates total number of hops within an ensemble. 7.16
make_fit.py Performs kinetic model fits and bootstrapping. 7.17
make_fitscript.py Creates GNUPLOT scripts to fit kinetic models to population data. 7.18
bootstrap.py Computes errors for kinetic model fits. 7.19
crossing.py Extracts specific geometries from ensembles. 7.20
geo.py Calculates internal coordinates from xy?z files. 7.21
trajana_essdyn.py Performs an essential dynamics analysis for an ensemble. 7.22
trajana_nma.py Performs a normal mode analysis for an ensemble. 7.23
data_collector.py Collects data from tabular files and performs various analyses 7.24

32

SHARC Manual 3 Execution | 3.3 Auxilliary Programs and Scripts

3.3.3 Interfaces

SHARC_MOLPRO. py Calculates SOCs, gradients, nonadiabatic couplings, overlaps, dipole mo- 6.3
ments, and Dyson norms at the CASSCF level of theory (using MoLPRO).
Symmetry or RASSCF are not supported. Only segmented basis sets are
possible.

SHARC_MOLCAS. py Calculates SOCs, gradients, overlaps, dipole moments, Dyson norms, dipole 6.4
moment derivatives, and spin-orbit coupling derivatives at the CASSCF and
(MS-)CASPT?2 level of theory (using MoLcAs). Symmetry is not supported.
Numerical differentiation is used for some tasks.

SHARC_COLUMBUS. py Calculates SOCs, gradients, nonadiabatic couplings, overlaps, dipole mo- 6.5
ments, and Dyson norms at the CASSCF, RASSCF, and MRCISD levels of
theory (using CoLumBUS). Symmetry is not supported. Works with the
either DALTON or SEWARD integrals (through the CoLumBUs-MoLcaAs in-
terface), but SOCs are only available with SEWARD integrals. Nonadiabatic
couplings are only available with DALTON integrals.

SHARC_Analytical.py Calculates SOCs, gradients, overlaps, dipole moments, and dipole moment 6.6
derivatives based on analytical expressions of diabatic matrix elements
defined in Cartesian coordinates.

SHARC_ADF . py Calculates SOCs, gradients, overlaps, dipole moments, and Dyson norms at 6.7
the TD-DFT level of theory with GGA and hybrid functionals (using ADF).
Symmetry is not supported.

SHARC_RICC2.py Calculates SOCs, gradients, overlaps, and dipole moments at the ADC(2) 6.8
and CC2 levels of theory (using TURBOMOLE). Symmetry is not supported.

For SOCs, only ADC(2) can be used and Orca has to be installed in addition
to TURBOMOLE.

SHARC_LVC. py Calculates SOCs, gradients, nonadiabatic couplings, overlaps, and dipole 6.9
moments based on linear-vibronic coupling models defined in mass-
weighted normal mode coordinates.

SHARC_GAUSSIAN. py Calculates gradients, overlaps, dipole moments, and Dyson norms at the 6.10
TD-DFT level of theory (using Gaussian). Symmetry is not supported.

SHARC_ORCA. py Calculates SOCs, gradients, overlaps, dipole moments, and Dyson norms ~ 6.11
at the TD-DFT level of theory with GGA and hybrid functionals (using
Orca). Symmetry is not supported.

SHARC_BAGEL . py Calculates gradients, nonadiabatic couplints, overlaps, dipole moments, 6.12
and Dyson norms at the CASSCF, CASPT2, MS-CASPT2, and XMS-CASPT2
level of theory (using BAGEL). Symmetry is not supported.

3.3.4 Others

tests.py Script to automatically run the SHARC test suite. 233

wfoverlap.x Program to compute wave function overlaps, used by most interfaces. 6.13

Orca_External Script to carry out optimizations with ORca as optimizer and SHARC as 7.25
gradient provider.

setup_orca_opt.py Script to setup optimizations with ORca as optimizer and SHARC as gradient ~ 7.25
provider.

setup_single_point.py Script to setup single point calculations with SHARC interfaces. 7.26

QMout_print.py Script to convert a QM.out file to a table with energies and oscillator ~ 7.27
strengths.

diagonalizer.x Helper program for excite.py. Only required if NUMPY is not available. 7.28

33

SHARC Manual 3 Execution | 3.4 The PYSHARC dynamics driver

3.4 The PysHARC dynamics driver

Since SHARC2.1, the suite contains alternative dynamics drivers, besides the regular sharc.x executable, which are
based on the pysharc sub-project. pysharc is an implementation of the SHARC dynamics driver in Python that directly
calls the Fortran routines of sharc.x (through the Python-C API via intermediate C routines). In this way, both the
sharc.x code and the quantum chemistry interface code can be run within the same program, omitting file-based
communication between driver and quantum chemistry interface.

The motivation of this is that the omission of file-based communication can save up to a few seconds in each time step.
Naturally, this is negligible for expensive quantum chemistry where a time step takes several minutes. However, for
very fast interfaces (analytical models, LVC models), time steps can be reduced from a few seconds to a few milliseconds,
providing a dramatic speedup of the SHARC simulations which is only limited by the speed of writing the output
files. Consequently, the use of pysharc is highly advisable for SHARC simulations with very fast interfaces. Currently,
pysharc is only implemented for LVC models, through the driver script named pysharc_lvc.py.

pysharc is intended to change the SHARC workflow as little as possible. Basically all features of sharc.x are supported.
The only change that needs to be applied is to call the pysharc driver instead of sharc.x.

The high efficiency of pysharc is optimally combined with an efficient way of producing output. As the default ASCII
output format is not optimized for performance, together with pysharc SHARC2.1 contains an implementation that
produces NetCDF binary output data files. It is advisable that every time pysharc is run, output is written in NetCDF
format. Details of NetCDF output are documented in Section 5.4

34

4 Input files

In this chapter, the format of all SHARC input files are presented. Those are the main input file (here called input),
the geometry file, the velocity file, the coefficients file, the laser file, and the atom mask file. Only the first two are
mandatory, the others are optional input files. All input files are ASCII text files.

4.1 Main input file

This section presents the format and all input keywords for the main SHARcC input. Note that when using setup_traj . py,
full knowledge of the SHARC input keywords is not required.

4.1.1 General remarks

The input file has a relatively flexible structure. With very few exceptions, each single line is independent. An input
line starts with a keyword, followed optionally by a number of arguments to this keyword. Example:

stepsize 0.5

Here, stepsize is the keyword, referring to the size of the time steps for the nuclear motion in the dynamics. 8.5 gives
the size of this time step, in this example 0.5 fs.

A number of keywords have no arguments and act as simple switches (e.g., restart, gradcorrect, grad_select,
nac_select, ionization, track_phase, dipole_gradient). Those keywords can be prefixed with no to explicitly
deactivate the option (e.g., norestart deactivates restarts).

In each line a trailing comment can be added in the input file, by using the special character #. Everything after # is
ignored by the input parser of SHARC. The input file also can contain arbitrary blank lines and lines containing only
comments. All input is case-insensitive.

The input file is read by SHARC by subsequently searching the file for all known keywords. Hence, unknown or
misspelled keywords are ignored. Also, the order of the keywords is completely arbitray. Note however, that if a
keyword is repeated in the input only the first instance is used by the program.

4.1.2 Input keywords

In Table 4.1, all input keywords for the SHARC input file are listed.

35

SHARC Manual

4 Input files

4.1 Main input file

Table 4.1: Input keywords for sharc.x. The first column gives the name of the keyword, the second lists possible
arguments and the third line provides an explanation. Defaults are marked like this. $n denotes the n-th
argument to the keyword.

Keyword | Arguments | Explanation
— General control keywords —
printlevel integer Controls the verbosity of the log file.
$1=0 Log file is empty
$1=1 + List of internal steps
$1=2 + Input parsing information
$1=3 + Some information per time step
$1=4 + More information per time step
$1=5 + Much more information per time step
restart Dynamics is resumed from restart files.
norestart Dynamics is initialized from input files.
norestart takes precedence.
rngseed integer Seed for the random number generator.
10997279 Used for surface hopping and AFSSH decoherence.
compatibility $1=0 Compatibility mode disabled.
$1=1 Do not draw a second random number per step (for decoher-
ence).
— Input file keywords —
geomfile quoted string File name containing the initial geometry.
"geom"
velocfile quoted string File containing the initial velocities.
"veloc" Only read if veloc external.
coefffile quoted string File containing the initial wave function coefficients.
"coeff" Only read if coeff external.
laserfile quoted string File containing the laser field.
"laser" Only read if laser external.
atommaskfile quoted string File containing the atom mask.
"atommask" Only read if atommask external.
— Trajectory initialization keywords —
veloc string Sets the initial velocities.
$1=zero Initial velocities are zero.
$1=random $2 float | Random initial velocities with $2 eV kinetic energy per atom.
$1=external Initial velocities are read from file.
nstates list of integers Number of states per multiplicity.
$1(1) Number of singlet states
$2 (0) Number of doublet states
$3 (0) Number of triplet states
$...(0) Number of states of higher multiplicities
actstates list of integers Number of active states per multiplicity.
same as nstates By default, all states are active.
state integer, string Specifies the initial state.
(no default; SHARC exits if state is missing).
$1 Initial state.
$2=MCH Initial state and coefficients are given in MCH representation.
$2:diag Initial state and coefficients are given in diagonal representation.
coeff string Sets the wave function coefficients.
$1=auto Initial coefficient are determined automatically from initial state.
$1=external Initial coefficients are read from file.
— Laser field keywords —
laser string Sets the laser field.
$1=none No laser field is applied.

Continued on next page

36

SHARC Manual 4 Input files | 4.1 Main input file
Table 4.1 — Continued from previous page
Keyword Arguments Explanation
$1=internal Laser field is calculated at each time step from internal function.
$1=external Laser field for each time step is read during initialization.
laserwidth float Laser bandwidth used to detect induced hops.
1.0eV
— Time step keywords —
stepsize float Length of the nuclear dynamics time steps in fs.
0.5 fs
nsubsteps integer Number of substeps for the integration of the electronic
equation of motion.
25
nsteps integer Number of simulation steps.
3
tmax float Total length of the simulation in fs.
No effect if nsteps is present.
killafter float Terminates the trajectory after $1 fs in the lowest state.
-1 If $1<0, trajectories are never killed.
— Surface hopping setting keywords —
surf string Potential energy surfaces used in surface hopping.
$1=diagonal,sharc | Uses diagonal potentials.
$1=MCH Uses MCH potentials.
coupling string Quantities describing the nonadiabatic couplings.
$1=ddr,nacdr Uses vectorial nonadiabatic couplings (Y« |0/0R|¢5).
$1=ddt,nacdt Uses temporal nonadiabatic couplings (Y« |0/9¢|¢p).
$1z0verlap Uses the overlaps (/o (t0)|/5(¢)) (local diabatization).
gradcorrect Include (E, — Eg){¥«|0/OR|{5) in gradient transformation.
nogradcorrect Transform only the gradient matrix.
ekincorrect string Adjustment of the kinetic energy after a surface hop.
$1=none Kinetic energy is not adjusted. Jumps are never frustrated.

$1=parallel_vel
$1=parallel_nac
$1=parallel_diff

Velocity is rescaled to adjust kinetic energy.
Only the velocity component in the direction of (¢« |0/9R|y) is rescaled.

Only the velocity component in the direction of AVE is rescaled.

reflect_frustrated

string
$1=none
$1=parallel_vel
$1=parallel_nac
$1=parallel_diff

Reflection of trajectory after frustrated hop.

No reflection.

Full velocity vector is reflected.

Only the velocity component in the direction of (/ |0/9R |) is reflected.
Only the velocity component in the direction of AVE is reflected.

$1=sharc,standard
$1=gfsh

decoherence_scheme string Method for decoherence correction.
$1=none No decoherence correction.
$1=edc Energy-difference based correction.[105]
$1=afssh Augmented FSSH.[30]
decoherence_param float Value « in EDC decoherence (in Hartree).
0.1 $1> 0.0
decoherence Applies decoherence correction (EDC by default).
nodecoherence No decoherence correction.
nodecoherence takes precedence.
hopping_procedure string Method for hopping probabilities.
$1=off No hops (same as no_hops).

Standard SHARC hopping probabilities.
Global flux SH hopping probabilities.[71]

no_hops

Disables surface hopping.

no_hops takes precedence over hopping_procedure.

force_hop_to_gs

float

Activates forced hops to lowest state.

hop is forced if lowest-active energy difference < $1

Continued on next page

37

SHARC Manual

4 Input files |

Table 4.1 — Continued from previous page

4.1 Main input file

Keyword Arguments Explanation
atommask string Activates masking of atoms (for EDC, parallel_vel).
$1=none No atoms are masked.
$1=external Atom mask is read from external file.
— Energy control keywords —
ezero float Energy shift for Hamiltonian diagonal elements (Hartree).
0.0 Is not determined automatically!
scaling float Scaling factor for Hamiltonian matrix and gradients.
1.0 0. <$1
dampeddyn float Scaling factor for kinetic energy at each time step.
1.0 0. <$1< 1.
— Gradient and NAC selection keywords —
grad_select Only some gradients are calculated at every time step.
grad_all All gradients are calculated at every time step (Alias:
nograd_select).
grad_all takes precedence.
nac_select Only some (¥ |0/0R|y5) are calculated at every time step.
nac_all All (Yo|0/0R|) are calculated at every time step (Alias:
nonac_select).
nac_all takes precedence.
eselect float Parameter for selection of gradients and NACs (in eV).
0.5eV
select_directly Do not do a second QM calculation for gradients and NACs.
noselect_directly Do a second QM calculation for gradients and NACs.
— Phase tracking keywords —
track_phase Track the phase of the transformation matrix U.
notrack_phase No phase tracking of U (can provide very large speedups in
pysharc, but check whether results are affected).
phases_from_interface Request phase information from interface.
nophases_from_interface Try to recover phase information from QM data.
phases_at_zero Request phase from interface at ¢t = 0.
— Property computation keywords —
spinorbit Include spin-orbit couplings into the Hamiltonian.
nospinorbit Neglect spin-orbit couplings.
dipole_gradient Include dipole moments derivatives in the gradients.
nodipole_gradient Neglect dipole moments derivatives.
ionization Calculate ionization probabilities on-the-fly.
noionization No ionization probabilities.
ionization_step integer Calculate ionization probabilities every $1 time step.
1 By default calculated every time step (if ionization).
theodore Calculate wavefunction descriptors on-the-fly.
notheodore No wavefunction descriptors.
theodore_step integer Calculate wavefunction descriptors every $1 time step.
1 By default calculated every time step (if theodore).
n_propertyld integer Allocate for that many 1D properties.
1
n_property2d integer Allocate for that many 2D properties.
1

— Output control keywords —

write_grad
nowrite_grad

Writes gradients to output.dat.

write_nacdr
nowrite_nacdr

Writes NACs to output.dat.

write_overlap

Writes overlaps to output.dat.

Continued on next page

38

SHARC Manual 4 Input files | 4.1 Main input file

Table 4.1 — Continued from previous page

Keyword Arguments Explanation
nowrite_overlap Not written if not requested.
write propertyld on if theodore Writes 1D properties to output.dat.
nowrite_propertyld
write_property2d on if ionization Writes 2D properties to output.dat.
nowrite_property2d
output_dat_steps integer Determines at which steps sharc.x writes to output.dat.
$1(1) Stride for writing to output.dat (default every step).
$2 (not given) Step at which stride is switched to $3.
$3 (not given) New stride applied if step > $2.
$4 (not given) Step at which stride is switched to $5.
$5 (not given) New stride applied if step > $4.
Always give 1, 3, or 5 arguments.
output_format string Format of output.dat.
$1=ascii as documented in section 5.3.
$1=netcdf as documented in section 5.4.
Also deactivates writing of restart files (except last step) and output.xyz.

4.1.3 Detailed Description of the Keywords

Printlevel The printlevel keyword controls the verbosity of the log file. The data output file (output.dat) and the
listing file (output.lis) are not affected by the print level. The print levels are described in section 5.1.

Restart There are two keywords controlling trajectory restarting. The keyword restart enables restarting, while
norestart disables restart. If both keywords are present, norestart takes precedence. The default is no restart.

When restarting, all control variables are read from the restart file instead of the input file. The only exceptions are
nsteps and tmax. In this way, a trajectory which ran for the full simulation time can easily be restarted to extend the
simulation time.

Note that none of the auxiliary scripts adds the restart keyword to the input file. The user has to manually add the
restart file to the input files of the relevant trajectories.

RNG Seed The RNG seed is used to initialize the random number generator, which provides the random numbers
for the surface hopping procedure (and the AFSSH decoherence scheme). For details how the seed is used internally,
see section 8.24.

Note that in the case of a restart, the random number generator is seeded normally, and then the appropriate number of
random numbers is drawn so that the random number sequence is consistent.

Compatibility Mode With this keyword, one can activate a compatibility mode that allows reproducing results of
older versions of SHARC. A value of 0 disables compatibility mode.

Currently, the only other option is a value of 1. In this mode, sharc.x draws only one random number for each step,
like it was the case in SHARC 1.0 (from SHARc 2.0, it draws two random numbers per step, one for hopping and one for
decoherence schemes). This compatibility mode cannot be combined with the A-FSSH decoherence correction.

Geometry Input The initial geometry must be given in a second file in the ¢ input format also used by CoLumBUS.
The default name for this file is geom. The geometry filename can be given in the input file with the geomfile keyword.
Note that the filename has to be enclosed in single or double quotes. See section 4.2 for more details.

Velocity Input Using the veloc keyword, the initial velocities can be either set to zero, determined randomly or read
from a file. Random determination of the velocities is such that each atom has the same kinetic energy, which must be
specified after veloc random in units of eV. Determination of the random velocities is detailed in 8.20. Note that after
the initial velocities are generated, the RNG is reseeded (i.e., the sequence of random numbers in the surface hopping
procedure is independent of whether random initial velocities are used).

39

http://www.univie.ac.at/columbus/docs_COL70/documentation_main.html

SHARC Manual 4 Input files | 4.1 Main input file

Alternatively, the initial velocities can be read from a file. The default velocity filename is veloc, but the filename can
be specified with the velocfile keyword. Note that the filename has to be enclosed in single or double quotes. The
file must contain the Cartesian components of the velocity for each atom on a new line, in the same order as in the
geomety file. The velocity is interpreted in terms of atomic units (bohr/atu). See section 4.3 for more details.

Number of States and Active States The keyword nstates controls how many states are taken into account in the
dynamics. The keyword arguments specify the number of singlet, doublet, triplet, etc. states. There is no hard-coded
maximum multiplicity in the SHARC code, however, some interfaces may restrict the maximum multiplicity.

Using the actstates keyword, the dynamics can be restricted to some lowest states in each multiplicity. For each
multiplicity, the number of active states must not be larger than the number of states. All couplings between the active
states and the frozen states are deleted. These couplings include off-diagonal elements in the HMH matrix, in the
overlap matrix, and in the matrix containing the nonadiabatic couplings. Freezing states can be useful if transient
absorption spectra are to be calculated without increasing computational cost due to the large number of states.

Note that the initial state must not be frozen.

Initial State The initial state can be given either in MCH or diagonal representation. The keyword state is followed
by an integer specifying the initial state and either the string mch or diag. For the MCH representations, states are
enumerated according to the canonical state ordering, see 8.26. The diagonal states are ordered according to energy.
Note that the initial state must be active.

If the initial state is given in the MCH basis but the dynamics is carried out in the diagonal basis, determination of the
initial diagonal state is carried out after the initial QM calculation.

Initial Coefficients The initial coefficients can be determined automatically from the initial state, using coeff auto

in the input file. If the initial state is given in the diagonal representation as i, the initial coefficients are c}hag =6;. If
the initial state is, however, given in the MCH representation, then C?ACH = §;; and the determination of cdiag — T MCH
is carried out after the initial QM calculation. Currently, coeff auto is always used by the automatic setup scripts.

Besides automatic determination, the initial coefficients can be read from a file. The default filename is coeff, but
the filename can be given with the keyword coefffile. Note that the filename has to be enclosed in single or double
quotes. The file must contain the real and imaginary part of the initial coefficients, one line per state with no blank
lines inbetween. These coefficients are interpreted to be in the same representation as the initial state, i.e. the state
keyword influences the initial coefficients. For details on the file format, see section 4.4. Note that the setup scripts
currently cannot setup trajectories with coeff external, so this can be considered an expert option.

Laser Input The keyword laser controls whether a laser field is included in the dynamics (influencing the coefficient
propagation and the energies/gradients by means of the Stark effect).

The input of an external laser field uses the file laser. This file is specified in 4.5.

In order to detect laser-induced hops, SHARC compares the instantaneous central laser energy with the energy gap
between the old and new states. If the difference between the laser energy and the energy gap is smaller than the laser
bandwidth (given with the laserwidth keyword), the hop is classified as laser-induced. Those hops are never frustrated
and the kinetic energy is not scaled to preserve total energy (instead, the kinetic energy is preserved).

Simulation Timestep The keyword stepsize controls the length of a time step (in fs) for the dynamics. The nuclear
motion is integrated using the Velocity-Verlet algorithm with this time step. Surface hopping is performed once per time
step and 1-3 quantum chemistry calculations are performed per time step (depending on the selection schedule). Each
time step is divided in nsubsteps substeps for the integration of the electronic equation-of-motion. Since integration
is performed in the MCH representation, the default of 25 substeps is usually sufficient, even if very small potential
couplings are encountered. A larger number of substeps might be necessary if high-frequency laser fields are included
or if the energy shift (ezero) is not well-chosen.

Simulation Time The keyword nsteps controls the total length of the simulation. The total simulation time is
nsteps times stepsize. nsteps does not include the initial quantum chemistry calculation. Instead of the number of
steps, the total simulation time can be given directly (in fs) using the keyword tmax. In this case, nsteps is calculated

40

SHARC Manual 4 Input files | 4.1 Main input file

as tmax divided by stepsize. If both keywords (nsteps and tmax) are present, nsteps is used. All setup scripts will
generally use the tmax keyword.

Using the keyword killafter, the dynamics can be terminated before the full simulation time. killafter specifies
(in fs) the time the trajectory can move in the lowest-energy state before the simulation is terminated. By default,
simulations always run to the full simulation time and are not terminated prematurely.

Surface Treatment The keyword surf controls whether the dynamics runs on diagonal potential energy surfaces
(which makes it a SHARC simulation) or on the MCH PESs (which corresponds to a spin-diabatic [26] or FISH [25]
simulation, or a regular surface hopping simulation). Internally, dynamics on the MCH potentials is conducted by
setting the U matrix equal to the unity matrix at each time step.

Description of Non-adiabatic Coupling The code allows propagating the electronic wave function using three
different quantities describing nonadiabatic effects, see 8.29. The keyword coupling controls which of these quantities is
requested from the QM interfaces and used in the propagation. The first option is nacdr, which requires the nonadiabatic
coupling vectors (/,|0/IR|iyg). For the wave function propagation, the scalar product of these vectors and the nuclear
velocity is calculated to obtain the matrix (i/,|d/dt|{). During the propagation, this matrix is interpolated linearly
within each classical time step. Currently, only few SHARC interfaces can provide these couplings.

Alternatively, one can directly request the matrix elements i/, |0/dt|/4), which can be used for the propagation. The
corresponding argument to coupling is nacdt. In this case, the matrix is taken as constant throughout each classical
time step. Currently, none of the interfaces in SHARC can deliver these couplings, because they are computed via
overlaps, and if overlaps are known it is preferable to use local diabatization.

The third possibility is the use of the overlap matrix, requested with coupling overlaps (this is the default). The
overlap matrix is used subsequently in the local diabatization algorithm for the wave function propagation. Currently,
all SHARC interfaces can provide these couplings.

Correction to the Diagonal Gradients As detailed in 8.11, the correct transformation of the gradients to the
diagonal representation includes contributions from the nonadiabatic coupling vectors. Using gradcorrect, these
contributions are included. In this case SHARC will request the calculation of the nonadiabatic coupling vectors, even
if they are not used in the wave function propagation. In order to explicitly turn off this gradient correction, use the
nogradcorrect keyword.

Frustrated Hops and Adjustment of the Kinetic Energy The keyword ekincorrect controls how the kinetic
energy is adjusted after a surface hop to preserve total energy. ekincorrect none deactivates the adjustment, so
that the total energy is not preserved after a hop. Using this option, jumps can never be frustrated and are always
performed according to the hopping probabilities. Using ekincorrect parallel_vel, the kinetic energy is adjusted by
simply rescaling the nuclear velocities so that the new kinetic energy is Eo; — Epor. Jumps are frustrated if the new
potential energy would exceed the total energy. Using ekincorrect parallel_nac, the kinetic energy is adjusted by
rescaling the component of the nuclear velocities parallel to the nonadiabatic coupling vector between the old and new
state. The hop is frustrated if there is not enough kinetic energy in this direction to conserve total energy. Note that
ekincorrect parallel_nac implies the calculation of the nonadiabatic coupling vector, even if they are not used for
the wave function propagation. Finally, using ekincorrect parallel_diff, the kinetic energy is adjusted by rescaling
the component of the nuclear velocities parallel to the difference gradient vector between the old and new state. The
hop is frustrated if there is not enough kinetic energy in this direction to conserve total energy.

The keyword reflect_frustrated furthermore controls whether the velocities are inverted after a frustrated hop.
With reflect_frustrated none (the default), after a frustrated hop, the velocity vector is not modified. Using
reflect_frustrated parallel_vel, the full velocity vector is inverted when a frustrated hop is encountered. With the
third option, reflect_frustrated parallel_nac, only the velocity component parallel to the nonadiabatic coupling
vector between the active and frustrated states is inverted. This implies the calculation of the nonadiabatic coupling
vector, even if they are not used for the wave function propagation. With reflect_frustrated parallel_diff, only
the velocity component parallel to the gradient difference vector between the active and frustrated states is inverted.

Decoherence Correction Scheme There are three options for the decoherence correction (see 8.7) in SHARC, which
can be selected with the decoherence_scheme keyword.

41

SHARC Manual 4 Input files | 4.1 Main input file

With the default decoherence_scheme none, no decoherence correction is applied. The energy-difference based
decoherence (EDC) scheme of Granucci et al. [105] can be activated with decoherence_scheme edc. The keyword
decoherence_param can be used to change the relevant parameter « (see 8.7). The default is 0.1 Hartree, which
is the value recommended by Granucci et al. [105]. Alternatively, the AFSSH (augmented fewest-switches surface
hopping) scheme of Jain et al. [30] can be employed. This scheme does not use any parameters, so the keyword
decoherence_param will have no effect. Note that in any case, the decoherence correction is applied to the states in the
representation chosen with the surf keyword.

The keywords decoherence (activates EDC decoherence) and nodecoherence are present for backwards compatibility.

Surface Hopping Scheme There are three options for the computation of the hopping probabilities (see 8.27) in
SHARC, which can be selected with the hopping_procedure keyword.

Using hopping_procedure off, surface hopping will be disabled, such that the active state (in the representation
chosen with the surf keyword) will never change. With the default, hopping_procedure sharc, the standard hopping
probability equation from Ref. [42] will be used. Alternatively, one can use the global flux surface hopping scheme [71],
which might be advantageous in super-exchange situations.

One can also turn off surface hopping with the no_hops keyword.

Forced Hops to Ground State With this option, one can force SHARC to hop from the active to the lowest state if
the energy gap between these two states falls below a certain threshold. The threshold is given as argument to the
force_hop_to_gs keyword (in eV). This option is useful for single-reference methods that fail to converge if the ground
state-excited state energy gap becomes too small. ¢ Note that this option forces hops from any higher-lying state to the
lowest, independent whether there are other states between the active and the lowest state. Also note that once in the
lowest state, hopping is completely forbidden if this option is active.

Atom Masking Some of the above surface hopping settings might not be fully size consistent: (i) in ekincorrect
parallel_vel, all atoms are uniformly accelerated/slowed during velocity rescaling; (ii) in reflect_frustrated
parallel_vel, the velocities of all atoms are inverted; (iii) with decoherence_scheme edc, the kinetic energy of all
atoms determines the decoherence rate. In large systems (e.g., in solution), these effects might be unrealistic, because,
e.g., a surface hop in the chromophore should not uniformly slow down all water molecules.

The atommask keyword can then be used to exclude certain atoms from the three mentioned procedures. With atommask
external, the list of masked and active atoms is read from the file specified with the atommaskfile keyword (default
"atommask"). The format of this file is described in section 4.6. With the other possible option, atommask none (the
default), all atoms are considered for these procedures.

Note that the atommask keyword has no effect on ekincorrect parallel_nac, reflect_frustrated parallel_nac,
and decoherence_scheme afssh, because these procedures are size consistent by themselves.

Reference Energy The keyword ezero gives the energy shift for the diagonal elements of the Hamiltonian. The shift
should be chosen so that the shifted diagonal elements are reasonably small (large diagonal elements in the Hamiltonian
lead to rapidly changing coefficients, requiring extremely short subtime steps).

Note that the energy shift default is 0, i.e., SHARC does not choose an energy shift based on the energies at the first time
step (this would lead to each trajectory having a different energy shift).

Scaling and Damping The scaling factor for the energies and gradients must be positive (not zero), see section 8.23.

The damping factor must be in the interval [0, 1] (first, since the kinetic energy is always positive; second, because a
damping factor larger than 1 would lead to exponentially growing kinetic energy). Also see section 8.6.

Selection of Gradients and Non-Adiabatic Couplings SHARC allows to selectively calculate only certain gradients
and nonadiabatic coupling vectors at each time step. Those gradients and nonadiabatic coupling vectors not selected are
not requested from the interfaces, thus decreasing the computational cost. The selection procedure is detailed in 8.25.
Selection of gradients is activated by grad_select, selection for nonadiabatic couplings by nac_select. Selection is
turned off by default.

The selection procedure picks only states which are closer in energy to the classically occupied state than a given
threshold. The threshold is 0.5 eV by default and can be adjusted using the eselect keyword.

42

SHARC Manual 4 Input files | 4.1 Main input file

Since SHARC2.1, by default the select_directly keyword is active, which tells SHARC to use the energies of the last
time step for selecting, so that only one call per time step is necessary. The alternative (keyword noselect_directly) is
to perform two quantum chemistry calls per time step. In the first call, all quantities are requested except for the ones to
be selected. The energies are used to determine which gradients and NACs to calculate in a second quantum chemistry
call. The option select_directly is strongly recommended in almost all instances, since for most quantum chemistry
programs it is not possible to make sure that the wave function phases from both calls are consistent. Additionally, for
all interfaces the calculation becomes more expensive with two calls per step.

Phase Tracking Phase tracking is an important ingredient in SHARC. It is necessary for two reasons: (i) the columns
of the transformation matrix U are determined only up to an arbitrary phase factor ' (and additional mixing angles in
case of degeneracy), and (ii) the wave functions produced by any quantum chemistry code are determined only up to
an arbitrary sign. Both kind of phases need to be tracked in SHARC in order to obtain smoothly varying matrix elements
which can be properly integrated.

By default, SHARC automatically tracks the phases in the U matrix (explicit keyword: track_phase), because all required
information is always available. This phase tracking can be deactivated with the notrack_phase keyword, which can
provide a significant speed advantage for pysharc calculations. However, you should check whether your results are
affected by notrack_phase, and revert to track_phase if they do.

The tracking of the wave function signs depends on the interfaces, because only they have access to the explicit form of
the wave functions. SHARC by default (explicit keyword: phases_from_interface) requests that the interface tracks
the signs and reports any sign changes to SHARc. Currently, all interfaces can provide this phase information, but all of
them need to perform overlap calculations to do so. The nophases_from_interface keyword can be used to deactivate
these requests.

In some situations, it might be necessary to have consistent wave function signs between different trajectories. In this
case, the phases_at_zero keyword can be used to compute sign information at ¢ = 0; this requires that the relevant
wave function data of the reference is already located in the restart/ directory before the trajectory is started. Note
that phases_at_zero is therefore an expert option.

Spin-Orbit Couplings Using the keyword nospinorbit the calculation of spin-orbit couplings is disabled. SHARC
will only request the diagonal elements of the Hamiltonian from the interfaces. If the interface returns a non-diagonal
Hamiltonian anyways, the off-diagonal elements are deleted.

The keyword spinorbit (which is the default) enables spin-orbit couplings.

Dipole Moment Gradients The derivatives of the dipole moments can be included in the gradients. This can be
activated with the keyword dipole_gradient. Currently, only the analytical and MoLcas interfaces can deliver these
quantities.

lonization The keyword ionization activates (noionization deactivates) the on-the-fly calculation of ionization
transition properties. If the keyword is given, by default these properties are calculated every time step. The keyword
ionization_step can be used to calculate these properties only every n-th time step. If the keyword is given, SHARC
will request the calculation of the ionization properties from the interface, which needs to be able to calculate them.

The ionization probabilities are treated as one 2D property matrix, hence n_property2d should be at least 1.

THEODORE The keyword theodore activates (notheodore deactivates) the on-the-fly calculation of wave function
descriptors with the THEODORE program. This can be very useful to track the wave function character of the states
on-the-fly. The interface must be able to execute and THEODORE and return its output to SHARC (currently, the ADF,
GAussIAN, TURBOMOLE, and ORrcaA interfaces can do this). The keyword theodore_step can be used to calculate these
descriptors only every n-th time step.

The THEODORE descriptors are treated as one 1D property vector for each descriptor, and n_propertyld should be at
least as large as the number of descriptors computed by the interface.

Output control There are a number of keywords which control what information is written to the output.dat
file. These keywords are write_grad, write_nacdr, write_overlap, write_propertyld, and write_property2d (and
the inverse of each one, e.g., nowrite_grad). Only write_overlap is activated by default, because it does not enlarge

43

SHARC Manual 4 Input files | 4.1 Main input file

the data file by much, and contains important information which is read by data_extractor.x. write_grad and
write_nacdr are turned off by default; they are primarily intended for users who want to keep all quantum chemical
data, e.g., for training in machine learning. The keywords write_propertyld and write_property2d are automatically
activated if theodore or ionization (respectively) are activated.

Output writing stride The keyword output_dat_steps can be used to control how often data is written to
output.dat. This is useful to reduce the amount of data generated by long trajectories (e.g., with the LVC or Analytical
interfaces).

In the simplest version, using output_dat_steps N will set the output stride to N, so that output.dat is updated
every N-th step (i.e., if step modulo N is equal to zero). The default is to write every step. Because in nonadiabatic
dynamics, usually ballistic processes occur rapidly in the beginning and statistical processes occur slowly for longer
times, this keyword allows printing more often in the beginning and less often for longer times. To use this feature,
write output_dat_steps N1 M2 N2, which will use N1 as the stride if step is larger or equal to zero, and N2 as the stride
if step is larger or equal to M2. One can also use three different strides via output_dat_steps N1 M2 N2 M3 N3, but not
more than three.

Note that for these numbers sharc.x enforces N>1 and M>0, but no particular ordering. Hence, it is possible to use
longer strides in the beginning and smaller strides later, although this is rarely useful. If step is larger/equal to both M2
and M3, then N3 will be used.

Also note that the data written to output.dat is always simply the data for the respective time step, no average over
the last N steps. This needs to be kept in mind when analyzing the trajectory plots.

Output format See sections 5.3 and 5.4 for details.

4.1.4 Example

The following input sample shows a typical input for excited-state dynamics including IC within a singlet manifold plus
intersystem crossing to triplet states. It includes a large number of excited singlet states in order to calculate transient
absorption spectra. Only the lowest three singlet states actually participate in the dynamics.

nstates 803 # many singlet states for transient absorption
actstates 3 0 3 # only few states to reduce gradient costs
stepsize 0.5 # typical time step for a molecule containing H
tmax 1000.0 # one picosecond

surf diagonal

state 3 mch # start on the S2 singlet state
coeff auto # coefficient of S2 will be set to one
coupling overlap # \

decoherence_scheme edc # | typical settings
ekincorrect parallel_vel # |

gradcorrect # /

grad_select # \

nac_select # | improve performance

eselect 0.3 # /

veloc external # velocities come from file "veloc"
velocfile "veloc" #

RNGseed 65435
ezero -399.41494751 # ground state energy of molecule

44

SHARC Manual 4 Input files | 4.2 Geometry file

4.2 Geometry file

The geometry file (default file name is geom) contains the initial coordinates of all atoms. This file must be present when
starting a new trajectory.

The format is based on the &2 CoLuMBUS geometry file format (however, SHARC is more flexible with the formatting
of the numbers). For each atom, the file contains one line, giving the chemical symbol (a string), the atomic number
(a real number), the x, y and z coordinates of the atom in Bohrs (three real numbers), and the relative atomic weight
of the atom (a real number). The six items must be separated by spaces. The real numbers are read in using Fortran
list-directed I/O, and hence are free format (can have any numbers of decimals, exponential notation, etc.). Element
symbols can have at most 2 characters.

The following is an example of a geom file for CH,:

C6.0 0.00.0 0.0 12.000
H1.06 1.7 6.0 -1.2 1.008
H1.06 1.7 6.0 3.7 1.008

4.3 Velocity file

The velocity file (default veloc) contains the initial nuclear velocities (e.g., from a Wigner distribution sampling). This
file is optional (the velocities can be initialized with the veloc input keyword).

The file contains one line of input for each atom, where the order of atoms must be the same as in the geom file. Each
line consists of three items, separated by spaces, where the first is the x component of the nuclear velocity, followed by
the y and z components (three real numbers). The input is interpreted in atomic units (Bohr/atu).

The following is an example of a veloc file:

0.0001 0.0000 0.0002
0.0002 0.0000 0.0012
0.0003 0.0000 -0.0007

4.4 Coefficient file

The coefficient file contains the initial wave function coefficients. The file contains one line per state (total number of
states, i.e., multiplets count multiple times). Each line specifies the initial coefficient of one state. If the initial state
is specified in the MCH representation (input keyword state), then the order of the initial coefficients must be as
given by the canonical ordering (see section 8.26). If the initial state is given in diagonal representation, then the initial
coefficients correspond to the states given in energetic ordering, starting with the lowest state. Each line contains two
real numbers, giving first the real and then the imaginary part of the initial coefficient of the respective state. Note that
after read-in, the coefficient vector is normalized to one.

Example:

0.0 0.0
1.0 0.0
0.0 0.0

45

http://www.univie.ac.at/columbus/docs_COL70/documentation_main.html

SHARC Manual 4 Input files | 4.5 Laser file

4.5 Laser file

The laser file contains a table with the amplitude of the laser field €(t) at each time step of the electronic propagation.
Given a laser field of the general form:

Rex(n)) +iT(ex(1))

€(t) = | Rey(t)) +1T(ey(1)) (4.1)

R(ex(1)) +13(ez(1))
each line consists of 8 elements: ¢ (in fs), R(ex(t)), T(ex(t)), Rley(t)), B(ey(t)), R(ex(t)), I(e(1)), (all in atomic units),
and finally the instantaneous central frequency (also atomic units).
The time step in the laser file must exactly match the time step used for the electronic propagation, which is the time

step used for the nuclear propagation (keyword stepsize) divided by the number of substeps (keyword nsubsteps).
The first line of the laser file must correspond to t=0 fs.

Example:

0.00E+00 -0.68E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.31E+00
0.10E-02 -0.77E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.33E+00
0.20E-02 -0.13E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.35E+00

4.6 Atom mask file

The atom mask file contains for each atom a line with a Boolean entry ("T" or "F"), which indicates whether the atom
should be considered in the relevant procedures. Specifically, the atom masking settings affect the options ekincorrect
parallel_vel, reflect_frustrated parallel_vel, and decoherence_scheme edc. In all cases, "T" indicates that the
atom should be considered (as if atommask was not given), whereas "F" indicates that the atom should be ignored for
these procedures.

Example:

e |

46

5 Output files

This chapter documents the content of the output files of SHARc. Those output files are output.log, output.lis,
output.dat and output.xyz.

5.1 Log file

The log file output.log contains general information about all steps of the SHARC simulation, e.g., about the parsing of
the input files, results of quantum chemistry calls, internal matrices and vectors, etc. The content of the log file can be
controlled with the keyword printlevel in the SHARC main input file.

In the following, all printlevels are explained.

Printlevel 0 At printlevel 0, only the execution infos (date, host and working directory at execution start) and build
infos (compiler, compile date, building host and working directory) are given.

Printlevel 1 At printlevel 1, also the content of the input file (cleaned of comments and blank lines) is echoed in the
log file. Also, the start of each time step is given.

Printlevel 2 At printlevel 2, the log file also contains information about the parsing of the input files (echoing all
enabled options, initial geometry, velocity and coefficients, etc.) and about the initialization of the coefficients after the
first quantum chemistry calculation. This printlevel is recommended for production calculations, since it is the highest
printlevel where no output per time step is written to the log file.

Printlevel 3 This and higher printlevels add output per time step to the log file. At printlevel 3, the log file contains at
each time step the data from the velocity-Verlet algorithm (old and new acceleration, velocity and geometry), the old and
new coefficients, the surface hopping probabilities and random number, the occupancies before and after decoherence
correction as well as the kinetic, potential and total energies.

Printlevel 4 At printlevel 4, additionally the log file contains information on the quantum chemistry calls (file names,
which quantities were read, gradient and nonadiabatic coupling vector selection) and the propagator matrix.

Printlevel 5 At printlevel 5, additionally the log file contains the results of each quantum chemistry calls (all matrices
and vectors), all matrices involved in the propagation as well as the matrices involved in the gradient transformation.
This is the highest printlevel currently implemented.

5.2 Listing file

The listing file output.lis is a tabular summary of the progress of the dynamics simulation. At the end of each time
step (including the initial time step), one line with 11 elements is printed. These are, from left to right:

1. current step (counting starts at zero for the initial step),

47

SHARC Manual 5 Output files | 5.3 Data file

current simulation time (fs),

current state in the diagonal representation,

approximate corresponding MCH state (see subsection 8.21.1),
kinetic energy (eV),

potential energy (eV),

total energy (eV),

current gradient norm (in eV/A),

current expectation values of the state dipole moment (Debye),
current expectation values of total spin,

11. wallclock time needed for the time step.

WX NN

—_
e

The listing file also contains one extra line for each surface hopping event. For accepted hops, the old and new states
(in diagonal representation) and the random number are given. Frustrated hops and resonant hops are also mentioned.
Note that the extra line for surface hopping occurs before the regular line for the time step.

The listing file can be plotted with standard tools like GNUPLOT and can be read with data_collector.py.

Energies The kinetic energy is calculated at the end of each time step (i.e., after surface hopping events and the
corresponding adjustments). The potential energy is the energy of the currently active diagonal state. The total energy
is the sum of those two.

Expectation values The gradient norms given in the listing file is calculated as follows:

Natom
list = (5.1)

which is then transformed to eV/A.

The expectation values of the dipole moment for the active state f is calculated from:

2

p=y > (ZZ‘R[4 Ur] (5.2)
p=x,y,z \ o
The expectation value of the total spin of the active state f is calculated as follows:
=D 1Uapl*Sa (5.3)
o

where S, is the total spin of the MCH state with index a.

5.3 Data file

The data file output.dat contains all relevant data from the simulation for all time steps, in ASCII format. Accordingly,
this file can become quite large for long trajectories or if many states are included, but for most file systems it is easier
to deal with a single large file than with many small files.

Usually, after the simulation is finished the data file is processed by data_extractor.x to obtain a number of tabular
files which can be plotted or post-processed (e.g., with data_collector.py). For this, see sections 7.28 for the data
extractor, 7.13 for plotting, and 7.24 for post-processing.

5.3.1 Specification of the data file

The data file format was changed from the first release version of SHARC. The new format uses a different header, which
is keyword-based (like the input file) and starts with SHARC_version 2.0. The general structure of the time step data
is the same as in the first release version.

48

SHARC Manual 5 Output files | 5.4 Data file in NetCDF format

The data file contains a short header followed by the data per time step. All quantities are commented in the data file.

The header is keyword-based and contains at least the following entries:

—_

number of states per multiplicity,
number of atoms,

number of 1D properties,
number of 2D properties,

time step,

write_overlap,

write_grad,

write_nacdr,
write_propertyld,
write_property2d,

11. information whether a laser field is included.

W 0 N oUW

-
e

At the end of the header, the data file contains a header array section. Currently, this includes:

1. atomic numbers,

2. elements,

3. masses,

4. full laser field for all substeps (only if flag is set).

The entry for each time step contains:

—_

step index

Hamiltonian in MCH representation,

transformation matrix U,

MCH dipole moment matrices (x, y, z),

overlap matrix in MCH representation (only if flag is set),
coeflicients in the diagonal representation,

hopping probablities in the diagonal representation
kinetic energy,

currently active state in diagonal representation and approximate state in MCH representation,
random number for surface hopping,

. wallclock time (in seconds)

. geometry (Bohrs),

. velocities (atomic units),

2D property matrices (only if flag is set),

. 1D property vectors (only if flag is set),

. gradient vectors (only if flag is set),

. nonadiabatic coupling vectors (only if flag is set).

W XN LN

L T N
N oUW RO

5.4 Data file in NetCDF format

If output_format is set to netcdf, then only the header will be written to the output.dat file, but no information per
time step. The latter is instead written in (binary) NetCDF format to output.dat.nc.

This option is intended to provide faster output for fast simulations with pysharc. However, it is also an option that
leads to less disk memory consumption, and can be used with sharc.x. To this end, output_format=netcdf also
deactivates writing of the output.xyz file. Also, when NetCDF files are written, no restart files are produced, except on
the last time step or in case of errors.

NetCDF output files can be extracted with data_extractor_NetCDF.x (see section 7.11). This program can also generate
the output.xyz for further analysis.

Currently, there are a few limitations in this approach. Most importantly, the NetCDF files do not store the property
vectors and property matrices that can be stored in the output.dat files. Hence, computations with the ionization or
theodore keywords should not use the NetCDF format.

49

SHARC Manual 5 Output files | 5.5 XYZ file

The program data_converter.x (see section 7.12) can be used to convert a output.dat file into a NetCDF file. This
can be useful when archiving an ensemble of trajectories, as the NetCDF files are much smaller than the ASCII files.
Note that after conversion, the output.xyz files can be deleted, as they can be regenerated from the NetCDF file.

5.5 XYZ file

The file output.xyz contains the geometries of all time steps in standard xyz file format. It can be used with visualization
programs like MOLDEN, GABEDIT or MOLEKEL to create movies of the molecular motion, or with geo.py (see 7.21) to
calculate internal coordinates for each time step. Furthermore, trajana_nma.py (see 7.23) and trajana_essdyn.py
(see 7.22) read this file.

The comments of the geometries (given in the second line of each geometry block) contain information about the
simulation time and the active state (first in diagonal basis, then in MCH basis).

If output_format=netcdf, the output.xyz file will be empty. Use data_extractor_NetCDF.x with the -xyz flag to
obtain the output.xyz file.

50

6 Interfaces

This chapter describes the interface between SHARC and quantum chemistry programs. In the first section, the interface
is specified (e.g., for users who attempt to create their own interfaces). The description of the currently existing
interfaces takes the remainder of this chapter.

6.1 Interface Specifications

From the SHARC point of view, quantum chemical calculation proceeds as follows in the QM directory:

1. write a file called QM/QM. in

2. call a script called QM/runQM. sh

3. read the output from a file called QM/QM.out
For specifications of the formats of these two files (QM.in and QM. out) see below. The executable script QM/runQM.sh
must accomplish that all necessary quantum chemical output is available in QM/QM. out.

[(QM/MM force field)
[(QW/MM table)

template

MoLPRO

resources

initial MOs

MoLcAs

CoLuMBUS

Analytical

ORcA

Figure 6.1: Communication between sharc.x, the interfaces, and the quantum chemistry codes.

£\ A
Interface
ryy

51

SHARC Manual 6 Interfaces | 6.1 Interface Specifications

6.1.1 QM.in Specification

The QM. in file is written by SHARC every time a quantum chemistry calculation is necessary. It contains all information
available to SHARc. This information includes the current geometry (and velocity), the time step, the number of states,
the time step and the unit used to specify the atomic coordinates. The file also contains control keywords and request
keywords.

The file format is consistent with a standard xyz file. The first line contains the number of atoms, the second line is a
comment. SHARC writes the trajectory ID (a hash of all SHARC input files) to this line. The following lines specify the
atom positions. As a fourth, fifth and sixth column, these lines may contain the atomic velocities. All following lines
contain keywords, one per line and possibly with arguments. Comments can be inserted with ’#’, and empty lines are
permitted. Comments and empty lines are only permitted below the xyz file part. An examplary QM. in file is given in
the following:

3
Jobname
S 0.0 0.0 0.0 0.000 -0.020 0.002
H 0.0 0.9 1.2 0.000 -0.030 0.000
H 0.0 -0.9 1.2 0.000 0.010 -0.000
This is a comment
Init
States 3 0 2
Unit Angstrom
S0C
DM
GRAD 1 2
OVERLAP
NACDR select
12
end

There exist two types of keywords, control keywords and request keywords. Control keywords pass some information
to the interface. Request keywords tell the interface to provide a quantity in the QM. out file. Table 6.1 contains all
control keywords while table 6.2 lists all request keywords.

6.1.2 QM.out Specification

The QM. out file communicates back the results of the quantum chemistry calculation to the dynamics code. After SHARC
called QM/runQM. sh, it expects that the file QM/QM.out exists and contains the relevant data.

The following quantities are expected in the file (depending whether the corresponding keyword is in the QM. in file):
Hamiltonian matrix, dipole matrices, gradients, nonadiabatic couplings (either NACDR or NACDT), overlaps, wave
function phases, property matrices. The format of QM.out is described in the following.

Each quantity is given as a data block, which has a fixed format. The order of the blocks is arbitrary, and between
blocks arbitrary lines can be written. However, within a block no extraneous lines are allowed. Each data block starts
with a exclamation mark !, followed by whitespace and an integer flag which specifies the type of data:

52

SHARC Manual 6 Interfaces | 6.1 Interface Specifications

Table 6.1: Control keywords for SHARC interfaces. These keywords pass information from SHARc to the interface.

Keyword Description

init Specifies that this is the first calculation. The interface should create a save directory (if not
existing already) to save all information necessary for a restart.

samestep Specifies that this is an additional calculation at the same geometry/time step. Implies that,
e.g., the converged orbitals from the savedir could be reused or that the wave function
calculations could be skipped.

restart Specifies that this is a calculation after a restart of sharc.x, possibly after a crash. Implies
that in the savedir some files might be incomplete, the interface should therefore act as if a
new step is requested, except that the savedir files should be managed accordingly.

cleanup Specifies that all output files of the interface (except QM.out) should be deleted (including
the save directory).

backup Specifies that the content of the save directory should be stored in a persistent location (such
that it is not overwritten in the next time step).

unit Specifies in which unit the atomic coordinates are to be interpreted. Possible arguments are
“angstrom” and “bohr”.

states Gives the number of excited states per multiplicity (singlets, doublet, triplets, ...).

dt Gives the time between the last calculation and the current calculation in atomic units.

savedir Gives a path to the directory where the interface should save files needed for restart and
between time steps. If the interface-specific input files also have this keyword, SHARC assumes
that the path in QM. in takes precedence.

Table 6.2: Request keywords for SHARc interfaces. See Table 6.3 for which interfaces can fulfill these requests.
Keyword Description

H Calculate the molecular Hamiltonian (diagonal matrix with the energies of the states of the
model space). This request is always available.

soc Calculate the molecular Hamiltonian including the SOCs (not diagonal anymore within the
model space).

DM Calculate the state dipole moments and transition dipole moments between all states.

GRAD Calculate gradients for all states. If followed by a list of states, calculate only gradients for
the specified states.

NACDT Calculate the time-derivatives (¥1|0/dt|¥,) by finite differences between the last time step
and the current time step. This request is currently not supported by any interface.

NACDR Calculate nonadiabatic coupling vectors (¥1|0/0R|¥,) between all pairs of states. If followed

by “select”, read the list of pairs on the following lines until “end” and calculate nonadiabatic
coupling vectors between the specified pairs of states.

OVERLAP Calculate overlaps (¥ ()| ¥2(t)) between all pairs of states (between the last and current
time step). If followed by “select”, read the list of pairs on the following lines until “end” and
calculate overlaps between the specified pairs of states.

DMDR Calculate the Cartesian gradients of the dipole moments and transition dipole moments of
all states.

ION Calculate transition properties between neutral and ionic wave functions.

THEODORE ~ Run THEODORE to compute electronic descriptors for all states.

MOLDEN Generate MOLDEN files of the relevant orbitals and copy them to the savedir.

53

SHARC Manual

0N N U R W DN

D = =
S N =

Hamiltonian matrix
Dipole matrices
Gradients
Non-adiabatic couplings (NACDT)

Non-adiabatic couplings (NACDR)

Overlap matrix

Wavefunction phases

Wallclock time for QM calculation

Property matrix (e.g., ionization probabilities) this flag is deprecated
Dipole moment gradients
Property matrices with number and labels (e.g., ionization probabilities)

6 Interfaces

21 Property vectors with number and labels (e.g., THEODORE output)

6.1 Interface Specifications

On the next line, two integers are expected giving the dimensions of the following matrix. Note, that all these matrices
must be square matrices. On the following lines, the matrix or vector follows. Matrices are in general complex, and real
and imaginary part of each element is given as a pair of floating point numbers.

The following shows an example of a 4 X 4 Hamiltonian matrix. Note that the imaginary parts directly follow the real
parts (in this example, the Hamiltonian is real).

'l
4 4

-548.6488 0.0000

0.0003 0.0000
0.0003 0.0000

0.0000 0.0000
0.0000 0.0000 -548.6170 0.0000

0.0003 0.0000 0.0003 0.0000
0.0003 0.0000 0.0003 0.0000

0.0003 0.0000 -548.5986 0.0000 0.0000 0.0000

0.0003 0.0000

0.0000 0.0000 -548.5912 0.0000

The three dipole moment matrices (x, y and z polarization) must follow directly after each other, where the dimension
specifier must be present for each matrix. The dipole matrices are also expected to be complex-valued.

12
22
0.1320
-0.0020
22
0.0000
0.0000
22
2.1828
0.0000

.0000
.0000

.0000
.0000

.0000
.0000

-0.
-5

0020
1412

.0000
.0000

.0000
.6422

.0000
.0000

.0000
.0000

.0000
.0000

Gradient and nonadiabatic couplings vectors are written as 3 X n,i, matrices, with the x, y and z components of one
atom per line. These vectors are expected to be real valued. Each vector is preceeded by its dimensions.

6 3

.0000
.0000
.0000
.0000
.0000
.0000

[clcl ool olNo)

o U o U1 O

.5429
.8586
.8428
.5429
.8586
.8428

= 0 00 = 00

.1187
.0160
.0265

1187

.0160
.0265

If gradients are requested, SHARC expects every gradient to be present, even if only some gradients are requested. The
gradients are expected in the canonical ordering (see section 8.26), which implies that for higher multiplets the same
gradient has to be present several times. For example, with 3 singlets and 3 triplets, SHARC expects 12 gradients in the
QM. out file (each triplet has three components with M; = -1, 0 or 1).

Similarly, for nonadiabatic coupling vectors, SHARC expects all pairs, even between states of different multiplicity. The

54

SHARC Manual 6 Interfaces | 6.1 Interface Specifications

vectors are also in canonical ordering, where the inner loop goes over the ket states. For example, with 3 singlets and 3
triplets (12 states), SHARC expects 144 (12%) nonadiabatic coupling vectors in the QM. out file.

! 5 Non-adiabatic couplings (ddr) (2x2x1x3, real)
13 !ml1s11mslo m2 1s21ms20
0.0e+0 0.0e+0 0.0e+0
13 !ml1s11mslo m2 1 s2 2 ms2 0
+2.0e+0 0.0e+0 0.0e+0
13 !'ml1l1s12msloO m2 1 s2 1 ms2 0
-2.0e+0 0.0e+0 0.0e+0
13 !ml1s1l2mslo m2 1 s2 2 ms2 0
0.0e+0 0.0e+0 0.0e+0

The nonadiabatic coupling matrix (NACDT keyword), the overlap matrix and the property matrix are single n X n
matrices (n is the total number of states), respectively, like the Hamiltonian.

The wave function phases are a vector of complex numbers.
The wallclock time is a single real number.

The dipole moment gradients are a list of 3 X naom vectors, each specifying the gradient of one polarization of one
dipole moment matrix element. In the outmost loop, the bra index is counted, then the ket index, then the polarization.
Hence, the respective entry in QM. out would look like (for 2 states and 1 atom):

! 12 Dipole moment derivatives (2x2x3x1x3, real)

13 !ml1s11mslo

0.000000000000E+00
13 !ml1s1l1mslo
0.000000000000E+00
13! ml1s1l1mslo
0.000000000000E+00
13! ml1lsl1mslo
1.000000000000E+00
13! ml1s1l1mslo
0.000000000000E+00
13 !ml1sl1mslo
0.000000000000E+00
13! ml1lsl2 mslo
1.000000000000E+00
13! ml1lsl2mslo
0.000000000000E+00
13 !"ml1sl2 mslo
0.000000000000E+00
13! ml1lsl2 mslo
0.000000000000E+00
13! ml1lsl 2 mslo
0.000000000000E+00
13! ml1lsl2 mslo
0.000000000000E+00

0.

0.

m2 1s21ms20
0000000000OOE+00
m2 1 s2 1 ms20

.000000000000E+00

m2 1 s2 1 ms20

.000000000000E+00

m2 1 s2 2 ms2 0

.000000000000E+00

m2 1 s2 2 ms2 0

.000000000000E+00

m2 1s22ms20

.000000000000E+00

m2 1 s2 1 ms20

.000000000000E+00

m2 1 s2 1 ms20

.000000000000E+00

m2 1s21ms20

.000000000000E+00

m2 1 s2 2 ms2 0

.000000000000E+00

m2 1 s2 2 ms2 0

.000000000000E+00

m2 1 s2 2 ms2 0
000000000OOOE+00

pol 0
0.000000000000E+00
pol 1
0.000000000000E+00
pol 2
0.000000000000E+00
pol 0O
0.000000000000E+00
pol 1
0.000000000000E+00
pol 2
0.000000000000E+00
pol 0O
0.000000000000E+00
pol 1
0.000000000000E+00
pol 2
0.000000000000E+00
pol 0
0.000000000000E+00
pol 1
0.000000000000E+00
pol 2
0.000000000000E+00

The section containing the 2D property matrices consists of three subsequent parts: (i) the number of property matrices
contained, (ii) a label for each property matrix (as the property matrices might contain arbitrary data, depending on the
interface and the requests), and (iii) the matrices (full, complex-valued matrices like above):

! 20 Property Matrices
2 ! number of property matrices
! Property Matrix Labels (1 strings)

55

SHARC Manual 6 Interfaces | 6.1 Interface Specifications

Dyson norms

Example matrix

! Property Matrices (1x4x4, complex)
4 4 ! Dyson norms

0.000E+00 0.000E+00 0.000E+00 0.000E+00 9.663E-01 0.000E+00 9.663E-01 0.000E+00
0.000E+00 0.000E+00 0.000E+00 ©0.000E+00 4.822E-01 0.000E+00 4.822E-01 0.000E+00
9.663E-01 0.000E+00 4.822E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9.663E-01 0.000E+00 4.822E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
4 4 ! Example matrix
1.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 2.000E+00 2.000E+00 0.00O0E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 ©0.000E+00 3.000E+00 3.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 ©0.000E+00 0.000E+00 0.000E+00 4.000E+00 4.000E+00

The section containing the 1D property vectors also consists of three subsequent parts: (i) the number of property
vectors contained, (ii) a label for each property vector (as the property vectors might contain arbitrary data, depending
on the interface and the requests), and (iii) the vectors (real-valued):

! 21 Property Vectors

2 ! number of property vectors

! Property Vector Labels (2 strings)
Om

PRNTO

! Property Vectors (9x8, real)
! TheoDORE descriptor 1 (Om)
0.000000000000E+000
4.318700000000E-001
2.688600000000E-001
2.590000000000E-002

! TheoDORE descriptor 2 (PRNTO)
0.000000000000E+000
2.318700000000E-001
1.688600000000E-001
1.590000000000E-002

6.1.3 Further Specifications

The interfaces may require additional input files beyond QM. in, which contain static information. This may include
paths to the quantum chemistry executable, paths to scratch directories, or input templates for the quantum chemistry
calculation (e.g. active space specifications, basis sets, etc.). The dynamics code does not depend on these additional
files, but they should all be stored in the QM/ subdirectory.

The current conventions in the SHARC suite are that the quantum chemistry interfaces use two additional input files,
one specifying the level of theory (template file, e.g., MOLCAS. template, MOLPRO.template, ...) and one specifying
the computational resources like paths, memory, number of CPU cores, initial orbital source (resource file, e.g.,
MOLCAS. resources, MOLPRO. resources, ...). Furthermore, the current interfaces allow to read in initial orbitals (e.g.,
MOLCAS.*.RasOrb.init, mocoef.init, ...). For interfaces with QM/MM capabilities, additional files could be used to
specify connection table, parameters, etc.

6.1.4 Save Directory Specification

The interfaces must be able to save all information necessary for restart to a given directory. The absolute path is
written to QM. in by SHARC. Hence, for the trajectories the path to the save directory is always a subdirectory of the
working directory of SHARC.

56

SHARC Manual

6.2 Overview over Interfaces

6 Interfaces |

6.2 Overview over Interfaces

The SHARC suite comes with a number of interfaces to different quantum chemistry programs. Their capabilities and
usage are explained in the following sections. Table 6.3 gives an overview over the capabilities of the interfaces. Table 6.4
shows the file names for interface-related input files of the different interfaces.

Table 6.3: Overview over capabilities of SHARC interfaces. For each method and program, the table shows which
multiplicities (S?), which quantities, and whether QM/MM are available.

Method Program $2 SOC TDM? Grad. NACDR OVL? DMDR ION Theo.® QM/MM
SA-CASSCF ~ MOLPRO any 4/ v v v v v
Motcas any v NIV N
CoLumMBUS any /¢ v v Ve Y, Y,
BAGEL any Y, v v v Y,
MR-CISD CoLuMBUS any +/¢ 2, v Ve v v
MS-CASPT2 MoLcas any 4/ v Ve v Ve v
XMS-CASPT2 BAGEL any Y, &V, v Y, Y,
TD-DFT ADF any +f 9 v v v v v
GAUSSIAN any V7 v v v v
Orca any v/ v v o v
ADC2 TurBoMOLE S, T +/ 2, v N, Y, v
CC2 TurBoMOLE S, T V9 v v N, v
Analytical — any +/ v v v v
LvC - ay v N NN

% TDM: transition dipole moments; b OVL: wave function overlaps; ¢ Theo.: THEODORE; 4 humerical gradients; °
either NAC or SOC, but not both at the same time; f SOCs only between singlets and triplets; 9 TDMs only between S,
and excited singlets.

Table 6.4: Overview over files of SHARC interfaces.

Interface Template file Resource file Initial MOs OM/MM
MoLpPRrO MOLPRO. template MOLPRO. resources wf.init
wf.<job>.init
Motcas MOLCAS. template MOLCAS.resources MOLCAS.<mult>.RasOrb.init MOLCAS.qgmmm.table
MOLCAS.<mult>.JobIph.init MOLCAS.qmmm.key
CorumMBUS a directory COLUMBUS.resources mocoef_mc.init
mocoef_mc.init.<job>
molcas.RasOrb.init
molcas.RasOrb.init.<job>
BAGEL BAGEL. template BAGEL.resources archive.<mult>.init
ADF ADF. template ADF.resources ADF.t21.<job>.init ADF . gmmm. table
ADF . qmmm. ff
GAUSSIAN GAUSSIAN.template GAUSSIAN.resources GAUSSIAN.chk.init
GAUSSIAN.chk.<job>.init
Orca ORCA. template ORCA.resources ORCA.gbw.init ORCA.qgmmm. table
ORCA.gbw.<job>.init ORCA.qmmm. ff
TurBOMOLE RICC2.template RICC2.resources mos.init RICC2.gmmm.table
RICC2.qmmm. ff
Analytical ~ Analytical.template N/A N/A N/A
LvC LVC.template N/A N/A N/A

6.2.1 Example Directory

The directory $SHARC/../examples/ contains for all quantum chemistry interfaces comprehensively commented
examples of input files (template, resource files). These example files should be regarded as supplementary files to the

57

SHARC Manual 6 Interfaces | 6.3 MOLPRO Interface

documentation of the interfaces. For the interfaces without the possibility for automated template generation (e.g.,
SHARC_RICC2.py), it is recommended that users copy the example template file and modify it to their needs.

However, note that it might not necessarily work to directly start the respective interface in the example directories. In
order to make the example calculations work, some paths or variables in the resource files need to be adjusted. If you
need automatically working test calculations for SHARC, consider using tests.py instead.

6.3 MOLPRO Interface

The SmARC-MoLPRo interface allows to run SHARC dynamics with MoLPrO’s CASSCF wave functions. RASSCF is
not supported, since on RASSCF level state-averaging over different multiplicities is not possible. The interface
uses MoLPRO’s CI program in order to calculate transition dipole moments and spin-orbit couplings. Gradients and
nonadiabatic coupling vectors are calculated using MoLpro’s CADPACK code (hence no generally contracted basis sets
can be used). In the new version of the interface, overlaps are calculated using the WFovERLAP code. Time-derivative
couplings (NACDT) are not supported anymore in the SHARC-MoLPRO interface. Wavefunction phases between the
CASSCF and MRCI wave functions are automatically adjusted. The interface can trivially parallelize the computation
of gradients and coupling vectors over several processors. Execution of parallel MoLPRO binaries is currently not
supported.

Important note: It appears that in some cases the sign of the nonadiabatic coupling vectors randomly changes along
a trajectory ran with MoLpPRo, and that it is not possible to identify this sign change from the MO and CI coefficients.
Hence, propagation with coupling nacdr is currently discouraged for the SHARC-MoLPRO interface. Alternative
possibilities to run SHARC-CASSCF dynamics with nonadiabatic coupling vectors are given by the MoLcas (section 6.4)
and BAGEL (section 6.12) interfaces.

The SHARC-MoOLPRO interface needs two additional input files, which should be present in QM/. Those input files are
MOLPRO. resources, which contains, e.g., the paths to MoLPro and the scratch directory, and MOLPRO. template, which
is a keyword-argument input file specifying the CASSCF level of theory. If QM/wf.init is present, it will be used as a
Motrro wave function file containing the initial MOs. For calculations with several “jobs” (see below), initial orbitals
can also given as QM/wf.<job>.init.

6.3.1 Template file: MOLPRO. template

During the rework of the MorPRro interface, the template file structure was completely changed. In the new version, the
template file is a keyword-argument list file, similar to the template files of most other interfaces. A fully commented
template file with all possible options is located in $SHARC/ . . /examples/SHARC_MOLPRO/.

For simple cases, an example for the template file looks like this:

basis def2-svp

dkho 2 # Douglas-Kroll second order
occ 14

closed 10

nelec 24

roots 403

rootpad 101

This specifies a SA(4S+3T)-CASSCF(4,4)/def2-SVP calculation for 24 electrons. Note the rootpad keyword, which adds
one singlet and one triplet with zero weight to the state-averaging (so technically this is a SA(55+4T) calculation, but the
results are the same as SA(45+3T)). These zero-weight states are sometimes useful to improve convergence of CASSCF.

The new interface can also be used to perform several independent CASSCF calculations for different multiplicities
(e.g., one CASSCEF for the neutral states and another one for the ionic states). In this case, each independent CASSCF
calculation is called a “job”. In the template, most settings can be modified independently for each job. An example is
given here:

58

SHARC Manual 6 Interfaces | 6.3 MOLPRO Interface

In this way, users can employ custom basis sets
basis_external /path/to/basisset # no spaces in path allowed
dkho 2

job 1 for singlet+triplet; job 2 for doublets
jobs 1 2 1

occ 14 13 # for job 1 and 2
closed 11 10 # for job 1 and 2

nelec 24 23 24 # for job 1
nelec 24 23 24 # for job 2
roots 403 # for job 1
roots 020 # for job 2
rootpad 101 # for job1l
rootpad 020 # for job 2

This template specifies two jobs, where job 1 should be used to compute singlet and triplet states, and job 2 used for
doublet states. Job 1 is a SA(4S+3T)-CASSCF(2,3) computation, with singlets and triplets each having 24 electrons. Job 2
is a SA(2D)-CASSCEF(3,3) computation, with 23 electrons. Note how for different jobs it is possible to have different
active spaces and state-averaging schemes. However, keep in mind that all states of a given multiplicity are always
calculated in the same job (e.g., it is not possible to have one job for S, and another job for S; and S5).

It is also possible to do a mixed input, for example having two jobs, but only giving one number after occ or closed.
The interface provides comprehensive error messages during the template check.

Also note the basis_external keyword. It provides a file, whose content is used in the basis set definition (it is inserted
verbatim into basis={...} in the MoLPRo input). It is possible to use the generated input from the 7 Basis Set Exchange
Library, but the basis={ and } need to be deleted from the file.

Remember that molpro_input.py cannot create multi-job templates or templates with the basis_external keyword.

6.3.2 Resource file: MOLPRO. resources

The interface requires some additional information beyond the content of QM. in. This information is given in the file
MOLPRO. resources, which must reside in the directory where the interface is started. This file uses a simple “keyword
argument” syntax. Comments using # and blank lines are possible, the order of keywords is arbitrary. Lines with
unknown keywords are ignored, since the interface just searches the file for certain keywords.

Table 6.5 lists the existing keywords. A fully commented resource file for this interface with all possible options is
located in $SHARC/ . . /examples/SHARC_MOLPRO/.

Mandatory keywords are the paths to MoLPRO, the scratch directory, and to the WFovERLAP executable (the latter for
overlap, Dyson, or NACDR calculations).

Parallel execution of MOLPRO In the new version of the SHARC-MoLPRO interface, calculations of multiple
independent active spaces (“jobs”), of several gradients, and of several nonadiabatic coupling vectors are automatically
parallelized over the given number of CPU cores.

Note that in the new version of the interface, MoLpPRro calls itself cannot be run with multiple CPUs.

6.3.3 Error checking

The interface is written such that the output of Morpro is checked for commonly occuring errors, mostly bad
convergence in the MCSCF or CP-MCSCF parts. In these cases, the input is adjusted and Morpro restarted. This will
be done until all calculations are finished or an unrecoverable error is detected. The interface will try to solve the
following error messages:

59

https://bse.pnl.gov/bse/portal
https://bse.pnl.gov/bse/portal

always_orb_init

always_guess

SHARC Manual 6 Interfaces | 6.3 MOLPRO Interface
Table 6.5: Keywords for the MOLPRO. resources input file.

Keyword Description

molpro Is followed by a string giving the path to the MorLrro directory. This directory
should contain the executable molpro.exe. Relative and absolute paths, environment
variables and ~ can be used.

scratchdir Is a path to the temporary directory. Relative and absolute paths, environment
variables and ~ can be used. If the directory does not exist, the interface will create it.
In any case, the interface will delete this directory after the calculation.

savedir Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there.

memory (int) Memory for MoLPrO and WFOVERLAP in MB.

ncpu (int) Number of CPU cores for parallel computation of gradients/NAC vectors.

delay (float) Time in seconds between starting parallel MoLPRO runs. Useful to lessen the
I/O burden when having many runs starting at the same time.

gradaccudefault (float) Default accuracy for CP-MCSCF.

gradaccumax (float) Worst acceptable accuracy for CP-MCSCF (see below).

Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.
Always use the orbital guess from MoLPRO’s guess module.

wfoverlap Is the path to the WFOVERLAP executable. Relative and absolute paths, environment
variables and ~ can be used.

numfrozcore Number of neglected core orbitals for overlap and Dyson calculations.

numocc Number of doubly occupied orbitals for Dyson calculations.

nooverlap Do not save determinant files for overlap computations.

debug Increases the verbosity of the interface.

no_print Reduces interface standard output.

EXCESSIVE GRADIENT IN CI This error message can occur in the MCSCF part. The calculation is restarted with a
P-space threshold (see MoLPRO manual) of 1. If the error remains, the threshold is quadrupled until the calculation
converges or the threshold is above 100.

NO CONVERGENCE IN REFERENCE CI The error occurs in the CI part. The calculation is restarted with a
P-space threshold (see MoLPRO manual) of 1. If the error remains, the threshold is quadrupled until the calculation
converges or the threshold is above 100.

NO CONVERGENCE OF CP-MCSCF This error occurs when solving the linear equations needed for the calculation
of MCSCF gradients or nonadiabatic coupling vectors. In this case, the interface finds in the output the value of closest
convergence and restarts the calculation with the value found as the new convergence criterion. This ensures that the
CP-MCSCEF calculation converges, albeit with lower accuracy for this gradient for this time step.

This error check is controlled by two keywords in the MOLPRO. resources file. The interface first tries to converge
the CP-MCSCF calculation to gradaccudefault. If this fails, it tries to converge to the best value possible within 900
iterations. gradaccumax defines the worst accuracy accepted by the interface. If a CP-MCSCF calculation cannot be
converged below gradaccumax then the interface exits with an error, leading to the abortion of the trajectory.

6.3.4 Things to keep in mind

Initial orbital guess For CASSCF calculations it is always a good idea to start from converged MOs from a nearby
geometry. For the first time step, if a file QM/wf.init is present, the SHARC-MoLPRo interface will take this file
for the starting orbitals. In case of multi-job calculations, separate initial orbitals can be provided with files called
QM/wf.<job>.init, where <job> is an integer. In subsequent calculations, the MOs from the previous step will be used
(unless the always_orb_init keyword is used).

60

SHARC Manual 6 Interfaces | 6.3 MOLPRO Interface

Basis sets Note that the MoLPro interface cannot calculation SA-CASSCF gradients for generally contracted basis
sets (like Dunning’s “cc” basis sets or Roos’ “ANO” basis sets). Only segmented basis sets are allowed, like the Pople
basis sets and the “def” family from TURBOMOLE.

In order to employ user-defined basis sets, in the template the keyword basis_external, followed by a filename, can
be used. The interface will then take the content of this file and insert it as basis set definition in the MorpPRro input files
(i-e., it will add in the input basis={ <content of the file> }. Note that the filename must not contain spaces.

6.3.5 Molpro input generator: molpro_input.py

In order to quickly setup simple inputs for MoLPRO, the SHARC suite contains a small script called molpro_input.py.
It can be used to setup single point calculations, optimizations and frequency calculations on the HF, DFT, MP2 and
CASSCEF level of theory. Of course, MoLPRO has far more capabilities, but these are not covered by molpro_input.py.
However, molpro_input.py can also prepare template files which are compatible with the SHARC-MoLPRo interface
(MOLPRO. template file).

The script interactively asks the user to specify the calculation and afterwards writes an input file and optionally a run
script.

Input

Type of calculation Choose to either perform a single-point calculation or a minimum optimization (including
optionally frequency calculation), to generate a template file, or an optimization of a state crossing. For the template
generation, no geometry file is needed, but the script looks for a MOLPRO. input in the same directory and allows to
copy the settings.

For single-point calculations, optimizations and frequency calculations, files in MOLDEN format called geom.molden,
opt.molden or freq.molden, respectively, are created (containing the orbitals, optimization steps and normal modes,
respectively). The file freq.molden can be used to generate initial conditions with wigner.py.

Geometry Specify the geometry file in xyz format. Number of atoms and total nuclear charge is detected automatically.
After the user inputs the total charge, the number of electrons is calculated automatically.

In the case of the generation of a template file, instead only the number of electrons is required.

Non-default atomic masses If a frequency calculation is requested, the user may modify the mass of specific atoms
(e.g. to investigate isotopic effects). In the following menu, the user can add or remove atoms with their mass to a list
containing all atoms with non-default masses. Each atom is referred to by its number as in the geometry file. Using the
command show the user can display the list of atoms with non-default masses. Typing end confirms the list.

Note that when using the produced MoLDEN file later with wigner.py, the user has to enter the same non-default
masses again, since the MoLDEN file does not contain the masses and wigner.py has no way to retrieve these numbers.

Level of theory Supported are Hartree-Fock (HF), density functional theory (DFT), Mgller-Plesset perturbation theory
(MP2), equation-of-motion coupled-cluster with singles and doubles (EOM-CCSD) and CASSCF (either single-state or
state-averaged). All methods (except EOM-CCSD) are compatible with odd-electron wave functions (molpro_input.py
will use the corresponding UHF, UMP2 and UKS keywords in the input file, if necessary).

For template generation, state-average CASSCF is automatically chosen. All methods (except EOM-CCSD) can be
combined with optimizations and frequency calculations, however, the frequency calculation is much more efficient
with HF or SS-CASSCF.

DFT functional For DFT calculations, enter a functional and choose whether dispersion correction should be applied.
Note that the functional is just a string which is not checked by molpro_input. py.

Basis set The basis set is just a string which is not checked by molpro_input.py.

61

SHARC Manual 6 Interfaces | 6.4 MOLCAS Interface

CASSCEF settings For CASSCF calculations, enter the number of active electrons and orbitals.

For SS-CASSCEF, only the multiplicity needs to be specified. For SA-CASSCEF, specify the number of states per multiplicity
to be included. Note that MorpPRro allows to average over states with different numbers of electrons. This feature is not
supported in molpro_input.py. However, the user can generate a closely-matching input and simply add the missing
states to the CASSCF block manually.

For optimizations at SA-CASSCF level, the state to be optimized has to be given. For crossing point optimizations, two
states need to be entered. The script automatically detects whether a conical intersection or a crossing between states
of different multiplicity is requested and sets up the input accordingly.

EOM-CCSD settings EOM-CCSD calculations allow to calculate relatively accurate excited-state energies and
oscillator strengths from a Hartree-Fock reference, but only for singlet excited states.

The user has to specify the number of states to be calculated. If only one state is requested, the script will setup a
regular ground state CCSD calculation, while for more than one states, an EOM-CCSD calculation is setup. Note that
the calculation of transition properties takes twice as long as the energy calculation itself.

Memory Enter the amount of memory for MoLpRro. Note that values smaller than 50 MB are ignored, and 50 MB are
used in this case.

Run script If requested, the script also generates a simple Bash script (run_molpro.sh) to directly execute MoLPRO.
The user has to enter the path to Morpro and the path to a suitable (fast) scratch directory.

Note that the scratch directory will be deleted after the calculation, only the wave function file wf will be copied back
to the main directory.

6.4 MOLCAS Interface

The SHARC-MoLcas interface can be used to conduct excited-state dynamics based on Morcas’ CASSCF wave functions,
and with CASPT2 or MS-CASPT?2 energies (and numerical gradients). RASSCF wave functions are not supported
currently. It is important to note that currently, SHARC was only tested to work with OpPENMoOLCAS 18, which is freely
available. MoLcas versions 8.3 and 8.4 should also work, but no guarantee is given. Note that within this Manual,
Morcas and OPENMOLCAS are used synonymously, because from SHARC’s viewpoint, they only differ in the driver
program (pymolcas or molcas.exe).

Important note: please make sure that a copy of the respective driver program (pymolcas or molcas.exe) is located
in the $MOLCAS/bin/ directory, as the interface will search this directory for these programs to distinguish between
MoLcas and OPENMOLCAS.

The interface uses the modules GATEWAY, SEWARD (integrals), RASSCF (wave function, energies), RASSI (transition
dipole moments, spin-orbit couplings, overlaps), MCLR, and ALASKA (gradients). For CASPT2 and MS-CASPT2,
numerical gradients can be calculated, where the interface itself controls the calculations at the displaced geometries.
The interface can also numerically differentiate dipole moments and spin-orbit couplings. Since MoLcas is not able to
calculate the full nonadiabatic coupling vectors, only wave function overlaps are currently implemented in the interface
(overlaps are calculated via RASSI). Using the WFOVERLAP code, it is possible to calculate Dyson norms between neutral
and ionic states. Note that (unlike MoLPRO) MoLCAS cannot average over states of different multiplicities; hence, the
multiplicities are always computed in separate jobs which all share the same CAS settings.

The SHARC-MoLcas interface furthermore allows to perform QM/MM dynamics (CASSCF plus force fields), through the
Morcas-TINKER interface.

The interface needs two additional input files, a template file for the quantum chemistry (file name is MOLCAS . template)
and a resource file (MOLCAS. resources). If the interface finds files with the name QM/MOLCAS.<i>.JobIph.init or
QM/MOLCAS.<i>.RasOrb.init, they are used as initial wave function files, where <i> is the multiplicity. In the case of
QM/MM calculations, two more input files are needed: MOLCAS . qmmm. key, which contains the path to the force field
parameters and the partitioning into QM and MM regions, and MOLCAS . qmmm. table, which contains the connectivity
and force field IDs per atom.

62

SHARC Manual 6 Interfaces | 6.4 MOLCAS Interface

6.4.1 Template file: MOLCAS. template

This file contains the specifications for the wave function. Note that this is not a valid Morcas input file. No sections
like $GATEWAY, etc., can be used. The file only contains a number of keywords, given in table 6.6. The actual input files
are automatically generated.

A fully commented template file with all possible options is located in $SHARC/ . . /examples/SHARC_MOLCAS/.

Simple template files can be setup with the tool molcas_input. py.

6.4.2 Resource file: MOLCAS.resources

The file MOLCAS. resources contains mainly paths (to the MoLcas executables, to the scratch directory, etc.). This file
must reside in the same directory where the interface is started. It uses a simple “keyword argument” syntax. Comments

Table 6.6: Keywords for the MOLACS. template file.

Keyword Description

basis The basis set used. Note that some basis sets (e.g., Pople basis sets) do not work, since
the spin-orbit integrals cannot be calculated.

baslib Can be used to provide the path to a custom basis set library (analogous to the baslib
keyword in MoLcas).

nactel Number of active electrons for CASSCF.

ras2 Number of active orbitals for CASSCF.

inactive Number of inactive orbitals.

roots Followed by a list of integers, giving the number of states per multiplicity in the
state-averaging procedure.

rootpad Followed by a list of integers, giving the number of extra, zero-weight states in the
state-averaging.

method Followed by a string, which is either “CASSCF”, “CASPT2” or “MS-CASPT2” (case

no-douglas-kroll

ipea Followed by a float giving the IP-EA shift for CASPT2 (see MoLcas manual for more
information). The default is 0.25, as in MoLCAS.

imaginary Followed by a float giving the imaginary level shift for CASPT2 (see MoLcAs manual
for more information). The default is 0.0, as in MoLcAs.

frozen Number of frozen orbitals for CASPT2. Default is -1, which lets MoLcas choose the
number of frozen orbitals.

cholesky Activates Cholesky decomposition in Morcas. Recommended for large basis sets.

cholesky_analytical

insensitive), defining the level of theory. Default is “CASSCF”.

Deactivates the use of the scalar-relativistic DK Hamiltonian and uses a non-relativistic
Hamiltonian instead. Default is Douglas-Kroll-Hess 2nd order (In MoLcas standard
parametrization).

Will use numerical gradients even for CASSCEF. Default is to use regular 4-electron
integrals.

Activates analytical SA-CASSCF gradients with Cholesky decomposition. This is only
possible with Morcas 8.

gradaccudefault (float) Default accuracy for CP-MCSCF.

gradaccumax (float) Worst acceptable accuracy for CP-MCSCF.

displ Cartesian displacement (in A) for numerical differentiation (default 0.005 A).

gmmm Activates the QM/MM mode. In this case, two more input files need to be present (see
below).

pcmset Activates the PCM mode. Three arguments follow: the solvent (a string, default
“water”), the AARE value (a float, default 0.4, optional), the RMIN value (a float, default
1.0, optional). Check Morcas manual for details.

pcmstate Defines the state for which the PCM charges will be optimized. Followed by two

numbers: multiplicity (1=singlet, ...) and state (1=lowest state of that multiplicity).

Default is the first state according to the state request.

63

SHARC Manual 6 Interfaces | 6.4 MOLCAS Interface

using # and blank lines are possible, the order of keywords is arbitrary. Lines with unknown keywords are ignored,
since the interface just searches the file for certain keywords.

Table 6.7 lists the existing keywords. A fully commented resource file for this interface with all possible options is
located in $SHARC/ . . /examples/SHARC_MOLCAS/.

Note that the interface sets all environment variables necessary to run MoLcas (e.g., $MOLCAS, $MOLCASMEM, $WorkDir
,$Project) automatically, based on the input from MOLCAS. resources and QM. in.

Some explanations on parallelization: There are two parallel modes in which the interface can act. In the first mode, the
wave function and expectation values are calculated serially first, and then all analytical gradients are computed in
parallel, over the given number of CPUs. If the number of CPUs is one, then still the interface prepares independent
computations for each gradient, and runs those sequentially on one CPU. If the given number of CPUs is negative
or zero, then the gradients are not prepared as separate MoLcas calculations, but together with the other quantities.
The latter variant has less overhead, but is only recommended if the user is sure that the gradient calculations (MCLR)
will converge in virtually all cases. If MCLR does not converge occasionally, it is advisable to use NCPU=1 instead of
NCPU<O0.

In the second parallelization mode, used for numerical gradients, the central point is calculated first and then all
displacements are computed in parallel. This mode will be used for gradients on CASPT2, MS-CASPT2 and Cholesky-
CASSCEF level as well as for spin-orbit/dipole moment derivatives on all levels. In this mode there is no distinction
between NCPU=1 and NCPU<0.

Table 6.7: Keywords for the MOLCAS. resources file.
Description
Is the path to the OPENMOLCAS installation. This directory should contain subdi-
rectories like bin/, basis_library/, data/, or lib/. Relative and absolute paths,
environment variables and ~ can be used. The interface will set $MOLCAS to this
path. If this keyword is not present in MOLCAS. resources, the interface will use the
environment variable $MOLCAS, if it is set.
The path to the TINKER installation directory, usable with Movrcas. This directory
should contain the bin/ subdirectory.
Is the path to the WFOVERLAP executable. Relative and absolute paths, environment
variables and ~ can be used. Only needed for Dyson norm calculations.

Keyword
molcas

tinker
wfoverlap
scratchdir Is a path to the temporary directory. Relative and absolute paths, environment
variables and ~ can be used. If it does not exist, the interface will create it. In any case,
the interface will delete this directory after the calculation.

Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there.
The memory usable by Morcas. The interface will set $MOLCASMEM to this value. The
default is 10 MB.

The number of CPUs used by the interface. If zero or negative, one CPU will be used
and all subtasks (Hamiltonian, dipole moments, analytical gradients, overlaps) will
be done in one MoLrcas call. If positive, analytical gradients will be calculated by
separate calls to MoLcas, parallelized over the given number of CPUs.

Uses MPI parallel MOLCAS runs. The number of cores is dynamically chosen based
on the available cores and the number of tasks (energies, gradients, displacements).
Gives the expected parallelizable fraction of the MOLCAS run time (Amdahl’s law).
With a value close to zero, the interface will try to run all jobs at the same time. With
values close to one, jobs will be run sequentially with the maximum number of cores.

savedir

memory

ncpu

mpi_parallel

schedule_scaling

delay
always_orb_init
always_guess

debug
no_print

Followed by a float giving the delay in seconds between starting parallel jobs to avoid
excessive disk I/O.

Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.

Always use the orbital guess from MoLcAs’s guessorb module.

Increases the verbosity of the interface.

Reduces interface standard output.

64

SHARC Manual 6 Interfaces | 6.4 MOLCAS Interface

6.4.3 Template file generator: molcas_input.py

This is a small interactive script to generate template files for the SHARC-MoLcas interface. It simply queries the user
for some input parameters and then writes the file MOLCAS . template, which can be used to run SHARC simulations with
the SHARC-MoLcas interface. The input generator can also be used to write proper MoLcas input files for single-point
calculations and optimizations/frequency calculations on CASSCF and (MS-)CASPT?2 level of theory.

Type of calculation Choose to either perform a single-point calculation or a minimum optimization (including
optionally frequency calculation), or to generate a template file. For the template generation, no geometry file is needed,
but the script looks for a MOLCAS. input in the same directory and allows to copy the settings.

For single-point calculations, optimizations and frequency calculations, files in MOLDEN format are created (containing
the orbitals, optimization steps and normal modes, respectively). The file MOLCAS. freq.molden can be used to generate
initial conditions with wigner.py.

Geometry file The geometry file is only used to calculate the nuclear charge.

Charge This is the overall charge of the molecule. This number is used with the nuclear charge to calculate the
number of electrons.

Method Choose either CASSCF or CASPT2. Multi-state CASPT2 can be requested later.
Basis set This is simply a string, which is not checked by the script to be a valid basis set of the MoLcas library.

Number of active electrons and orbitals These settings are necessary for the definition of the CASSCF wave
function. The number of inactive orbitals is automatically calculated from the total number of electrons and the number
of active electrons.

States for state-averaging For each multiplicity, the number of states for the state-averaging procedure must be
equal or larger than the number of states used in the dynamics.

Further settings Depending on the run type and method, the script might ask further questions regarding the root
to optimize, CASPT?2 settings (whether to do multi-state CASPT2, IPEA shift, imaginary level shift), or whether a
spin-orbit RASSI should be performed (for input file generation only).

6.4.4 QM/MM key file: MOLCAS.qmmm. key

This file defines some aspects of the QM/MM calculation. An example is given below:

parameters $MOLCAS/tinker/params/amber99sb.prm

QMMM 18
QM -115
MM -16 18

QMMM-ELECTROSTATICS ESPF

The first line defines the force field parameters, which are read from TINKER’s library here. Note that in the file path,
environment variables are expanded by the interface. The next three lines define the QM and MM regions of the system,
where in this case atoms 1-15 are in the QM region and atoms 16-18 are in the MM region (note the minus signs
indicating the begin of an interval). The last line defines how to treat electrostatics in the calculation (currently, only
ESPF is implemented for MoLcas, so this line has to be present as shown, or omitted).

65

SHARC Manual 6 Interfaces | 6.5 COLUMBUS Interface

6.4.5 QM/MM connection table file: MOLCAS . gmmm. table

This is the template to generate the TINKER xyz file, which besides the geometry contains the force field atom type
number and the connectivity information. A sample looks like:

8

1 N« 1.6 3.3 -2.0 1132 2

2CK 0.3 3.1 -2.6 1136 1 3 4
3H5 -0.4 2.9 -1.9 1145 2

4NB 0.3 3.2 -3.9 1135 2 5
5C 1.6 3.5 -4.2 1134 4 6

6 CA 2.2 3.8 -5.4 1140 5 7
7N2 1.6 3.8 -6.6 1142 6 8

8 H 2.1 3.9 -7.5 1143 7

The first line contains the number of atoms. In each following line, the atom index, the atomic symbol (or name), the
coordinates of the atom, the force field atom type number and the index of atoms bonded to the current atom. The
coordinates in this file are not used and are replaced by the SHARC-MoLcas interface by the actual coordinates of the
atoms. The atom type number can be looked up in the .prm files of the TINKER parameter directory.

6.5 COLUMBUS Interface

The SuARC-CoLUMBUS interface allows to run SHARC dynamics based on CorumBus’ CASSCF, RASSCF and MRCI wave
functions. The interface is compatible to CoLumBUS calculations utilizing the CoLumBUs-MoLcas interface (SEWARD
integrals and ALAsSKA gradients), or using the DALTON integral code distributed with CorumBus. Using SEWARD integrals,
spin-orbit couplings can be calculated, but no nonadiabatic couplings (only overlaps can thus be used). Using DaLTON
integrals, spin-orbit couplings are not possible, but nonadiabatic couplings can be calculated. The CASSCF step can be
done with either CoLumBus’ mescf code (all features available) or with Morcas’ rasscf code (faster, but no gradients
possible). The interface utilizes the WFOVERLAP program to calculate the overlap matrices. The interface can also
calculate Dyson norms between neutral and ionic wave functions using the WFovERLAP code.

The interface needs as additional input the file QM/COLUMBUS . resources and a template directory containing all input
files needed for the CorumBuUSs calculations. Initial MOs can be given in the file QM/mocoef_mc.init. For multiple
jobs, initial MOs can be given as QM/mocoef_mc.init.<job>. For runs with rasscf, initial MOs have to be given as
molcas.RasOrb.init or molcas.RasOrb.init.<job>.

6.5.1 Template input

The interface does not generate the full Corumsus input on-the-fly. Instead, the interface uses an existing set of input
files and performs only necessary modifications (e.g., the number of states). The set of input files must be provided by
the user. Please see the i CoLumBUs online documentation and, most importantly, the @ Corumsus SOCI tutorial for a
documentation of the necessary input. The SHARC tutorial also has a section about generating the required CoLumMBUS
input file collection. An example template directory is located in $SHARC/. ./examples/SHARC_COLUMBUS/.

Generally, the input consists of a directory with one subdirectory with input for each multiplicity (singlets, doublets,
triplets, ...). However, even-electron wave functions of different multiplicities can be computed together in the same
job if spin-orbit couplings are desired. Independent multiple-DRT inputs (ISC keyword) are also acceptable. Note that
symmetry is not allowed when using the interface.

The path to the template directory must be given in COLUMBUS. resources, along with the other resources settings.

Integral input The interface is able to use input for calculations using SEWARD or DALTON integrals. If you want
to calculate SOCs, you have to use SEWARD and have to include the AMFI keyword in the integral input. If you use
Darton, SOCs are not available, but it is possible to compute nonadiabatic couplings.

It is important to make sure that the order of atoms in the template input files and in the SHARC input is consistent.

66

http://www.univie.ac.at/columbus/docs_COL70/documentation_main.html
http://www.univie.ac.at/columbus/docs_COL70/tutorial-SO.pdf

SHARC Manual 6 Interfaces | 6.5 COLUMBUS Interface

Furthermore, it is necessary to prepare all template subdirectories with the same integral code and the same AO basis
set.

MCSCEF input The MCSCF section can use any desired state-averaging scheme, since the number of states in MCSCF
is independent of the number of states in the MRCI module. However, frozen core orbitals in the MCSCF step are not
possible (since otherwise gradients cannot be computed). Prepare the MCSCF input for CI gradients. It is advisable to
use very tight MCSCF convergence criteria.

If gradients are not needed, you can also manually prepare a Morcas RASSCF input in molcas. input, in order to use
Morcas RASSCF instead of CorumBus MCSCF (see molcas_rasscf keyword).

MRCI input Either prepare a single-DRT input without SOCI (to cover a single multiplicity), a single-DRT input
with SOCI and a sufficient maximum multiplicity for spin-orbit couplings or an independent multiple-DRT input (as,
e.g., for ISC optimizations). Make sure that all multiplicities are covered with all input directories.

In the MRCI input, make sure to use sequential ciudg. Also take care to setup gradient input on MRCI level.

Job control Setup a single-point calculation with the following steps:

« SCF

+ MCSCF

« MR-CISD (serial operation) or SO-CI coupled to non-rel CI (for SOCI DRT inputs)
« one-electron properties for all methods

« transition moments for MR-CISD

« nonadiabatic couplings (and/or gradients)

Request first transition moments and interstate couplings (or alternatively full nonadiabatic couplings if Dalton integrals
are used) in the following dialogues. Analysis in internal coordinates and intersection slope analysis are not required.

6.5.2 Resource file: COLUMBUS. resources

Beyond the information from QM. in the interface needs additional input, which is read from the file COLUMBUS . resources.
Table 6.8 lists the keywords which can be given in the file. A fully commented resource file with all possible options is
located in $SHARC/ . . /examples/SHARC_COLUMBUS/.

Table 6.8: Keywords for the COLUMBUS . resources file.

Keyword Description

columbus Path to the CoLumBUs main directory.This directory should contain executables
like runc, mcscf.x, cidrt.x, or ciudg.x. Relative and absolute paths, environment
variables and ~ can be used.

molcas Path to the MoLcAs main directory. Relative and absolute paths, environment variables
and ~ can be used. This path is only used for overlap/Dyson calculations (since in this
case the interface calls Morcas explicitly). Otherwise CoLumBus will use the path to
Motcas specified during the installation of CoLumBUS.

wfoverlap Path to the wave function overlap and Dyson norm code. Relative and absolute paths,
environment variables and ~ can be used. Only necessary if overlaps or Dyson norms
are calculated. Needs a suitable code that computes overlaps of CI wave functions.

runc Path to the runc script for CorumBus execution. Default is $COLUMBUS/runc. This
keyword is intended for users who like to modify runc.
scratchdir Path to the temporary directory, used to perform the CoLumBus calculations. Relative

and absolute paths, environment variables and ~ can be used. If it does not exist, the
interface will create it. The interface will delete this directory after the calculation.
savedir Path to another directory. Relative and absolute paths, environment variables and ~
can be used. The interface will store files needed for restart in this directory. Default
is a subdirectory of the directory where the interface is executed.
memory (integer, MB) Memory for CoLumBUs. The maximum amount of memory used by the
wfoverlap code is also controlled with this keyword.

Continued on next page

67

SHARC Manual 6 Interfaces | 6.5 COLUMBUS Interface
Table 6.8 — Continued from previous page
Keyword Description
ncpu (integer) Number of CPU cores to use for SMP-parallel execution of the wfoverlap
code. Parallel CoLuMBUS is currently not supported.
wfthres (float) Gives the amount of wave function norm which will be kept in the truncation
of the determinant files for Dyson and overlap calculations. Default is 0.97 (i.e., the
wave functions in the determinant files will have a norm of 0.97)
nooverlap (no argument) Do not keep the files necessary to calculate wave function overlaps in

always_orb_init

always_guess

integrals

molcas_rasscf

template
DIR
MOCOEF

numfrozcore

numocc

debug
no_print

the next time step. If Dyson norms are requested, nooverlap is ignored.

Use the initial MO guess (mocoef_mc.init) for all time steps, not only for the first
step.

In all time steps obtain the MO guess from an SCF calculation, instead of using the
MOs from the previous step.

Followed by a string which is either seward or dalton. Chooses the integral program
for CorumBus. Note that with DAarTON integrals SOC is not available. Default is
seward.

Use Morcas’ RASSCF program instead of CoLumsus’ MCSCF program. Needs a
properly prepared CoLumBUs input (8RASSCF section in molcas.input). Note that
gradients are not available in this mode.

Is followed by the path to the directory containing the template subdirectories. Rela-
tive and absolute paths, environment variables and ~ can be used. See also 6.5.3.
See 6.5.3.

See 6.5.3.

Can be used to override the number of frozen orbitals in Dyson calculations (Default
is the value from the cidrt input).

Can be used to declare orbitals above the frozen orbitals as doubly occupied in Dyson
calculations. No ionization from these orbitals is calculated, but otherwise they are
considered in the Dyson calculations. Default is zero.

Increases the verbosity of the interface.

Reduces interface standard output.

6.5.3 Template setup

The template directory contains several subdirectories with input for different multiplicities. An example is given
in figure 6.2. In COLUMBUS. resources, the user has to associate each multiplicity to a subdirectory. The line “DIR 1
Sing_Trip” would make the interface use the input files from the subdirectory Sing_Trip when calculating singlet

states (the 1 refers to singlet calculations). All calculations using a particular input subdirectory are called a job.

Additionally, the user must specify which job(s) provide the MO coefficients (e.g., the calculation for doublet states
could be based on the same MOs as the singlet and triplet calculation). The line “MOCOEF Doub_Quar Sing_Trip” would
tell the interface to do a MCSCEF calculation in the Sing_Trip job, and reuse the MOs when doing the Doub_Quar job
without reoptimizing the MOs.

TEMPLATE

Sing Trip

—— Mult...

Figure 6.2: Example directory structure of the CoLumBus template directory

68

SHARC Manual 6 Interfaces | 6.6 Analytical PESs Interface

6.6 Analytical PESs Interface

The SHARC suite also contains an interface which allows to run dynamics simulations on PESs expressed with analytical
functions. In order to allow dynamics simulations in the same way as it is done on-the-fly, the interface uses two kinds
of potential couplings:

« couplings that are pre-diagonalized in the interface (yielding the equivalent of the MCH basis),

« couplings given by the interface to SHARc as off-diagonal elements.

The interface needs one additional input file, called Analytical.template, which contains the definitions of all analytical
expressions.

6.6.1 Parametrization

The interface has to be provided with analytical expressions for all matrix elements of the following matrices in the
diabatic basis:

« Hamiltonian: H

« Derivative of the Hamiltonian with respect to each atomic coordinate: Hy,
« (Transition) dipole matrices for each polarization direction: M;

« Real and imaginary part of the SOC matrix: X

+ (Optionally) the derivatives of the transition dipole matrices: D; x;

The diabatic Hamiltonian is diagonalized: .
H! = W HW (6.1)

Then the following calculations lead to the MCH matrices which are passed to SHARC:

HYH - g+ wizw (6.2)

(g4) = (Win,w) (63)
Xi aa

MMCH = wiM,W (6.4)

SMCH (1o, 1) = W' (1) W(t) (6.5)

D}'CH = W'D, W (6.6)

The MCH Hamiltonian is the diagonalized diabatic Hamiltonian plus the SO matrix transformed into the MCH basis. The
gradients in the MCH basis are obtained by transforming the derivative matrices into the MCH basis. The dipole matrices
are also simply transformed into the MCH basis. The overlap matrix is the overlap of old and new transformation
matrix.

6.6.2 Template file: Analytical.template

The interface-specific input file is called Analytical.template. It contains the analytical expressions for all matrix
elements mentioned above. All analytical expressions in this file are evaluated considering the atomic coordinates read
from QM. in.

The file consists of a file header and the file body. The file body consists of variable definition blocks and matrix blocks.
A commented template file is located in $SHARC/ . . /examples/SHARC_Analytical/.

Header The header looks similar to an xyz file:

2
2
I xI 0 0
Br XBr 0 0

Here, the first line gives the number of atoms and the second line the number of states.

On the remaining lines, each Cartesian component of the atomic coordinates is associated to a variable name, which can
be used in the analytical expressions. If a zero (0) is given instead of a variable name, then the corresponding Cartesian

69

SHARC Manual 6 Interfaces | 6.6 Analytical PESs Interface

coordinate is neglected. In the above example, the variable name xI is associated with the x coordinate of the first atom
given in QM. in. The y and z coordinates of the first atom are neglected.

All variable names must be 7 valid Python identifiers and must not start with an underscore. Hence, all strings starting
with a letter, followed by an arbitrary number of letters, digits and underscores, are valid. It is not allowed to use a
variable name twice.

Note that the file header also contains the atom labels, which are just used for cross-checking against the atom labels in
QM. in.

The file header must not contain comments, neither at the end of a line nor separate lines. Also, blank lines are not
allowed in the header. After the last line of the header (where the variables for the n,iom-th atom are defined), blank
lines and comments can be used freely (except in matrix blocks).

Variable definition blocks Variable definition blocks can be used to store additional numerical values (beyond the
atomic coordinates) in variables, which can then be used in the equations in the matrix blocks. The most obvious use
for this is of course to define values which will appear several times in the equations.

A variable definition block looks like:

Variables

Al 0.067

gl 0.996 # Trailing comment
Blank line with comment only

R1 4.666

End

Each block starts with the keyword “Variables” and is terminated with “End”. Inbetween, on each line a variable name
and the corresponding numerical value (separated by blanks) can be given. Note that the naming conventions given
above also apply to variables defined in these blocks.

There can be any number of complete variable definitions blocks in the input file. All blocks are read first, before any
matrix expressions are evaluated. Hence, the relative order of the variable blocks and the matrix blocks does not matter.
Also, note that variable names must not appear twice, so variables cannot be redefined halfway through the file.

Matrix blocks The most important information in the input file are of course contained in the expressions in the
matrix blocks. In general, a matrix block has the following format:

Matrix_Identifier

V1l
V12, V22
V13, V23, V33

The first line identifies the type of matrix. Those are valid identifiers:

Hamiltonian Defines the Hamiltonian including the diabatic potential cou-
plings.

Derivatives followed by a variable Derivative of the Hamiltonian with respect to the given variable.

name

Dipole followed by 1, 2 or 3 (Transition) dipole moment matrix for Cartesian direction x, y
or z, respectively.

Dipolederivatives followed by 1, Derivative of the respective dipole moment matrix.

2 or 3 followed by a variable name

SpinOrbit followed by R or I Real or Imaginary (respectively) part of the spin-orbit coupling
matrix X.

Since the interface searches the file for these identifiers starting from the top until it is found, for each matrix only the
first block takes effect. Note that the Hamiltonian and all relevant derivatives must be present. If dipole matrix, dipole
derivative matrix or SO matrix definitions are missing, they will be assumed zero.

70

https://docs.python.org/2/reference/lexical_analysis.html#identifiers

SHARC Manual 6 Interfaces | 6.7 ADF Interface

In the lines after the identifier, the expressions for each matrix element are given. Note the lower triangular format
(all matrices are assumed symmetric, except the imaginary part of the SO matrix, which is assumed antisymmetric).
Matrix elements must be separated by commas (so that whitespace can be used inside the expressions). There must be
at least as many lines as the number of states (additional lines are neglected). If any line or matrix element is missing,
the interface will abort.

An examplary block looks like:

Hamiltonian
Alx((1.-math.exp(gl*x(R1-xI+xBr)))**2-1.),
0.0006, 3e-5%(xI-xBr)*x*x2

It is important to understand that the expressions are directly evaluated by the Python interpreter, hence all expressions
must be valid Python expressions which evaluate to numeric (integer or float) values. Only the variables defined above
can be used.

Note that exponentiation in Python is **. In order to provide most usual mathematical functions, the & math module is
available. Among others, the math module provides the following functions:

« math.exp(x): Exponential function

« math.log(x): Natural logarithm

« math.pow(x,y): x¥

« math.sqrt(x): yx

« math.cos(x), math.sin(x), math.tan(x)

« math.acos(x), math.asin(x), math.atan(x)
. math.atan2(y,x): tan™! (%), as in many programming languages (takes care of phases)
« math.pi, math.e: 7 and Euler’s number

« math.cosh(x), math.sinh(x): Hyperbolic functions (also tanh, acosh, asinh, atanh are available)

6.7 ADF Interface

The SHARC-ADF interface allows to run SHARC simulations with ADF’s TD-DFT functionality. The interface is compatible
with restricted and unrestricted ground states, but not with symmetry. Spin-orbit couplings are obtained with the
perturbative ZORA formalism, and wave function overlaps from the WFOVERLAP code are available (but no nonadiabatic
couplings). Dyson norms can also be computed through the WFoverLAP code. THEODORE (version 2.0 and higher) can
be used to perform automatic wave function analysis. QM/MM is possible through ADF’s internal implementation, but
only mechanical embedding is currently available in ADF.

The interface needs two additional input files, a template file for the quantum chemistry (file name is ADF . template)

and a resource file (ADF. resources). If files QM/ADF. t21.<job>.init are are present, they are used to provide an initial
orbital guess for the SCF calculation of the respective job.

Before running the ADF interface, it is necessary to source one of the adfrc files, so that Python can find the KFFile
module of ADF.
Note that since SHARC2.1, only ADF2019 and newer are supported by SHARC_ADF . py, because older ADF versions do

not ship with the KFFile module. Also note that KFFile requires Python 3 (version 3.5 or higher), hence SHARC_ADF . py
is a Python 3 script, unlike every other script in the SHARC package.

6.7.1 Template file: ADF.template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid ADF input
file. The file only contains a number of keywords, given in table 6.9. The actual input for ADF will be generated
automatically through the interface. In order to enable many functionalities of ADF and to allow fine-tuning of the
performance for large calculations, the template has a relatively large number of keywords.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located in $SHARC/ . . /examples/SHARC_ADF/ADF . template. We recommend that users start from this template file and
modify it appropriately for their calculations.

71

https://docs.python.org/2/library/math.html

basis_per_element
define_fragment
functional
functional_xcfun
dispersion

charge

totalenergy

cosmo
cosmo_neql

grid
grid_gpnear
grid_per_atom
fit
fit_per_atom
exactdensity
rihartreefock
rihf_per_atom
occupations
scf_iterations
linearscaling

cpks_eps

no_tda
fullkernel

paddingstates
dvd_vectors
dvd_tolerance
dvd_residu
dvd_mblocksmall
unrestricted_triplets

modifyexcitations

gmmm
gmmm_coupling

Followed by an elemental symbol (e.g., "Fe", "H.1") and then by a path to the desired ADF basis
set file. Files with frozen core should not be used.

Followed by an elemental symbol (e.g., "Fe", "H.1") and then by a list of atom numbers which
should belong to this atom type.

Followed by two strings. First argument gives the type of functional (LDA, GGA, hybrid),
second argument gives the functional (VWN, BP86, B3LYP, ...).

Enables functional evaluation with the XCFun library within ADF.

If present, is written verbatim to ADF input with all arguments.

Sets the total charge of the (QM) system. Can be either followed by a single integer (then
the interface will automatically assign the charges to the multiplicities) or by one charge per
multiplicity. Automatic assignment might not work correctly for QM/MM computations.
Activates the computation of total energies (by default, ADF computes binding energies). Does
not work for relativistic or QM/MM calculations.

Followed by a string giving a solvent. Activates COSMO (no gradients possible).

Activates non-equilibrium solvation, which is needed for vertical excitation calculations. Is
followed by a float giving the square of the refractive index of the solvent.

Followed by two strings (e.g., beckegrid normal or integration 4.0) defining which integra-
tion grid and accuracy to use. For details, see the example template file.

Followed by a float giving the maximum distance (in Bohr) an MM point charge can have from
a QM atom, such that integration grid points are generated around the MM charge.

Followed by a string (e.g., basic, normal, good) and a list of the atoms which should have the
given integration accuracy. Can be used multiple times with different qualities.

Followed by two strings (e.g., ztmfit normal or stofit) defining which Coulomb integration
method and accuracy to use. For details, see the example template file.

Works like grid_per_atom, but for the Coulomb method accuracy.

Enables the exactdensity keyword in the ADF input.

Followed by a quality keyword (e.g., basic, normal, good). If not present, the old HF exchange
routines in ADF are used.

Works like grid_per_atom, but for the RI Hartree Fock method.

If present, the foll line is copied verbatim to the ADF input.

Followed by the maximum number of SCF iterations (default: 100)

Followed by an integer (between 0 and 99), which controls whether certain terms are neglected
in ADF.

Followed by a float (default 0.0001) giving the convergence threshold in the CPKS equations
for excited-state gradients.

This keyword deactivates TDA, which the interface requests by default.

Uses the full (non-ALDA) kernel in TDDFT. Not compatible with gradients, and automatically
activates functional_xcfun.

Followed by a list of integers, which give the number of extra states to compute by ADF, but
which are neglected in the output. Should not be changed between time steps, as this will break
ADF’s restart routines.

Number of Davidson vectors. Default: min(40,nstates+40).

Energy convergence criterion for the excited states (in Hartree).

Residual norm convergence criterion for the excited states.

Activates the mblocksmall keyword in the ADF input. This undocumented keyword changes
how the Davidson algorithm works. In reduces computation time, but might lead to incomplete
convergence in certain cases.

Requests that the triplets are calculated in a separate job from an unrestricted ground state.
Default is to compute triplets as linear response of the restricted singlet ground state.
Followed by an integer, indicating that excitation should only be possible from the first n MOs.
Can be used to compute core-excitation states (for X-Ray spectra).

Activates QM/MM. In this case, the interface will look for two additional input files (see below).
Followed by an integer (1=mechanical embedding, 2=electrostatic embedding). Default is 2.

SHARC Manual 6 Interfaces | 6.7 ADF Interface
Table 6.9: Keywords for the ADF. template file.
Keyword Description
relativistic If not given, perform a nonrelativistic calculation. Otherwise, copy the line verbatim to the
ADF input.
basis Gives the basis set for all atoms (default SZ).
basis_path gives the path to the basis library of ADF (~ and $ can be used).

72

SHARC Manual 6 Interfaces | 6.7 ADF Interface

6.7.2 Resource file: ADF.resources

The file ADF. resources contains mainly paths (to the ADF executables, to the scratch directory, etc.) and other resources,
plus settings for wfoverlap.x and THEODORE. This file must reside in the same directory where the interface is started.
It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of keywords is
arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain keywords.

Table 6.10 lists the existing keywords. A fully commented resource file with all possible options and comprehensive
descriptions is located in $SHARC/ . . /examples/SHARC_ADF/.

Parallelization ADF usually shows very good parallel scaling for most calculations. However, it is more efficient to
carry out multiple ADF calculations (different multiplicities, multiple gradients) in parallel, each one using a smaller
number of CPUs.

In the SHARC-ADF interface, parallelization is controlled by the keywords ncpu and schedule_scaling. The first
keyword controls the maximum number of CPUs which the interface is allowed to use for all ADF runs simultaneously.
The second keyword is the parallel fraction from Amdahl’s Law, see Section 8.3. With a value close to zero, the interface
will try to run all jobs at the same time. With values close to one, jobs will be run sequentially with the maximum
number of cores. Typical values for schedule_scaling are 0.95 for GGA functionals, 0.75 for hybrid functionals, and
0.90 for hybrid functions in combination with the rihartreefock option.

Note that when using ADF2019 or newer, multiple gradients can be computed in a single ADF run, so that there will be
multiple jobs to schedule only if including several multiplicities (beyond singlet plus triplet). If only a single multiplicity
is computed (or singlets plus triplets), then the schedule_scaling keyword does not have any effect.

6.7.3 QM/MM force field file: ADF.qmmm. ff

The force field file for ADF contains all force field parameters for the MM part of the QM/MM calculation. The interface
uses this file without any modification, except that it will copy the file into the relevant scratch directory.

The force field file needs to be in the format specified in the 7 ADF manual, which is similar in format to an AMBER
parameter file. $SHARC/ . . /examples/SHARC_ADF_qgmmm/ADF .qmmm. ff contains a functioning example of the file format.
Here, we only show briefly the general format:

FORCE_FIELD_SETTINGS

ELSTAT_1-4_SCALE 0.8333

ELSTAT_NB_CUTOFF none

VDW_1-4_SCALE 0.5

VDW_DEFAULT_POTENTIAL 1 (1:6-12 2:exp-6 3:exp purely repulsive)
VDW_NB_CUTOFF none

DIELECTRIC_CONSTANT 1.000

MASSES & ATOM LABELS

force_field atomic
atom_type symbol mass NOTES

BR Br 79.9000 bromine

BONDS Ebond = 0.5%xK(r-ro)**2

i - j type K R NOTES

73

https://www.scm.com/doc/QMMM/ADF_QMMM/The_Force_Field_File.html

SHARC Manual

6 Interfaces |

Table 6.10: Keywords for the ADF. resources file.

Keyword

Description

adfhome

scmlicense

scm_tmpdir

scratchdir

savedir

memory

ncpu

schedule_scaling

delay
gmmm_table

gmmm_ff_file
neglected _gradient

wfoverlap
wfthres

numfrozcore
numocc
nooverlap

theodir

theodore_prop

theodore_fragment

always_orb_init

always_guess
debug

no_print

Is the path to the ADF installation. Relative and absolute paths, environment variables
and ~ can be used. The interface will set $ADFHOME to this path, and will also set
$ADFBIN to $ADFHOME/bin/

Is the path to the ADF license file. Relative and absolute paths, environment variables
and ~ can be used.

Path to the ADF-internal scratch directory. Usually, this is set at installation, but can
be overridden here. Should not exist and must not be identical to scratchdir.

Is a path to the temporary directory. Relative and absolute paths, environment
variables and ~ can be used. If it does not exist, the interface will create it. In any case,
the interface will delete this directory after the calculation.

Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there.
The memory usable by WFovERLAP. The default is 100 MB. The ADF memory usage
cannot be controlled.

The number of CPUs used by the interface. Is overridden by environment variables
from queuing engines (e.g., $NSLOTS or $SLURM_NTASKS_PER_NODE). Will either be
used to run ADF in parallel or to run several independent ADF runs at the same time.
Gives the expected parallelizable fraction of the ADF run time (Amdahl’s law). With a
value close to zero, the interface will try to run all jobs at the same time. With values
close to one, jobs will be run sequentially with the maximum number of cores.
Followed by a float giving the delay in seconds between starting parallel jobs to avoid
excessive disk I/O (usually not necessary).

Followed by the path to the connection table file, in ADF format.

Followed by the path to the force field file, in Amber95-like format for ADF.
Decides how not-requested gradients are reported back (Options: zero: default, not-
requested gradients are zero; gs: not-requested gradients are equal to ground state
gradient; closest: not-requested gradients are equal to closest-energy requested
gradient).

Path to the WFovERrLAP code. Needed for overlap and Dyson norm calculations.
(float) Gives the amount of wave function norm which will be kept in the truncation
of the determinant files. Default is 0.99 (i.e., the wave functions in the determinant
files will have a norm of 0.99). Note that if hybrid functionals and no TDA are used,
the response vector can have a norm larger than one, and wfthres should be increased.
Number of frozen core orbitals for overlap and Dyson norm calculations. A value of
-1 enables automatic frozen core.

Number of ignored occupied orbitals in Dyson calculations.

Do not save determinant files for overlap computations.

Path to the THEODORE installation. Relative and absolute paths, environment vari-
ables and ~ can be used. The interface will set $PYTHONPATH automatically.

Followed by a list with the descriptors which THEODORE should compute. Note that
descriptors will only be computed for restricted singlets (and triplets). Instead of a
simple list, a Python literal can also be used, as in the THEODORE input files.
Followed by a list of atom numbers which should constitute a fragment in THEODORE.
For multiple fragments, the keyword can be used multiple times. Instead, the keyword
can be followed by a Python literal, as in the THEODORE input files.

Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.

Always use the orbital guess from ADF.

Increases the verbosity of the interface (standard out). Does not clean up the scratch
directory. Copies all ADF outputs to the save directory.

Reduces interface standard output.

6.7 ADF Interface

74

SHARC Manual

C CT 1 634.00 1.522 JCC,7,(1986),230; AA

BENDS Ebend = 0.5%k(a-a0)"2 (K in kcal/molxrad”2)

i - j - k type K theta NOTES

H1 CT HC 1 70.00 109.50 M. Swart added

TORSIONS Etors=K(1l+cos(nt-to))
Atoms pot per. shift
i -j - k- 1 type k n to NOTES
* C CT 1 0.0000 2 0.0 JCC,7,(1986),230
OUT-OF-PLANE Etors=K(1-cos(2t-to))
Atoms pot
i-j -k -1 type K to NOTES
* * cC * 1 1.00 180.0 HEME improper

atom(s) Emin Rmin gamma NOTES
H 0.0157 1.2000 12.00 Ferguson base pair geom.
CHARGES
type charge(e) NOTES
ow -0.8340 Amber95 water charges (TIP3P had -0.82)

6.7.4 QM/MM connection table file: ADF.qgmmm. table

6 Interfaces

6.7 ADF Interface

The connection table file defines the topology of the QM/MM system, by defining which atoms belong to QM or MM,
and which atoms have MM bonds between them. The file can also be used to define link atoms or to override the MM

charges of specific atoms.

In the ADF input file, the interface will automatically add the line MM_CONNECTION_TABLE (so this line should not be
present in ADF.qmmm. table), then copy the content of ADF.qgmmm.table verbatim to the ADF input, and then add a line
END. Hence, ADF.gmmm. table needs to follow the format required by ADF. See the iz ADF manual for details on this

input section.

75

https://www.scm.com/doc/QMMM/ADF_QMMM/QMMM_keyblock_options.html

SHARC Manual 6 Interfaces | 6.7 ADF Interface

An example of the file is given in $SHARC/ . . /examples/SHARC_ADF_qgmmm/ADF .qmmm. table. In the simplest form, the
content of the file could look like:

1 SO QM 2

2 C QM 1 3 4
3 H1 QM 2

4 H1 QM 2

5 ow MM 6 7

6 HW MM 5

7 HW MM 5

Here, the first column is the atom index, the second is the MM atom type (as defined in the force field file), the third
column is the atom designation (either QM, MM, or LI for a link atom), and the remaining entries are the atom indices to
which the current atom is bonded in MM. Note that in the connection table, all MM atoms must come at the very end.

As the file content is copied verbatim, it is possible to add further sublocks to the QM/MM input section. This is
necessary if any of the atoms is designated as link atom (label LI). In this case, the LINK_BONDS section needs to be
added:

1 SO QM 2
2 C QM 1 3 4
3 HP QM 2
4 CcT QM 2 5 6 7
5 H1 QM 4
6 H1 QM 4
7 CT LI 4 8 9 10
8 HC MM 7
9 HC MM 7
10 HC MM 7
subend
link_bonds

7 -4 1.4 H.1 HC

Note how the MM_CONNECTION_TABLE block is terminated by subend and then the LINK_BONDS section starts; the
LINK_BONDS section is not terminated by subend because the interface adds a subend after the file content. Within the
LINK_BONDS section, each line has the following structure: (i) atom index of the LI atom; (ii) a - separated by spaces; (iii)
atom index of a QM atom bonded to the link atom; (iv) a floating point number giving the parameter f; (v) the atomic
fragment type of the atom which replaces the LI atom in the QM calculation; (vi) the MM atom type of the replacing
atom. Note that for ADF the order of (i) and (iii) does not matter, but it does for the interface, and giving the atom index
of the QM atom first will currently lead to an error. Given these parameters, internally ADF will replace the LI atom by
an atom of the specified atomic fragment type, which will be placed on the QM-LI bond where the new bond length is
the old bond length divided by f.

The file can also be used to override the MM charges for specific atoms:

1 SO QM 2
2 C QM 1 3 4
3 H1 QM 2
4 H1 QM 2
5 ow MM 6 7
6 HW MM 5
7 HW MM 5
subend
charges
5 -0.96
6 +0.48

76

SHARC Manual 6 Interfaces | 6.7 ADF Interface

7 +0.48

The same rules regarding the subend as above apply.

6.7.5 Input file generator: ADF_input.py

In order to quickly setup simple calculations using ADF, the SHARC suite contains a small script called ADF_input.py. It
can be used to setup single point calculations, optimizations, and frequency calculations on the DFT and TD-DFT level
of theory. Of course, ADF has far more capabilities, but these are not covered by ADF_input.py. For more complicated
inputs, users should manually adjust the generated input or employ adfinput.

Note that the script cannot write template files for SHARC_ADF . py. These templates can better be created by modifying
the example template file in $SHARC/ . . /examples/SHARC_ADF/ADF.template.

The script interactively asks the user to specify the calculation and writes an input file and optionally a run script.

Input

Type of calculation Choose to either perform a single-point calculation or a minimum optimization (including
optionally frequency calculation).

The standard output or TAPE21 files from a frequency calculation can be converted (see section 6.7.6) to a file in MOLDEN
format, which can then be used to generate initial conditions with wigner.py.

Geometry, Charge, Multiplicity Specify the geometry file in xyz format. Number of atoms and total nuclear charge
is detected automatically. After the user inputs the total charge, the number of electrons is calculated automatically.
The number of unpaired electrons can be specified to define the multiplicity.

Basis set With ADF_input.py it is only possible to enter a single basis set for all atoms. More complicated basis
setups can be achieved by manually adjusting the generated input file.

Level of theory One can setup calculations with any ADF-supported functional, and for ground state or excited state.
The user is also queried whether relativistic effects need to be included, and for the most important accuracy settings.
6.7.6 Frequencies converter: ADF_freq.py

The small script ADF_freq. py can be used to convert the standard output or the TAPE21 file created by an ADF frequency
calculation. The usage is very simple:

$SHARC/ADF_freq.py ADF.out

or:
$SHARC/ADF_freq.py TAPE21

The script detects automatically the file format. Note that in ADF, the infrared intensities are only accessible from the
standard output, so use this for IR spectrum generation. However, the data in TAPE21 has a higher numeric precision, so
it is recommended to convert the TAPE21 file if no intensities are needed. In any case, a file called <filename>.molden
is written, containing the frequencies and normal modes. This file can then be used with wigner.py.

Note that in SHARC2.1, this script was changed to use the KFFile library of ADF, meaning that (like SHARC_ADF . py, you
will need ADF2019 or newer and Python 3.5 or higher to run it.

77

SHARC Manual 6 Interfaces | 6.8 RICC2 Interface

6.8 RICC2 Interface

The Suarc-Ricc? interface can be used to conduct excited-state dynamics based on TurBomoLE’s CC2 and ADC(2)
methods, for singlet and triplet states. The interface uses the programs define, dscf and ricc2. For spin-orbit couplings,
Orca needs to be installed in addition to TurRBoMOLE. Only ADC(2) can be used to calculate spin-orbit couplings, but
not CC2 (hence, it is not recommended to perform CC2 calculations with both singlet and triplet states). Even with
ADC(2), only singlet-triplet SOCs are obtained, but no triplet-triplet SOCs; So-triplet SOCs are also missing currently.
TuEODORE (version 2.0 and higher) can be used to perform automatic wave function analysis. Wavefunction overlaps
are calculated using the WFOVERLAP code of the Gonzalez group.[74]

The SuARC-RIcC2 interface furthermore allows to perform QM/MM dynamics (ADC(2) or CC2 plus force fields), using
TINKER for the MM part.

The interface needs two additional input files, a template file for the quantum chemistry (file name is RICC2.template)
and a general input file (RICC2. resources). If a file QM/mos. init is are present, it is used to provide an initial orbital
guess for the SCF calculation. In the case of QM/MM calculations, two more input files are needed: an AMBER95 force
field file, and RICC2.qmmm. table, which contains the connectivity and force field IDs per atom.

6.8.1 Template file: RICC2. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid TURBOMOLE
input file. The file only contains a number of keywords, given in table 6.11. The actual input for TURBOMOLE will
be generated automatically through define. A fully commented template file with all possible options is located in
$SHARC/ . ./examples/SHARC_RICC2/.

External basis set libary

If users want to employ their own basis sets, they can create a basis set library directory with the required files, and use
the basislib keyword to tell the interface to use this directory. The basislib keyword cannot be used together with
the auxbasis keyword.

Table 6.11: Keywords for the RICC2. template file.

Keyword Description

basis The basis set used. The interface will convert this string to the correct case for
TURBOMOLE.

auxbasis The auxiliary basis set used in ricc2. If no auxbasis is given, the interface will let
define decide on a suitable auxbasis.

basislib Path to external basis set library. Can be used to employ custom basis sets.

charge The total molecular charge. The interface will calculate the number of electrons
automatically during setup.

method Followed by a string, which is either “CC2” or “ADC(2)” (case insensitive), defining

douglas-kroll

spin-scaling

the level of theory. Default is “ADC(2)”.

Activates the use of the scalar-relativistic DK Hamiltonian of 2nd order. Default (if
no keyword is given) is to use the non-relativistic Hamiltonian.

Followed by a string, which is either “none”, “scs” or “sos”. Using these options,
spin-component scaling can be activated. Under certain restrictions (no SOC, no
transition dipole moments, no SMP), “lt-sos” can be used to perform cheaper “sos”
calculations.

scf Followed by a string which is either “dscf” or “ridft”. Using this option, the SCF
program can be chosen. Note that currently, there is no advantage of using “ridft”.

frozen Followed by an integer giving the number of frozen core orbitals in the ricc2 calcula-
tions. Default is to use frozen core orbitals and let define decide on the number. If
frozen core is not wanted, use frozen 0 in the template.

gmmm Activates QM/MM with electrostatic embedding.

78

SHARC Manual 6 Interfaces | 6.8 RICC2 Interface

The specified directory must contain basen/ and cbhasen/ subdirectories. These must contain one file per element,
containing the desired basis set parameters. The files in cbhasen/ must auxiliary basis sets of the same name as the basis
sets in basen/. See the TURBOMOLE directory structure to see how the directories and files need to be prepared.

6.8.2 Resource file: RICC2.resources

The file RICC2. resources contains mainly paths (to the TUrRBoMOLE and ORca executables, to the scratch directory,
etc.). This file must reside in the same directory where the interface is started. It uses a simple “keyword argument”
syntax. Comments using # and blank lines are possible, the order of keywords is arbitrary. Lines with unknown
keywords are ignored, since the interface just searches the file for certain keywords.

Table 6.12 lists the existing keywords. A fully commented resource file with all possible options is located in
$SHARC/ . ./examples/SHARC_RICC2/.

Table 6.12: Keywords for the RICC2. resources file.

Keyword Description

turbodir Is the path to the TurBoMOLE installation directory. This directory should contain
subdirectories like bin/, basen/, cbasen/, or scripts/. Relative and absolute paths,
environment variables and ~ can be used. The interface will set $TURBODIR to this path,
and will set the $PATH correctly (using TURBOMOLE’s sysname tool. If this keyword
is not present in RICC2. resources, the interface will use the environment variable
$TURBODIR, if it is set.

orcadir Is the path to the ORrca installation, which is necessary when spin-orbit couplings
are calculated. Relative and absolute paths, environment variables and ~ can be
used. If this keyword is not present in RICC2. resources, the interface will use the
environment variable $0RCADIR, if it is set. Note that it is possible that Orca 4.1 or
later will not be compatible with mkl files written by TURBOMOLE, so that an older
Orca version is required.

tinker The path to the TINKER installation directory. This directory should contain the bin/
subdirectory.
scratchdir Is a path to the temporary directory. Relative and absolute paths, environment

variables and ~ can be used. If it does not exist, the interface will create it. In any case,
the interface will delete this directory after the calculation.

savedir Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there.

memory The memory usable by TURBoMOLE and WFoOVERLAP. The default is 100 MB.

ncpu The number of CPUs used by the interface. If larger than one, the interface will use

the SMP executables of TurBoMOLE with the given number of CPUs.
always_orb_init Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.

always_guess Always use the orbital guess from the EHT calculation of define.

dipolelevel Followed by an integer which is either 0, 1, or 2. Controls which dipole moment
calculations are skipped by the interface.

wfoverlap Is the path to the WFOVERLAP executable. Relative and absolute paths, environment
variables and ~ can be used. This keyword is only necessary if overlaps need to be
calculated.

wfthres Threshold for the truncation of the response vectors which are used in the overlap

calculations. A threshold of x implies that only the minimal number of determinants
needed to give a norm of 1 — x are included.

numfrozcore Overrides the number of frozen core orbitals for the overlap calculation. Default is to
use the frozen orbitals from the RICC2 steps.

nooverlap Do not save files necessary to do overlaps.

debug Increases the verbosity of the interface.

no_print Reduces interface standard output.

79

SHARC Manual 6 Interfaces | 6.9 LVC Interface

Note that the interface sets all environment variables necessary to run TURBOMOLE (e.g., $PATH) automatically, based on
the input from RICC2.resources and QM. in.

For parallel calculations, the interface will call the SMP executables of TURBOMOLE and WFOVERLAP.

Note that the dipolelevel keyword can have significant impact on the calculation time. Generally, in response methods
like CC2 and ADC(2), extra computational effort is required for the calculation of state and transition dipole moments
. However, dipole moments have only influence in the dynamics simulations if a laser field is present. Using the
dipolelevel keyword, it is possible to deactivate dipole moment calculations if they are not required. There are three
different settings for dipolelevel:

« dipolelevel=0: The interface will return only dipole moments which can be calculated at no cost (state dipole
moments of states where a gradient is calculated; excited-excited transition dipole moments if SOCs are calculated)

« dipolelevel=1: In addition, the interface will calculate transition dipole moments between Sy and excited singlet
states. Use at least this level for the initial condition setup (setup_init.py takes care of this).

« dipolelevel=2: The interface will calculate all state and transition dipole moments

If only energies and dipole moments are calculated, dipolelevel=1 is only slightly more expensive than dipolelevel=0,
while dipolelevel=2 increases computation time more strongly. However, the computation time also depends on
whether or not spin-orbit couplings and gradients are calculated.

6.8.3 QM/MM force field file

These force field files should have the format that can be found in the TINKER directory.

6.8.4 QM/MM connection table file: RICC2.qgmmm. table

This file defines which atoms are in the QM or MM region, the atom types (for TINKER), and the connectivity. Note
that the SHARc-Ricc2 interface uses newly developed routines to setup QM/MM calculations and communicate with
TINKER, so this file is not identical to the table files of the ADF or MoLcaAs interfaces (it uses the same routines as the
SHARC-ORcA interface).

A sample looks like:

QM 223

QM 222 1 3 4
QM 136

QM 80

MM 63 6 7

MM 64

MM 64

Each line corresponds to one atom. The example has 7 atoms, the first four in the QM region and the three last ones in
the MM region. The second column defines the atom types according to the numbering in the used force field file. The
integers to the right define the connectivity. Note that the interface automatically adds any necessary redundancy to
the connectivity table, so it is enough in the table file to define a bond once.

6.9 LVC Interface

The purpose of the LVC interface is to allow performing computationally efficient dynamics using a linear vibronic
coupling (LVC) model [106]. The relevant equations can be found in section 8.16.

6.9.1 Input files

Two input files are needed:

80

SHARC Manual 6 Interfaces | 6.9 LVC Interface

Vo.txt Contains all information to describe Vj: the equilibrium geometry, the frequencies w;, and an orthogonal
matrix containing the normal coordinates K;.

Geometry

S 16. 0.00000000 0.00000000 -0.00039079 31.97207180
0 8. 0.00000000 -2.38362453 1.36159121 15.99491464
0 8. 0.00000000 2.38362453 1.36159120 15.99491464
Frequencies

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00234 0.0053 0.0064
Mass-weighted normal modes

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6564 0.0000 0.0000 0.3108 0.0494 0.2004 0.0000 0.0000 -0.6557

VO.txt can be created from a MOLDEN file using wigner. py.

LVC.template Contains the state-specific information: ¢;, k; , Nmn, as well as (transition) dipole moments.

1

(m) 4(m.n)
>

Here, for multiplets ¢;, KE") ,and A(.m’") are shared between the multiplet components, whereas in the SOC and dipole
moment matrices the multiplet components need to be considered explicitly.

VO.txt
403
epsilon
7
1 1 0.0000000000
1 2 0.1640045037
1 3 0.1781507393
1 4 0.2500917150
3 1 0.1341247878
3 2 0.1645714941
3 3 0.1700512159
kappa
12
1 2 7 1.19647e-03
1 2 8 1.21848e-02
lambda
3
1 1 4 9 -1.83185e-02
1 2 3 9 7.32022e-03
3 1 3 9 5.71746e-03
SOC R

0.000e+00 0.000e+00 .000e+00 0.000e+00 0.000e+00 0.000e+00 ...
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 -1.086e-04 ...

(<]

S0C I
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ...
0.000e+00 0.000e+00 0.000e+00 1.000e+00 0.000e+00 1.000e-04 ...
DMX R
-7.400e-07 -1.639e-01 .000e+00 3.000e-06 0.000e+00 0.000e+00
-1.639e-01 3.930e-06 0.000e+00 2.400e-05 0.000e+00 0.000e+00

(<)

DMX I

81

SHARC Manual 6 Interfaces | 6.9 LVC Interface

DMY R
DMY I
DMZ R

DMZ I
Only the two first lines are mandatory, but then all states will have the same potentials (the ground state potential).

6.9.2 Template File Setup: wigner.py, setup_LVCparam.py, and create_LVCparam.py

Reference potential Vo0.txt is created using the wigner. py script, which is also used for initial condition generation.
Simply call, e.g.

$SHARC/wigner.py -1 <filename.molden>

Note that this best works if all 3N normal modes are present in the file. If the translations and rotations are missing,
the script will add the necessary number of zero-vector modes.

Setup for single point calculations To obtain the LVC parameters, two steps are necessary: (i) running quantum
chemistry calculations, and (ii) converting the quantum chemistry output to the LVC parameters.

The first of these steps is carried out with setup_LVCparam. py. It is an interactive script that works very similarly to
the other setup scripts (e.g., setup_init.py, setup_traj.py). The script will ask for the following:

« Path to the V0. txt file,

« Number of states,

« Which interface to use (in principle, all SHARc-interfaces can be used, but only the ab initio interfaces are useful
here),

« Whether spin-orbit couplings should be calculated (only if applicable),

« Whether x parameters should be obtained from analytical gradients or numerical differentiation (depends on
availability of analytical gradients),

« Whether A parameters should be obtained from analytical nonadiabatic coupling vectors or numerical differentia-
tion (depends on availability of analytical nonadiabatic coupling vectors),

« Which normal modes to include,

« Which displacement value to use for numerical differentiation (default 0.05 dimensionless mass-frequency scaled
units),

« Whether intruder states should be ignored or not,

« Whether one- or two-sided differentiation should be done,

« Interface-specific input for the chosen quantum chemistry interface (see section 7.4.3).

The script will set up a directory (DSPL_RESULTS) with one subdirectory for each single point calculation. If both
k’s and A’s are computed analytically, then only the DSPL_000_eq subdirectory will be present. Otherwise, for each
chosen normal mode 1-2 subdirectories (for one-sided or two-sided differentiation) will be present. Additionally,
displacements.log presents the most important settings. In all cases, displacements. json is also present; this file is
crucial to communicate all settings to the read-out script after the single point jobs are finished.

Extracting LVC parameters After all jobs are successfully finished (QM.out file present in each directory), run
create_LVCparam. py inside the DSPL_RESULTS directory. This is a fully automatic script that reads displacements.json
and the QM. out files in the subdirectories. After everything is successfully read, it creates the LVC. template file. This
file can be used to run SHARC-LVC trajectories.

82

SHARC Manual 6 Interfaces | 6.10 GAUSSIAN Interface

6.10 GAussIAN Interface

The SHARC-GAUSSIAN interface allows to run SHARC simulations with Gaussian’s TD-DFT functionality. The interface
is compatible with restricted and unrestricted ground states, but not with symmetry. Spin-orbit couplings cannot be
computed, but wave function overlaps from the WFOVERLAP code are available (no nonadiabatic couplings). Dyson
norms can also be computed through the WFovERrLAP code. THEODORE (version 2.0 or higher) can be used to perform
automatic wave function analysis.

The interface needs two additional input files, a template file for the quantum chemistry (file name is GAUSSIAN. template)
and a resource file (GAUSSIAN. resources). If files QM/GAUSSIAN. chk.init or QM/GAUSSIAN.chk.<job>.init are present,
they are used to provide an initial orbital guess for the SCF calculation of the respective job.

6.10.1 Template file: GAUSSIAN. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid GaussiaN input
file. The file only contains a number of keywords, given in table 6.13. The actual input for GAaussian will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—
is located in $SHARC/. ./examples/SHARC_GAUSSIAN/GAUSSIAN.template. We recommend that users start from this
template file and modify it appropriately for their calculations.

6.10.2 Resource file: GAUSSIAN. resources

The file GAUSSIAN. resources contains mainly paths (to the GAUssIAN executables, to the scratch directory, etc.) and
other resources, plus settings for wfoverlap.x and THEODORE. This file must reside in the same directory where the
interface is started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the
order of keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for
certain keywords.

Table 6.14 lists the existing keywords. A fully commented resource file with all possible options and comprehensive
descriptions is located in $SHARC/ . . /examples/SHARC_GAUSSIAN/.

Table 6.13: Keywords for the GAUSSIAN. template file.

Keyword Description

basis Gives the basis set for all atoms (default 6-31G).

functional followed by one string giving the exchange-correlation functional. Default is PBEPBE.

dispersion Activates dispersion correction. Arguments are written verbatim to GAUSSIAN input (in
EmpiricalDispersion=()). Default is no dispersion. An example argument would be GD3.

charge Sets the total charge of the system. Can be either followed by a single integer (then the interface
will automatically assign the charges to the multiplicities) or by one charge per multiplicity.

scrf Activates solvation. All arguments (e.g., iefpcm solvent=water) are copied to GAUSSIAN input
(in scrf=()).

grid Followed by a string (e.g., grid finegrid) defining which integration grid and accuracy to use.
For details, see the example template file.

denfit Activates density fitting, which might speed up the computation.

scf Arguments are written verbatim to GAUSSIAN input (in scf=()).

no_tda This keyword deactivates TDA, which the interface requests by default.

paddingstates Followed by a list of integers, which give the number of extra states to compute by GAussIAN,

but which are neglected in the output. Should not be changed between time steps, as this will
break GAUSSIAN’s restart routines.

unrestricted_triplets Requests that the triplets are calculated in a separate job from an unrestricted ground state.
Default is to compute triplets as linear response of the restricted singlet ground state.

iop Arguments are written verbatim to GAUSSIAN input (in iop=()). Expert option.

keys Arguments are written verbatim to GAUSSIAN input as separate keywords. Expert option.

83

SHARC Manual

6 Interfaces |

Table 6.14: Keywords for the GAUSSIAN. resources file.

Keyword

Description

groot

scratchdir

savedir

memory
ncpu

schedule_scaling

delay

wfoverlap
wfthres

numfrozcore
numocc
nooverlap

theodir

theodore_prop

theodore_fragment

always_orb_init

always_guess
debug

no_print

Is the path to the GAussIiAN installation directory. This directory should contain
the GaussIiAN executables, e.g., g09/g16, 19999 . exe, etc. Relative and absolute paths,
environment variables and ~ can be used. The interface will set $6AUSS_EXEDIR to
this path.

Is a path to the temporary directory. Relative and absolute paths, environment
variables and ~ can be used. If it does not exist, the interface will create it. In any
case, the interface will delete this directory after the calculation. The interface will
set $GAUSS_SCRDIR to this path.

Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there.
The memory usable by Gaussian and WFoverLAp. The default is 100 MB.

The number of CPUs used by the interface. Is overridden by environment variables
from queuing engines (e.g., $NSLOTS or $SLURM_NTASKS_PER_NODE). Will either be
used to run GAUSSIAN in parallel or to run several independent GAUSSIAN runs at the
same time.

Gives the expected parallelizable fraction of the GAussiAN run time (Amdahl’s law).
With a value close to zero, the interface will try to run all jobs at the same time. With
values close to one, jobs will be run sequentially with the maximum number of cores.
Followed by a float giving the delay in seconds between starting parallel jobs to avoid
excessive disk I/O (usually not necessary).

Path to the WFovEeRLAP code. Needed for overlap and Dyson norm calculations.
(float) Gives the amount of wave function norm which will be kept in the truncation
of the determinant files. Default is 0.99 (i.e., the wave functions in the determinant
files will have a norm of 0.99). Note that if hybrid functionals and no TDA are used,
the response vector can have a norm larger than one, and wfthres should be increased.
Number of frozen core orbitals for overlap and Dyson norm calculations. A value of
-1 enables automatic frozen core.

Number of ignored occupied orbitals in Dyson calculations.

Do not save determinant files for overlap computations.

Path to the THEODORE installation. Relative and absolute paths, environment vari-
ables and ~ can be used. The interface will set $PYTHONPATH automatically.

Followed by a list with the descriptors which THEODORE should compute. Note that
descriptors will only be computed for restricted singlets (and triplets). Instead of a
simple list, a Python literal can also be used, as in the THEODORE input files.
Followed by a list of atom numbers which should constitute a fragment in THEODORE.
For multiple fragments, the keyword can be used multiple times. Instead, the keyword
can be followed by a Python literal, as in the THEODORE input files.

Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.

Always use the orbital guess from GAUSSIAN.

Increases the verbosity of the interface (standard out). Does not clean up the scratch
directory. Copies all GAUSSIAN outputs to the save directory.

Reduces interface standard output.

6.10 GAUSSIAN Interface

84

SHARC Manual 6 Interfaces | 6.11 Orca Interface

Parallelization GaussiAN usually shows very good parallel scaling for most TD-DFT calculations. However, it is
more efficient to carry out multiple GAussIiaN calculations (different multiplicities, multiple gradients) in parallel, each
one using a smaller number of CPUs.

In the SHARC-GAUSSIAN interface, parallelization is controlled by the keywords ncpu and schedule_scaling. The
first keyword controls the maximum number of CPUs which the interface is allowed to use for all GAUSSIAN runs
simultaneously. The second keyword is the parallel fraction from Amdahl’s Law, see Section 8.3. With a value close to
zero, the interface will try to run all jobs at the same time. With values close to one, jobs will be run sequentially with
the maximum number of cores. Typical values for schedule_scaling are around 0.90 for both GGA functionals and
hybrid functionals, possibly less for very small computations.

6.11 ORcA Interface

The SHARC-ORCA interface allows to run SHARC simulations with Orca’s TD-DFT functionality. The interface is
compatible with restricted and unrestricted ground states, but not with symmetry. Spin-orbit couplings can be
computed and wave function overlaps from the WFovERLAP code are available (no nonadiabatic couplings). Dyson
norms can also be computed through the WFoverLaP code. THEODORE (version 2.0 or higher) can be used to perform
automatic wave function analysis. Note that the interface only works with Orca 4.1 and newer (you can check by
looking whether the program orca_fragovl is present in the Orca installation). Initial tests on the recently released
Orca 4.2 were successful, but if problems are encountered, users should try with Orca 4.1 instead.

The SHARC-ORcA interface furthermore allows to perform QM/MM dynamics (TDDFT plus force fields), using TINKER
for the MM part.

The interface needs two additional input files, a template file for the quantum chemistry (file name is ORCA. template)
and a resource file (ORCA. resources). If files QM/ORCA.gbw.init or QM/ORCA.gbw.<job>.init are present, they are
used to provide an initial orbital guess for the SCF calculation of the respective job. In the case of QM/MM calculations,
two more input files are needed: an AMBERY5 force field file, and ORCA.qmmm. table, which contains the connectivity
and force field IDs per atom.

6.11.1 Template file: ORCA. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid Orca input
file. The file only contains a number of keywords, given in table 6.15. The actual input for Orca will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_ORCA/ORCA. template. For QM/MM calculations, a second example template
(along with the QM/MM-specific files) is located at $SHARC/ . ./examples/SHARC_ORCA_Tinker/ORCA.template. We
recommend that users start from this template file and modify it appropriately for their calculations.

Note that for Orca 4.2, when doing TD-DFT gradient calculations with hybrid functions, it might be necessary to add a
“/C” basis set. While there is no special keyword in ORCA. template for this basis set, it can be specified with the general
key keyword.

6.11.2 Resource file: ORCA. resources

The file ORCA. resources contains mainly paths (to the Orca executables, to the scratch directory, etc.) and other
resources, plus settings for wfoverlap.x and THEODORE. This file must reside in the same directory where the interface
is started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of
keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain
keywords.

Table 6.16 lists the existing keywords. A fully commented resource file with all possible options and comprehensive
descriptions is located in $SHARC/ . . /examples/SHARC_ORCA/.

85

basis_per_element

basis_per_atom

functional
hfexchange

dispersion

range_sep_settings

charge

grid

gridx

gridxc

ri

keys

no_tda
paddingstates

unrestricted_triplets

gmmm

Overrides the basis set for the specified element (argument 1: element symbol, argument 2:
basis set). Can be given multiple times.

Overrides the basis set for the specified atom (argument 1: atom number starting at 1 and only
counting QM atoms, argument 2: basis set). Can be given multiple times.

followed by one string giving the exchange-correlation functional. Default is PBE.

Modifies the amount of HF exchange in the functional (give in fraction of 1). Default is whatever
the chosen functional uses.

Activates dispersion correction. Arguments are written verbatim to Orca input (in
EmpiricalDispersion=()). Default is no dispersion. An example argument would be GD3.
Controls several functional parameters. Is followed by 5 arguments: RangeSepMu, RangeSepScal,
ACM-A, ACM-B, ACM-C. Each is a floating point number. See the OrRca manual for details on these
settings. Note that ACM-A should not be used together with hfexchange.

Sets the total charge of the system. Can be either followed by a single integer (then the interface
will automatically assign the charges to the multiplicities) or by one charge per multiplicity.
Followed by a number (e.g., grid 4) defining which integration grid and accuracy to use. For
details, see the example template file.

To control the exchange grid (rijcosx).

To control the exchange-correlation grid (TDDFT).

Controls the density fitting scheme. Arguments can be, e.g., rijcosx. If not given, RI is
deactivated.

Arguments are written verbatim to ORCA input as separate keywords. Expert option. Note that
this can be used to do PCM calculations (but requesting gradients will lead to a crash).

This keyword deactivates TDA, which the interface requests by default.

Followed by a list of integers, which give the number of extra states to compute by GAUSsIAN,
but which are neglected in the output. Should not be changed between time steps, as this will
break GAUSSIAN’s restart routines.

Requests that the triplets are calculated in a separate job from an unrestricted ground state.
Default is to compute triplets as linear response of the restricted singlet ground state.
Activates QM/MM. In this case, the interface will look for two additional input files (see below).

SHARC Manual 6 Interfaces | 6.11 Orca Interface
Table 6.15: Keywords for the ORCA. template file.
Keyword Description
basis Gives the basis set for all atoms (default 6-31G).
auxbasis Gives the auxiliary basis set (default: Orca chooses).

86

schedule_scaling

delay

wfoverlap
wfthres

numfrozcore
numocc
nooverlap

theodir

theodore_prop

theodore_fragment

always_orb_init

always_guess
debug

no_print
gmmm_table
gmmm_ff_file

neglected_gradient

from queuing engines (e.g., $NSLOTS or $SLURM_NTASKS_PER_NODE). Will either be
used to run ORcaA in parallel or to run several independent OrcA runs at the same
time.

Gives the expected parallelizable fraction of the Orca run time (Amdahl’s law). With
a value close to zero, the interface will try to run all jobs at the same time. With
values close to one, jobs will be run sequentially with the maximum number of cores.
Followed by a float giving the delay in seconds between starting parallel jobs to avoid
excessive disk I/O (usually not necessary).

Path to the WFovEeRrLAP code. Needed for overlap and Dyson norm calculations.
(float) Gives the amount of wave function norm which will be kept in the truncation
of the determinant files. Default is 0.99 (i.e., the wave functions in the determinant
files will have a norm of 0.99). Note that if hybrid functionals and no TDA are used,
the response vector can have a norm larger than one, and wfthres should be increased.
Number of frozen core orbitals for overlap and Dyson norm calculations. A value of
-1 enables automatic frozen core.

Number of ignored occupied orbitals in Dyson calculations.

Do not save determinant files for overlap computations.

Path to the THEODORE installation. Relative and absolute paths, environment vari-
ables and ~ can be used. The interface will set $PYTHONPATH automatically.

Followed by a list with the descriptors which THEODORE should compute. Note that
descriptors will only be computed for restricted singlets (and triplets). Instead of a
simple list, a Python literal can also be used, as in the THEODORE input files.
Followed by a list of atom numbers which should constitute a fragment in THEODORE.
For multiple fragments, the keyword can be used multiple times. Instead, the keyword
can be followed by a Python literal, as in the THEODORE input files.

Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.

Always use the orbital guess from Orca.

Increases the verbosity of the interface (standard out). Does not clean up the scratch
directory. Copies all Orca outputs to the save directory.

Reduces interface standard output.

Followed by the path to the connection table file, in SHARC-QM/MM format.
Followed by the path to the force field file, in AMBER95 format for TINKER.

Decides how not-requested gradients are reported back (Options: zero: default, not-
requested gradients are zero; gs: not-requested gradients are equal to ground state
gradient; closest: not-requested gradients are equal to closest-energy requested
gradient).

SHARC Manual 6 Interfaces | 6.11 ORrca Interface
Table 6.16: Keywords for the ORCA. resources file.

Keyword Description

orcadir Is the path to the Orca installation directory. This directory should contain exe-
cutables like orca, orca—int, or orca_fragovl. Relative and absolute paths, envi-
ronment variables and ~ can be used. The interface will automatically update the
$LD_LIBRARY_PATH.

tinker The path to the TINKER installation directory. This directory should contain the bin/
subdirectory.

scratchdir Is a path to the temporary directory. Relative and absolute paths, environment
variables and ~ can be used. If it does not exist, the interface will create it. In any case,
the interface will delete this directory after the calculation.

savedir Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there.

memory The memory usable by Orca and WFovERLAP. The default is 100 MB.

ncpu The number of CPUs used by the interface. Is overridden by environment variables

87

SHARC Manual 6 Interfaces | 6.12 BAGEL Interface

Parallelization Orca usually shows very good parallel scaling for most TD-DFT calculations. However, it is more
efficient to carry out multiple Orca calculations (different multiplicities) in parallel, each one using a smaller number of
CPUs. Note that Orca 4.1 can compute multiple gradients in one job, so multiple gradients do not induce multiple jobs.

In the SHARC-ORcA interface, parallelization is controlled by the keywords ncpu and schedule_scaling. The first
keyword controls the maximum number of CPUs which the interface is allowed to use for all Orca runs simultaneously.
The second keyword is the parallel fraction from Amdahl’s Law, see Section 8.3. With a value close to zero, the interface
will try to run all jobs at the same time. With values close to one, jobs will be run sequentially with the maximum
number of cores. Typical values for schedule_scaling are around 0.90 for both GGA functionals and hybrid functionals,
possibly less for very small computations.

6.11.3 QM/MM force field file

These force field files should have the format that can be found in the TINKER directory.

6.11.4 QM/MM connection table file: ORCA.gmmm. table

This file defines which atoms are in the QM or MM region, the atom types (for TINKER), and the connectivity. Note that
the SHARC-ORca interface uses newly developed routines to setup QM/MM calculations and communicate with TINKER,
so this file is not identical to the table files of the ADF or Morcas interfaces.

A sample looks like:

QM 223

QM 222 1 3 4
QM 136

QM 80

MM 63 6 7

MM 64

MM 64

Each line corresponds to one atom. The example has 7 atoms, the first four in the QM region and the three last ones in
the MM region. The second column defines the atom types according to the numbering in the used force field file. The
integers to the right define the connectivity. Note that the interface automatically adds any necessary redundancy to
the connectivity table, so it is enough in the table file to define a bond once.

6.12 BAGEL Interface

The SHARC-BAGEL interface allows to run SHARC simulations with BAGEL’s CASSCF, SS-CASPT2, MS-CASPT?2, and
XMS-CASPT?2 functionalities. The interface is compatible with all multiplicities, but not with symmetry. Note that
separate active spaces are used for each multiplicity. BAGEL features analytical gradients and nonadiabatic couplings for
all of these methods, but no spin-orbit coupings. Wave function overlaps and Dyson norms can be obtained from the
WFOVERLAP code.

Note that BAGEL does not allow extracting the AO overlap matrix that is required for overlap and Dyson norm
calculations; hence, the SHARC-BAGEL interface computes the AO overlaps through the open-source quantum chemistry
code PYQUANTE. Also note that, currently, it is not recommended to work with MS-CASPT2 gradients and XMS-CASPT2
should always be preferred.

The interface needs two additional input files, a template file for the quantum chemistry (file name is BAGEL . template)
and a resource file (BAGEL. resources). If files QM/archive.<mult>.init are present, they are used to provide an initial
orbital guess for the CASSCF calculation of the respective multiplicity.

Note that when running BAGEL, it might be necessary for the user to set $LD_LIBRARY_PATH appropriately, so that all
relevant libraries (boost, fabric, ...) can be found.

88

SHARC Manual 6 Interfaces | 6.12 BAGEL Interface

6.12.1 Template file: BAGEL. template

This file contains the specifications for the quantum chemistry calculation. Note that this is not a valid BAGEL input
file. The file only contains a number of keywords, given in table 6.17. The actual input for BAGEL will be generated
automatically through the interface.

A fully commented template file—with all possible options, a comprehensive descriptions, and some practical hints—is
located at $SHARC/ . . /examples/SHARC_BAGEL/BAGEL . template. For QM/MM calculations, a second example template
(along with the QM/MM-specific files) is located at $SHARC/ . . /examples/SHARC_BAGEL_Tinker/BAGEL.template. We
recommend that users start from this template file and modify it appropriately for their calculations.

6.12.2 Resource file: BAGEL. resources

The file BAGEL. resources contains mainly paths (to the BAGEL executables, to the scratch directory, etc.) and other
resources, plus settings relevant for wfoverlap.x. This file must reside in the same directory where the interface is
started. It uses a simple “keyword argument” syntax. Comments using # and blank lines are possible, the order of
keywords is arbitrary. Lines with unknown keywords are ignored, since the interface just searches the file for certain
keywords.

Table 6.18 lists the existing keywords. A fully commented resource file with all possible options and comprehensive
descriptions is located in $SHARC/ . . /examples/SHARC_BAGEL/.

Note that the dipolelevel keyword can have significant impact on the calculation time. Generally, in CASPT2
calculations, extra computational effort is required for the calculation of state and transition dipole moments . However,
dipole moments have only influence in the dynamics simulations if a laser field is present. Using the dipolelevel
keyword, it is possible to deactivate dipole moment calculations if they are not required. There are three different
settings for dipolelevel:

« dipolelevel=0: The interface will return only dipole moments which can be calculated at no cost (state dipole
moments of states where a gradient is calculated; transition dipole moments if nonadiabatic couplings are
calculated)

« dipolelevel=1: In addition, the interface will calculate transition dipole moments between Sy and excited singlet
states. Use at least this level for the initial condition setup (setup_init.py takes care of this).

Table 6.17: Keywords for the BAGEL . template file.

Keyword Description

basis Gives the basis set for all atoms (default svp). It is advisable to always specify a basis set file
with absolute path.

df_basis Gives the auxiliary basis set (default: svp-jkfit). It is advisable to always specify a DF basis set
file with absolute path.

dkh Activates the (scalar-relativistic) Douglas-Kroll-Hess Hamiltonian.

nact Number of active orbitals.

nclosed Number of closed-shell orbitals.

nstate Number of state-averaging states per multiplicity.

method Can be casscf, caspt2, ms-caspt2, or xms-caspt2.

shift Level shift for CASPT2 (default: 0.0, give float in Hartree).

shift_imag Switches from real to imaginary level shift (use shift to specify the magnitude).

orthogonal_basis

Switches on the orthogonal_basis option of BAGEL. Is activated automatically for imaginary
level shifts.

msmr Switches on multi-state-multi-reference treatment in CASPT2. Default is single-state-single-
reference (SS-SR).

maxiter Iteration limit for energy calculations (SCF, PT2). Default 500. A too high value can slow down
the calculation unnecessarily.

maxziter Iteration limit for Z-vector calculations (gradients, NACME). Default 100. A too high value can
slow down the calculation unnecessarily.

charge Sets the total charge of the system. Can be either followed by a single integer (then the interface
will automatically assign the charges to the multiplicities) or by one charge per multiplicity.

frozen Number of frozen core orbitals for CASPT2 steps. Default is -1, which lets BAGEL automatically

decide.

89

schedule_scaling

mpi_parallel

delay

wfoverlap
numfrozcore

numocc
nooverlap
dipolelevel

always_orb_init

always_guess
debug

no_print

from queuing engines (e.g., $NSLOTS or $SLURM_NTASKS_PER_NODE). Will either be
used to run BAGEL in parallel or to run several independent BAGEL runs at the same
time.

Gives the expected parallelizable fraction of the BAGEL run time (Amdahl’s law). With
a value close to zero, the interface will try to run all jobs at the same time. With
values close to one, jobs will be run sequentially with the maximum number of cores.
If given, the interface will call BAGEL with mpirun -n NCPU, otherwise it will use
OpenMP.

Followed by a float giving the delay in seconds between starting parallel jobs to avoid
excessive disk I/O (usually not necessary).

Path to the WFovERLAP code. Needed for overlap and Dyson norm calculations.
Number of frozen core orbitals for overlap and Dyson norm calculations. A value of
-1 enables automatic frozen core.

Number of ignored occupied orbitals in Dyson calculations.

Do not save determinant files for overlap computations.

Followed by an integer which is either 0, 1, or 2. Controls which dipole moment
calculations are skipped by the interface.

Do not use the orbital guesses from previous calculations/time steps, but always use
the provided initial orbitals.

Always use the orbital guess from BAGEL.

Increases the verbosity of the interface (standard out). Does not clean up the scratch
directory. Copies all BAGEL outputs to the save directory.

Reduces interface standard output.

SHARC Manual 6 Interfaces | 6.12 BAGEL Interface
Table 6.18: Keywords for the BAGEL. resources file.

Keyword Description

bagel Is the path to the BAGEL installation directory. This directory should contain subdirec-
tories bin/ and lib/. Relative and absolute paths, environment variables and ~ can
be used. The interface will automatically update the $LD_LIBRARY_PATH.

scratchdir Is a path to the temporary directory. Relative and absolute paths, environment
variables and ~ can be used. If it does not exist, the interface will create it. In any case,
the interface will delete this directory after the calculation.

savedir Is a path to another temporary directory. Relative and absolute paths, environment
variables and ~ can be used. The interface will store files needed for restart there.

pyquante Path to the PYQUANTE installation directory. This directory should contain the
PyQuante/ subdirectory that can be imported by Python as a module. Required for
overlap and Dyson calculations.

memory The memory usable by WFovERLAP. The default is 100 MB. Note that the memory for
BAGEL cannot be controlled.

ncpu The number of CPUs used by the interface. Is overridden by environment variables

90

SHARC Manual 6 Interfaces | 6.13 The WFOVERLAP Program

- dipolelevel=2: The interface will calculate all state and transition dipole moments

If only energies and dipole moments are calculated, dipolelevel=1 is only slightly more expensive than dipolelevel=0,
while dipolelevel=2 increases computation time more strongly. However, the computation time also depends on
whether or not nonadiabatic couplings and gradients are calculated.

Parallelization The parallel scaling behavior of BAGEL heavily depends on the system (number of atoms, active
space, frozen core, ...) and on the parallelization mode (MPI or OpenMP). Hence, it is advisable that the optimal settings
(number of cores, parallelization mode) are tested before starting dynamics projects. Note that the interface can only
trivially parallelize BAGEL calculations across several independent multiplicities, but not across multiple gradient or
nonadiabatic coupling calculations.

6.13 The WFovERLAP Program

This section does not describe an interface to SHARC, but rather the WFovERLAP program. This program is part of
the SHARC distribution, but can also be obtained as a 7 stand-alone package (including a more detailed manual and
a set of auxiliary scripts). It computes overlaps between many-electron wave functions expressed in terms of linear
combinations of Slater determinant, which are based on molecular orbitals (from an LCAO ansatz). It can also compute
Dyson orbitals and Dyson norms between wave functions differing by one « or one f electron. The program is based on
the efficient and general algorithm published in Ref. [74]. It is possible to vary the geometry, the basis set, the molecular
orbitals, and the wavefunction expansion between the calculations.

The resulting wave function overlaps or Dyson norms can be used for example for:

« Propagation in local diabatization, the main application inside SHARC,
« Computation of photoionization spectra [31, 87],
« Comparison of wave functions at different levels of theory [88].

If you employ the wfoverlap.x code inside the SHARC suite for these purposes, please cite these references!

The documentation here only gives a brief overview over the input options of WFOVERLAP.X, because within the SHARC
suite the wfoverlap.x program is always called automatically by the interfaces. For the full manual (and for access to
the auxiliary scripts of WFOVERLAP.X), please download the separate @ WFOVERLAP package.

6.13.1 Installation

Using precompiled binaries After unpacking, the directory $SHARC should contain a binary wfoverlap_ascii.x
and a link called wfoverlap.x pointing to the binary. With this setup, most interfaces should work without problems.

Manual installation The only exceptions are the following: CorumBus (overlaps and Dyson norms) and MoLcAs
(only Dyson norms). These features are only available if wfoverlap.x is recompiled with proper support for these
programs. Alternatively, you may want to link wfoverlap.x against your favorite libraries. In these cases, a manual
installation is necessary.

For the manual installation you need a working Fortran90 compatible compiler (Intel’s ifort is recommended), some
reasonably fast BLAS/LAPACK libraries (Intel’s MKL is recommended, although atlas is also fine).

Optionally, with a working CoLumBUSs Installation you can install the CoLumsus bindings, which will allow direct
reading of SIFS integral files generated by DarTon. To use this option, it is necessary to use the read_dalton.o
object file. MoLCAS/SEWARD integral files can be read by linking with the CoLumBUs/MoLcas interface. Link against
read_molcas.o for this purpose.

To compile the source code, switch to the source directory and edit the Makefile to adjust it to your Fortran compiler
and BLAS/LAPACK installation. The location of your CoLuMBUSs installation has to be set via the enviroment variable
$COLUMBUS.

Issuing the command:

cd $SHARC/../wfoverlap/source/
make

91

https://sharc-md.org/?page_id=309
https://sharc-md.org/?page_id=309

SHARC Manual 6 Interfaces | 6.13 The WFOVERLAP Program

will compile the source and create the binaries.

If you are unable to link against CoLumBUs and/or MoLcas, simply call

make wfoverlap_ascii.x

to compile a minimal version of the CI Overlap program that only reads ASCII files. In this case, overlap and Dyson
calculations with SHARC_COLUMBUS . py and Dyson calculations with SHARC_MOLCAS . py will not be possible.

Testing The command

make test

will run a couple of tests to check if the program is working correctly (alternatively you can call ovl_test.bash $0VDIR,
but $0VDIR needs to be set before).

6.13.2 Workflow

The workflow of the overlap program is shown in Figure 6.3. Four pieces of input, as shown on top, have to be given:

« Overlaps between the two sets of AOs used to construct the bra and ket wavefunctions,

« MO coefficients of the bra and ket wavefunctions,

« information about the Slater determinants,

« the corresponding CI coefficients.
Two main intermediates are computed, the MO overlaps and the unique factors Si;, Sg; where the latter may require
significant amounts of memory to be stored. The reuse of these intermediates is one of the main reasons for the decent
performance of the wfoverlap. program.

Double molecule MO coefficients Sl Cl coefficients

AO overlaps Determinants
Cpu, C! , di, d;
(xulxi) P |04}, [®7) v

|

MO overlaps
,
<<0p|<pq>

{ Unique factors

Contract ‘

Sit> Su

w19}

Figure 6.3: Workflow of the wavefunction overlap program.

6.13.3 Calling the program

The main program is called in the following form

wfoverlap.x [-m <mem=1000>] [-f <input_file=cioverlap.input>]

with the command line options

« -m: amount of memory in MB

92

SHARC Manual 6 Interfaces | 6.13 The WFOVERLAP Program

« -f:input file

Example:

wfoverlap.x -m 2000 -f wfov.in

Mode The program automatically detects whether overlaps or Dyson orbitals should be calculated. If the number
of electrons in the bra and ket wavefunctions is the same, wavefunction overlaps are computed. If the number of «
electrons or the number of f electrons differ by exactly 1, Dyson orbitals are computed. If the wave functions differ by
more than one electron, the program will stop with an error message.

Memory The amount of memory given is a decisive factor for the performance of the code. Depending on the
amount of memory, one of three different modes is chosen:

(i) All Sg; and Sy, terms are kept in core (using arrays called P_ovland Q_ov1).
(ii) Only the Sk factors (P—ovl) are kept in core. This is indicated by

Allocation of Q block overlap matrix failed.
- Using on-the-fly algorithm for Q determinants.

This mode is generally as efficient as 1. but shows somewhat worse parallel scaling.

(iii) Not even all Sg; factors can be stored

Only 437 out of 886 columns of the P_ovl matrix are stored in memory (3 MB)!
Increase the amount of memory to improve the efficiency.

This mode is significantly slower than (i) and (ii) and should be avoided by increasing the amount of memory.

Input file An example input file is shown below:

a_mo=mocoef_a
b_mo=mocoef_b
a_det=dets_a
b_det=dets_b
ao_read=2
same_aos

The full list of keywords is given in Table 6.19.

6.13.4 Input data

Typically, three types of input need to be provided: AO overlaps, MO coefficients, and a combined file with determinant
information and CI coefficients (cf. Figure 6.3). The file formats are explained here. Within SHARCc, these files are
automatically extracted or converted by the interfaces, so the user does not need to create them.

AO overlaps The mixed AO overlaps < Xul X;) between the AOs used to expand the bra and ket wavefunctions are
required. They are in general created by a "double molecule" calculation, i.e. an AO integral calculation where every
atom is found twice in the input file.

The native format (ao_read=0) is a simple ASCII file containing the relevant off-diagonal block of the mixed AO overlap
matrix, e.g.

93

SHARC Manual 6 Interfaces | 6.13 The WFOVERLAP Program

Table 6.19: List of keywords given in the input file. The a_mo, b_mo, a_det, b_det keywords are mandatory, all
others are optional.

Keyword Default Description

a_mo — MO coefficient file (bra)

b_mo — MO coefficient file (ket)

a_mo_read 0 Format for the MO coeflicients (bra):
0: CoLuMBUS, 1: MoLcAS, 2: TURBOMOLE

b_mo_read 0 Format for the MO coefficients (ket)

a_det — Determinant file (bra)

b_det — Determinant file (ket)

ncore 0 Number of discarded core orbitals

ndocc 0 Number of doubly occupied orbitals that are not used for anni-
hilation in Dyson orbital calculations (only has effect if larger
than ncore)

ao_read 0 Format for overlap integrals:
0: ASCII, 1: Mowcas, 2: CoLuMmBUS/SIFS,
-1: Compute by inversion of MO coefficient matrx

mix_aoovl S_mix/ONEINT/aoints AO overlap file

for ao_read=0/1/2

same_aos false. If both calculations were performed with the same set of AOs
(specify only for ao_read=1/2)

nao_a automatic Number of bra AOs for ao_read=1/2 (specify only if different
from ket AOs)

nao_b automatic Number of ket AOs (see above)

moprint 0 Print Dyson orbitals: 1: coefficients to std. out,

2: as Jmol script

force_direct_dets .false. Compute Sy, terms directly (turn off "superblocks”). Recom-
mended if the number of CPU-cores is large (on the same order
as the number of "superblocks").

force_noprecalc false. Do not precalculate the Sy; factors.

mixing_angles false. Compute mixing angles as a matrix logarithm.

77
9.97108464676133E-001
2.36720699813181E-001
1.00147985713321E-002

2.36720699813181E-001
9.99919192433940E-001
6.52340422397770E-003

In addition, Morcas (ao—read=1) and CoLumBUs/SIFS (ao_read=2) files can be read in binary form.

If the same AOs are used for the bra and ket wavefunctions and the MO coeflicient matrix is square, it is possible to
reconstruct the overlaps by inversion of the MO coefficient matrix (ao_read=-1). In this case it is not necessary to
supply a mix_aoovl file.

MO coefficients MO coefficients of the bra and ket wavefunctions can usually be read in directly in the form written
by the quantum chemistry program. The supported options for a_mo_read and b_mo_read are 0 for CoLumBUS format,
1 for MoLcas lumorb format, and 2 for TURBOMOLE format.

Because the number of electrons strongly affects the run time of wfoverlap.x, it is generally beneficial to apply a frozen
core approximation, even if the actual wave function calculation did not do so. Most interfaces which use wfoverlap.x
have a keyword numfrozcore in the resource file, which only affects the number of frozen core orbitals for the overlap

calculation (If the interface support frozen core for the quantum chemistry itself, there will be a keyword in the template
file).

94

SHARC Manual 6 Interfaces | 6.13 The WFOVERLAP Program

Slater determinants and Cl coefficients Slater determinants and CI coefficients are currently supplied by an ASCII
file of the form

37 168

dddddee 0.979083342437 0.979083342437 -0.122637656388
ddddabe -0.094807515471 -0.094807515471 -0.663224542162
ddddbae 0.094807515471 0.094807515471 0.663224542162

The first line specifies

« the number of states (columns in the file),
« the number of MOs (length of the determinant strings), and
« the number of determinants in the file (length of the file).

Every subsequent line gives the determinant string and the corresponding CI coefficients for the different states. The
following symbols are used in the determinant string:

d - doubly occupied

a - singly occupied ()
b - singly occupied (f)
e - empty

Most relevant for SHARC users, the wfoverlap.x program fully considers all determinants inside these files, without
applying any form of truncation. Hence, truncation of long wave functions is done during the creation of the determinant
files. Most interfaces which write these files have a keyword wfthres in their resource file. This threshold is a number
between 0.0 and 1.0, and is the minimum wave function norm to which the wave functions should be truncated.
During truncation, the interfaces generally retain the largest-amplitude CI coefficients, and remove determinants
with small coefficients, i.e., they find the truncated expansion with the fewest determinants which has a norm above
the wfthres. Choosing this threshold properly can very strongly affect the computational time spent in the overlap
calculation. Generally, for CASSCF wave functions the threshold can be set to 1 (SHARC_MOLPRO. py, SHARC_MOLCAS . py,
and SHARC_BAGEL . py always use all determinants and do not have the wfthres option), for TDA-DFT/ADC(2) it should
usually be well above 0.99, for and for MRCI wave functions it might be necessary to go as low as 0.95, depending
on the accuracy and performance needed. For TD-DFT calculations without the Tamm-Damcoff approximation, the
response vectors are usually normalized to |X|? — [Y| = 1, but only X is used in the overlap calculation; since the norm
of X can thus exceed 1, the wfthres should be increased above 1, too. As a rule of thumb, the threshold should always
be chosen such that each state is represented by at least a few 100 determinants in the file, in order to obtain smoothly
varying overlaps. If unsure, the user should perform a test calculation, varying the wfthres until a suitable one is found
(i.e., with as many determinants as possible such that the cost of the overlap calculation is bearable).

6.13.5 Output

Usually, the output of wfoverlap.x is automatically extracted by the interfaces, and reported in QM. out in the overlap
or 2D-property sections.

Wavefunction overlaps The output first lists some information about the wavefunction structure and about the
computational time taken for the individual steps (cf. Figure 6.3).

A typical result of a wavefunction overlap computation is shown here:

Overlap matrix <PsiA_i|PsiB_j>

|PsiB 1> |PsiB 2>
<PsiA 1| 0.5162656622 -0.2040109070
<PsiA 2| -0.2167057391 -0.5266552021

Renormalized overlap matrix <PsiA_i|PsiB_j>
|PsiB 1> |PsiB 2>
<PsiA 1| 0.5162656622 -0.2040109070

95

SHARC Manual 6 Interfaces |

<PsiA 2| -0.2167057391 -0.5266552021

Performing Lowdin orthonormalization by SVD...

Orthonormalized overlap matrix <PsiA_i|PsiB_j>
|PsiB 1> |PsiB 2>

0.9273847015 -0.3741090956

-0.3741090956 -0.9273847015

<PsiA 1|
<PsiA 2|

Overlap matrix gives the raw overlap values
RAD

of the wavefunctions supplied.

Renormalized overlap matrix gives the renormalized overlap values

(W)
EAREAER

relevant in the case of wavefunction truncation.

6.13 The WFOVERLAP Program

(6.8)

The Orthonormalized overlap matrix is constructed according to a procedure described in more detail in Ref. [74].

Dyson orbitals The matrix of Dyson norms is printed at the end of the file

ALPHA ionization
Dyson norm matrix |<PsiA_i|PsiB_j>|"2

|PsiB 1> |PsiB 2> |PsiB 3>

<PsiA 1| 0.8817323437 0.4716319904 0.0680618001
<PsiA 2| 0.0615587916 0.4657174978 0.8772909828
<PsiA 3| 0.0000000000 0.0363130811 0.0000000000
<PsiA 4| 0.9634885049 0.0000000000 ©0.0017379586
<PsiA 5| 0.0000000000 0.9261839484 0.0000000000

In the case of moprint=1 the orbitals are printed, as well. The expansion is given with respect to the MOs of the neutral

system.

Dyson orbitals in reference |ket> MO basis:

<PsiA 1|
|PsiB 1> |PsiB 2> |PsiB 3>

MO 1 -1.24032037E-03 ©0.00000000E+00 9.98160731E-04
MO 2 -5.90277699E-02 0.00000000E+00 6.14517859E-02
MO 3 -1.23295110E-09 0.00000000E+00 3.08416849E-10
MO 4 0.00000000E+00 -6.86713110E-01 0.00000000E+00
MO 5 9.31351013E-01 0.00000000E+00 -2.49427166E-01
MO 6 -3.50106110E-02 0.00000000E+00 4.19935829E-02
MO 7 -1.83303166E-10 0.00000000E+00 -3.67409953E-12
MO 8 -1.91183349E-10 0.00000000E+00 9.40768334E-11

96

7 Auxilliary Scripts

In this chapter, all auxiliary scripts and programs are documented. Input generators (like molpro_input.py and
molcas_input.py) are documented in the relevant interface sections.

All auxiliary scripts are either interactive—prompting user input from stdin in order to setup a certain task—or non-
interactive, meaning they are controlled by command-line arguments and options, in the same way as many standard
command-line tools work.

All interactive scripts sequentially ask a number of questions to the user. In many cases, a default value is presented,
which is either preset or detected by the scripts based on the availability of certain files. Furthermore, the scripts feature
auto-completion of paths and filenames (use TAB), which is active only in questions where auto-completion is relevant.
For certain questions where lists of integers needs to be entered, ranges can be indicated with the tilde symbol (~), e.g.,
-8~-2 (note that no spaces are allowed between the tilde and the two numbers) to indicate the list -8 -7 -6 -5 -4 -3
-2.

All interactive scripts write a file called KEYSTROKES .<script_name> which contains the user input from the last
completed session. These files can be piped to the interactive scripts to perform the same task again, for example:
user@host> cat KEYSTROKES.excite - | $SHARC/excite.py

Note the -, which tells cat to switch to stdin after the file ends, so that the user can proceed if the script asks for more
input than contained in the KEYSTROKES file.

All non-interactive scripts can be called with the -h option to obtain a short description, usage information and a list of
the command line options. Non-interactive scripts also write a KEYSTROKES . <script_name> file, which will contain the
last command entered to execute the script (including all options and arguments).

All scripts can be safely killed during a run by using Ctrl-C. In the case of interactive scripts, a KEYSTROKES . tmp file
remains, containing the user input made so far. Note that the KEYSTROKES. tmp file cannot be directly piped to the
scripts, because KEYSTROKES . tmp will be overwritten when the script starts.

7.1 Wigner Distribution Sampling: wigner.py

The first step in preparing the dynamics calculation is to obtain a set of physically reasonable initial conditions. Each
initial condition is a set of initial atomic coordinates, initial atomic velocities and initial electronic state. The initial
geometry and velocities can be obtained in different ways. With SHARC, often sampling of a quantum-harmonic Wigner
distribution is performed.

The sampling is carried out with the non-interactive Python script wigner.py. The theoretical background is summarized
in section 8.22.

7.1.1 Usage

The general usage is

user@host> $SHARC/wigner.py [options] filename.molden

wigner.py takes exactly one command-line argument (the input file with the frequencies and normal modes), plus
some options. Usually, the -n option is necessary, since the default is to only create 3 initial conditions.

The argument is the filename of the file containing the information about the vibrational frequencies and normal modes.
The file is by default assumed to be in the Z MoLDEN format. For usage with wigner. py, only the following blocks have
to be present:

97

http://www.cmbi.ru.nl/molden/molden_format.html

SHARC Manual 7 Auxilliary Scripts | 7.1 Wigner Distribution Sampling: wigner.py

- [FREQ]
« [FR-COORD]

+ [FR-NORM-COORD]
The script accepts a number of command-line options, specified in table 7.1.

7.1.2 Normal mode types

The normal mode vectors contained in a MoLDEN file can follow different conventions, e.g., unscaled Cartesian
displacements or different kinds of mass-weighted displacements. By default, wigner.py attempts to identify which
convention is followed by the file (by performing different renormalizations and checking if the so-obtained matrix is
orthogonal). In order to use this automatic detection, use -f 0, which is the default. Otherwise, there are four possible
options: -f 1 to assume normal modes in the GAUssIAN convention (used by GAussiaN, TURBOMOLE, Q-CHEM, ADF,
and Orca); -f 2 to assume Cartesian normal modes (used by Morcas and MoLpPro); -f 3 to assume the COLUMBUS
convention; or -f 4 for mass-weighted, orthogonal normal modes.

7.1.3 Non-default masses

When the -m option is used, the script will ask the user to interactively modify the atom masses. For each atom (referred
to by the atom index as in the MoOLDEN file), a mass can be given (relative atomic weights). Note that the frequency
calculation which produces the MoLDEN should be done with the same atomic masses.

7.1.4 Sampling at finite temperatures

When the -t option is used, the script assumes a finite, non-zero temperature. The sampling will then consist of
two steps, where first randomly a vibrational state is picked from the Boltzmann distribution, and then the Wigner
distribution of that state is employed. For more details, see Section 8.22.

At high temperatures and for low-frequency modes it is possible that very large vibrational quantum numbers will be
selected. Because of the occurrence of factorials in the Laguerre polynomials in the excited Wigner distributions, this
leads to variable overflow for vy, > 150. Hence, the highest vibrational quantum number considered is 150, and higher
ones are set to 150. Since this can lead to an overrepresentation of v, = 150, with the -T option one can instead discard
all samplings where 1y, > 150. No matter whether -T is used or not, keep in mind that usually such high vibrational
states might invalidate the assumption of an harmonic oscillator, and other sampling methods (e.g., molecular dynamics)
should be considered.

Table 7.1: Command-line options for script wigner. py.

Option Description Default

-h Display help message and quit —

-n INTEGER Number of initial conditions to generate 3

-m Modify atom masses (starts interactive dialog) Most common isotopes
-s FLOAT Scaling factor for the frequencies 1.0

-t FLOAT Use Boltzmann-weighted distribution at the given temperature 0.0 K

-T Discard very high vibrational states at high temperatures Don’t discard, but warn
-L FLOAT Discard frequencies below the given one (in cm™) 10.0

-0 FILENAME Output filename initconds

-X Creates an xyz file with the sampled geometries initconds.xyz

-1 Instead of generating initconds, create input for SHARC_LVC.py Create initconds

-r INTEGER Seed for random number generator 16661

-f F Type of normal modes read (0=detect automatically, 1-4=see 0

--keep_trans_rot
--use_eqg_geom
--use_zero_veloc

below)

Do not remove translations and rotations from velocity vector
Sample only velocities, but keep equilibrium geometry
Sample only geometries, but set velocities to zero

Sample normally
Sample normally

98

SHARC Manual 7 Auxilliary Scripts | 7.2 AMBER Trajectory Sampling: amber_to_initconds.py

7.1.5 Output

The script wigner.py generates a single output file, by default called initconds. All information about the initial
conditions is stored in this file. Later steps in the preparation of the initial conditions add information about the excited
states to this file. The file is formatted in a human-readable form.

The initconds file format is specified in section 7.5.5.

When the -x option is given, additionally the script produces a file called initconds.xyz, which contains the sampled
geometries in standard xyz format. This can be useful to inspect the distribution of geometry parameters (e.g., bond
lengths) or to perform single point calculations at the sampled geometries.

When the -1 option is given, the script only produces a file called V0. txt, which is a necessary input file for the LVC
interface (see section 6.9). If this option is activated, no initconds or initconds.xyz files are produced.

7.2 AMBER Trajectory Sampling: amber_to_initconds.py

The first step in preparing the dynamics calculation is to obtain a set of physically reasonable initial conditions. Each
initial condition is a set of initial atomic coordinates, initial atomic velocities and initial electronic state. The initial
geometry and velocities can be obtained in different ways. Besides sampling from a quantum mechanical Wigner
distribution (with wigner.py), it is a widespread approach to sample geometries and velocities from a ground state
molecular dynamics simulation.

Using amber_to_initconds.py, one can convert the results of an AMBER simulation to a SHARC initconds file.

7.2.1 Usage

In order to use amber_to_initconds.py, it is necessary to first carry out an AMBER simulation. You need to add the
following options to the AMBER MD input file: (i) ntxo=1 to tell AMBER to write ASCII restart files, (ii) ntwr=-5000 to
create a restart file every 5000 steps (other values are possible, but use the minus to not overwrite the restart files). This
will create a set of AMBER restart files called, e.g., md.rst_5000, md.rst_10000, ...

Note that it is also necessary to reimage the AMBER restart files, because SHARC does not work with periodic boundary
conditions, but the AMBER trajectories might use them. The reimaging can be performed with AMBER’s tool cpptraj,
using the following input:

parm <filename>.prmtop

trajin <filename>.rst7

autoimage

trajout <filename2>.rst7

run

This command has to be repeated for each restart file which needs to be reimaged. Note that amber_to_initconds.py
only works with the rst7 ASCII file format, not with the rst format (even if it is ASCII-formatted).

If you saved the restart files in AMBER’s newer NetCDF format, cpptraj can also be used to convert them to ASCII rst7
restart files. If you did not save restart files, cpptraj can even be used to generate restart files from the trajectory file
(.mdcrd and .mdvel), but for this way it is necessary to save the velocities (.mdvel file).

With the restart files prepared, call amber_to_initconds. py like this:
user@host> $SHARC/amber_to_initconds.py [options] md.prmtop md.rst_0 md.rst_5000 md.rst_10000 ...

The possible options are shown in Table 7.2.

7.2.2 Time Step

Note that the option -t (giving the time step used in AMBER in femtoseconds) is mandatory; if not given, an error message
is produced. This is because AMBER uses a Leapfrog algorithm and thus stores in the restart file R(¢) and v(t — At/2),
whereas SHARC uses the velocity-Verlet algorithm and requires geometry and velocity at the same time, e.g., R(t — At/2)
and v(t — At/2). To compensate this, amber—_to_initconds.py computes R(¢ — At/2) from R(t) —v(t — At /2)At /2. Hence,
At of the AMBER trajectory needs to be known.

99

SHARC Manual 7 Auxilliary Scripts | 7.3 SHARC Trajectory Sampling: sharctraj_to_initconds.py

Table 7.2: Command-line options for script amber_to_initconds. py.

Option Description Default

-h Display help message and quit —

-t FLOAT Time step (in femtoseconds) used in the AMBER simulation -

-0 FILENAME Output filename initconds

-X Creates an xyz file with the sampled geometries initconds.xyz
-m Modify atom masses (starts interactive dialog) As in prmtop file
--keep_trans_rot Do not remove translations and rotations from velocity vector

--use_zero_veloc Sample only geometries, but set velocities to zero Sample normally

7.2.3 Atom Types and Masses

By default, atom types and masses are read from the prmtop file (from flags ATOMIC_NUMBER and MASS). If the atomic
number is not sensible (e.g., -1 for a transition metal) then amber_to_initconds.py prompts the user to define the
element. The masses in the prmtop file can be overridden if the -m option is given; then the user can adjust the mass of
each atom individually.

7.2.4 Output

amber_to_initconds.py produces the same output as wigner.py (section 7.1). By default, a file called initconds is
generated for the converted initial conditions. It is important to note that the first restart file given (the second command
line argument) is treated as the “equilibrium” geometry for the purpose of generating the initconds file. The second
given restart file is then converted to the initial condition with index 1, and so on. Note that it is possible to give the
same restart file multiple times as an argument (so that the same geometry can be used as “equilibrium” geometry and
as proper initial condition.

7.3 SHARC Trajectory Sampling: sharctraj_to_initconds.py

The first step in preparing the dynamics calculation is to obtain a set of physically reasonable initial conditions. Each
initial condition is a set of initial atomic coordinates, initial atomic velocities and initial electronic state. The initial
geometry and velocities can be obtained in different ways. Besides sampling from a quantum mechanical Wigner
distribution, it is often appropriate to sample geometries and velocities from a ground state molecular dynamics
simulation.

Using sharctraj_to_initconds.py, one can convert the results of a SHARC simulation to a new SHARC initconds file.

7.3.1 Usage

In order to use sharctraj_to_initconds.py, it is necessary to first run a number of SHARC trajectories (the initial
conditions for those need to be obtained with wigner.py or amber_to_initconds.py). The trajectories can be run with
any number of states and in any state, and with any desirable options; only geometries and velocities are converted to
the new initconds file.

With the trajectories prepared, call sharctraj_to_initconds.py like this:

user@host> $SHARC/sharctraj_to_initconds.py [options] Singlet_0 ...

Alternatively, with the --give_TRAJ_paths option, one can also do:

user@host> $SHARC/sharctraj_to_initconds.py --give_TRAJ_paths [options] TRAJ_00001 TRAJ_00002 ...

The possible options are shown in Table 7.3.

100

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

Table 7.3: Command-line options for script sharctraj_to_initconds.py.

Option Description Default

-h Display help message and quit —

-r INTEGER Seed for the random number generator 16661

-S INTEGER INTEGER Range of time steps from which a step is randomly chosen last step

-0 FILENAME Output filename initconds

-X Creates an xyz file with the sampled geometries initconds.xyz
--keep_trans_rot Do not remove translations and rotations from velocity

--use_zero_veloc Sample only geometries, but set velocities to zero Sample normally
--debug Show timings

--give_TRAJ_paths Allows specifying individual trajectories Specify parent directories

7.3.2 Random Picking of Time Step

For each directory specified as command line argument, sharctraj_to_initconds. py picks exactly one time step and
extracts geometries and velocities of that time step. Note that a directory can be given several times as argument, so
that multiple time steps can be selected.

The time steps are generally picked randomly (uniform probabilities) from an interval specified with the -S option. This
option takes two integers, e.g., -S 50 -50, which can be positive or negative. The meaning of positive/negative/zero is
the same as in PYTHON: positive numbers simply denote a time step (start counting with zero for the step zero of the
trajectory); for negative numbers, start counting at the end, i.e., -1 is the last time step of the trajectory. In this way, it is
possible to select the snapshot from the last n steps of all trajectories, even if they have different length. The example
above, -S 50 -50, means picking a time step between the 50th and the 50th-last step. Note that if a trajectory is shorter
than 100 steps, in this example it is skipped because there are no steps between the 50th and the 50th-last step.

7.3.3 Output

sharctraj_to_initconds.py produces the same output as wigner.py (section 7.1). By default, a file called initconds
is generated for the converted initial conditions. It is important to note that the first directory given (the first command
line argument) is treated as the “equilibrium” geometry for the purpose of generating the initconds file. The second
given directory is then converted to the initial condition with index 1, and so on. Note that it is possible to give the
same directory multiple times as an argument (so that the same geometry can be used as “equilibrium” geometry and as
proper initial condition.

7.4 Setup of Initial Calculations: setup_init.py

The interactive script setup_init.py creates input for single point calculations at the initial geometries given in an
initconds file. These calculations might be necessary for some schemes to select the initial electronic state of the
trajectory, e.g., based on the excitation energies and oscillator strength of the transitions from ground state to the
excited state, or based on overlaps with a reference wave function.

There are other choices of the initial state possible, which do not require single point calculations at all initial geometries.
See the description of excite.py (section 7.5). In this case, setup_init.py can be used to set up only the calculation at
the equilibrium geometry (see below at “Range of Initial Conditions”).

7.4.1 Usage

The script is interactive, and can be started by simply typing
user@host> $SHARC/setup_init.py

Please be aware that the script will setup the calculations in the directory where it was started, so the user should cd to
the desired directory before executing the script.

Please note that the script does not expand ~ or shell variables, except where noted otherwise.

101

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

7.4.2 Input

The script will prompt the user for the input. In the following, all input parameters are documented:

Initial Conditions File Enter the filename of the initial conditions file, which was generated beforehand with
wigner.py. If the script finds a file called initconds, the user is asked whether to use this file, otherwise the user has
to enter an appropriate filename. The script detects the number of initial conditions and number of atoms automatically
from the initial conditions file.

Range of Initial Conditions The initial conditions in initconds are indexed, starting with the index 1. In order to
prepare ab initio calculations for a subset of all initial conditions, enter a range of indices, e.g. a and b. This will prepare
all initial conditions with indices in the interval [a, b]. In any case, the script will additionally prepare a calculation for
the equilibrium geometry (except if a finished calculation for the equilibrium geometry was found).

If the interval [0, 0] is given, the script will only setup the calculation at the equilibrium geometry.

Number of states Here the user can specify the number of excited states to be calculated. Note that the ground
state has to be counted as well, e.g., if 4 singlet states are specified, the calculation will involve the Sy, Sy, S, and Ss.
Also states of higher multiplicity can be given, e.g. triplet or quintet states. For even-electron molecules, including
odd-electron states (e.g. doublets) is only useful if transition properties for ionization can be computed (e.g. Dyson
norms with some of the interfaces). These transition properties can be used to calculate ionization spectra or to obtain
initial conditions for dynamics after ionization.

Interface In this point, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the
corresponding number.

Spin-orbit calculation Usually, it is sufficient to calculate the spin-free excitation energies and oscillator strengths
in order to decide for the initial state. However, using this option, the effects of spin-orbit coupling on the excitation
energies and oscillator strengths can be included. Note that the script will never calculate spin-orbit couplings if
only singlet states are included in the calculation, or if the chosen interface does not support calculation of spin-orbit
couplings.

Reference overlaps The calculations can be setup in such a way that the wave function overlaps between states at
the equilibrium geometry and the displaced geometries is computed. This allows correlating the states at the displaced
geometries with the reference states, such that one can know the state characters of all states without inspection. This
is useful for a crude “diabatization” of the states, e.g., if one wants to start all trajectories in the nz* state of the molecule
although this state can be Sy, S;, or S3 (use excite.py to setup initial conditions in such a way, see section 7.5).

When activating this option, keep in mind that the calculation in ICOND_00000 must be successfully finished before any
of the other ICOND_XXXXX calculations can be started.

TheoDORE analysis If the chosen interface supports wave function analysis with TheoDORE, then this option can
be activated here. setup_init.py will then include the relevant keywords in the computations, and the results of the
TheoDORE analysis will be written to the QM. out files.

The remaining settings for TheoDORE (fragment and descriptor input) will be asked later in setup_init. py.

7.4.3 Interface-specific input

The following input in setup_init.py depends on the chosen interface. However, some input is similar between several
interfaces and is discussed (out of input order) in section 7.4.3. Note that most of the questions asked in the input
dialogue have some counterpart in the resource file of the chosen interface, so you might find additional information in
chapter 6.

102

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

Input which is similar between interfaces

Path to quantum chemistry programs and licenses Here the user is prompted to provide the path to the relevant
executables or installation directories.

Note that the setup script will not expand the user (~) and shell variables (since the calculations might be running on a
different machine than the one used for setup, so the meaning of shell variables could be different). ~ and shell variables
will only be expanded by the interfaces during the actual calculation.

For some interfaces, also the path to a license file might need to be specified.

Scratch directory The script takes the string without any checking. Each individual initial condition uses a subdi-
rectory of the given path, so that there are no clashes between the initial conditions. ~ and shell variables will only be
expanded by the interface during the actual calculation.

Note that you can use, e.g., ./temp/ as scratch directory, which is a subdirectory of the working directory of the
interface. Using ./ as scratch directory is not recommended, since the interface will delete the scratch directory.

Template file For almost all interfaces, setup_init.py will ask for a template file containing the quantum chemistry
specifics of the calculations. The format of the template file depends on the interface; formats are described in the
interface chapter 6.

For most interfaces, setup_init.py will perform some basic checks, but ultimately the template file will be checked by
the interface once the calculation is submitted.

Initial orbital guess For some interfaces, setup_init.py will ask for files containing initial orbital guesses. providing
initial is especially important for multi-reference calculations, because otherwise it is very likely that the calculations
converge to an undesirable active space.

Resource usage For most interfaces, setup_init.py will ask for the amount of memory and the number of CPU
cores to use. For some interfaces, additionally a delay between the start of parallel calculation can be provided (this
might be helpful if many calculations starting at the same time is problematic for I/O). For the Morcas, ADF, Gaussian,
and ORrca interfaces, furthermore the schedule_scaling is queried for (see section 8.3 for details).

Wavefunction overlap program The scripts asks for the path to the wavefunction overlap program. In a complete
SHARC installation, the overlap program should be located at $/SHARC/wfoverlap.x. Depending on the interface, the
script might also ask for the threshold to truncate the wave function files, or for the memory for wfoverlap.x (if the
memory of the quantum chemistry program cannot be set). For some interfaces, it is also possible to control the number
of frozen core orbitals for the overlap calculation (and the number of inactive orbitals for Dyson orbital calculations).

THEODORE setup If THEODORE is enabled, setup_init.py will query for the path to the THEODORE installation
directory. Furthermore, the user needs to enter a list of the descriptors to be calculated by THEODORE, as well as the
atom indices for each fragment for the charge transfer number computation.

QM/MM setup For some interfaces, setup_init.py will ask for QM/MM-related files if the template file specifies a
QM/MM calculation. Currently, the QM/MM setup consists simply of providing the relevant interface-specific files to
setup_init.py, which it simply copies accordingly.

Input for MoLPRO

Path to MoLPro Here the user is prompted to provide the path to the MoLPRO executable. For more details, see
section 7.4.3.

Scratch directory See section 7.4.3.

103

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

Template file Enter the filename for the MoLpro template input. This file should contain at least the basis set, active
orbitals and electrons, number of electrons and number of states for state-averaging. For details, see the section about
the SHARC-MoLrPRo interface (6.3). The setup script will check whether the template file contains the necessary entries.

Initial wave function file You can provide an initial wave function (with an appropriate MO guess) to MOLPRO.
This usually provides a drastic speedup for the CASSCF calculations and helps in ensuring that all calculations are
based on the same active space. In simple cases it might be acceptable to not provide an initial wave function.

Resource usage The script asks for the memory and number of CPU cores to be used. Note that both settings apply
to MoLPro and to wfoverlap.x, if the latter is required (but note that the two programs are never run simultaneously).
If more than one CPU core is used, the interface will parallelize different MoLPRrO runs (but will not run MoLPRo in
parallel mode); wfoverlap.x will be run in SMP-parallel mode.

Wavefunction overlap program See section 7.4.3. Note that for the MoLpRro interface, no truncation threshold can
be given, since wfoverlap.x is very efficient for CASSCF wavefunctions.

Input for MoLcas

Path to MoLcas Here the user is prompted to provide the path to the Morcas directory. For more details, see
section 7.4.3.

Scratch directory See section 7.4.3.

Template file Enter the filename for the MoLrcas template input. This file should contain at least the basis set, active
orbitals and electrons, number of inactive orbitals, and number of states for state-averaging. For details, see the section
about the SHARC-MoLcas interface (6.4). The setup script will check whether the template file contains the necessary
entries.

QM/MM If the keyword gmmm is contained in the template file, the user will be queried for the path to TINKER’s bin/
directory. Note that only TINKER installations with the necessary modifications for MoLcas can be used.

The script will also ask for the key file (containing the path to the force field file and the QM/MM partition) and the
connection table file. See section 6.4 for details.

Initial wave function file You can provide initial MO coefficients to MoLcas. This usually provides a drastic speedup
for the CASSCF calculations and helps in ensuring that all calculations are based on the same active space. In simple
cases it might be acceptable to not provide an initial wave function. For MoLcas, you have to specify one file for each
multiplicity (but you can use the same file as guess for several multiplicities). Initial orbital files can either be in JobIph
or RasOrb format.

Resource usage The script asks for the memory and number of CPU cores to be used. Note that both settings apply
to Morcas and to wfoverlap.x, if the latter is required (but note that the two programs are never run simultaneously).
If more than one CPU core is used, the interface will parallelize different Morcas runs (but will not run MoLcas in
parallel mode); wfoverlap.x will be run in SMP-parallel mode.

Wavefunction overlap program See section 7.4.3. The wfoverlap.x program is only required if Dyson norms
need to be calculated. Note that for the MoLcas interface, no truncation threshold can be given, since wfoverlap.x is
very efficient for CASSCF wavefunctions.

Input for CoLumBus

Path to CoLumBus Here the user is prompted to provide the path to the CoLumBus directory. For more details, see
section 7.4.3.

104

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

Scratch directory See section 7.4.3.

Template directory Enter the path to a directory containing subdirectories with CoLumsus input files necessary for
the calculations. The setup script will expand ~ and shell variables and will pass the absolute path to the calculations.
The script will auto-detect (based on the cidrtin files) which subdirectory contains the input for each multiplicity.
The user has to check in the following dialog whether the association of multiplicities with job directories is correct.
Additionally, the association of MO coefficient files to the jobs has to be checked. See the section on the SHARc-CoLUMBUS
interface (6.5) for further details.

Note that the setup script does not check any content of the input files beyond the multiplicity. Note that transmomin
and control. run do not need to be present (and that their content has no effect on the calculation), since these files are
written on-the-fly by the interface.

The template directory can either be linked or copied to the initial condition calculations.

Initial orbital coefficient file You can provide initial MO coefficients for the CoLumBUSs calculation. This usually
provides a drastic speedup for the CASSCF calculations and helps to ensure that all calculations are based on the same
active space. In simple cases it might be acceptable to not provide an initial wave function.

Memory For CoLumBUs, the available memory must be given here. The CoLumBUs interface does not allow for
parallelization currently.

Wavefunction overlap program See section 7.4.3. For CASSCF calculations with CoLuMmBUS, use a truncation
threshold of 1.0, for MRCIS/MRCISD calculations, 0.97-0.99 should provide sufficient performance and accuracy.

Input for analytical potentials

Template file Enter the filename for the template input specifying the analytical potentials. For details, see the
section about the SHARC-Analytical interface (6.6). The setup script will check whether the template file is valid.

Input for ADF
Path to ADF Here the user is first asked if setup should be made from an adfrc.sh file. If yes, only the path to this

file is needed.

Otherwise, the path to the ADF installation directory and the path to the license file need to be provided. For more
details, see section 7.4.3.

Scratch directory See section 7.4.3.

Template file Enter the filename for the ADF template input. This file should contain at least the basis set, functional,
and charge keywords. For details, see the section about the SHARC-ADF interface (6.7). The setup script will check
whether the template file contains the necessary entries.

QM/MM The script will ask for the two QM/MM-specific input files for the interface, which are called ADF.qmmm. ff
and ADF.qgmmm.table. See section 6.7 for details on these files.

Initial orbital coefficient file You can provide initial MO coefficients for the ADF calculation. This can provide a
small speedup for the calculations and helps to ensure that all calculations are based on the same orbitals. In many
cases, no initial orbitals are required.

Resource usage For ADF, the amount of memory to be used cannot be controlled. However, the number of CPU
cores needs to be given. If more than one core is used, also the parallel scaling needs to be specified (see section 8.3).

105

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

Wavefunction overlap program See section 7.4.3. setup_init.py will ask for the memory usage of wfoverlap.x.
The truncation threshold for TD-DFT can usually be chosen as 0.99-1.00 (depending on the system and functional, but
it is recommended that it is high enough that each state is described by at least 100 determinants in the generated files).
See section 6.7 for details.

THEODORE setup See section 7.4.3.

Input for Ricc2
Path to TURBoMOLE The path to the TURBOMOLE installation directory needs to be provided. If spin-orbit couplings
are requested, also the path to the Orca installation directory is needed. For more details, see section 7.4.3.

Scratch directory See section 7.4.3.

Template file Enter the filename for the Ricc2 template input. This file should contain at least the basis set and
charge keywords. For details, see the section about the SHARC-Ricc2 interface (6.8). The setup script will check whether
the template file contains the necessary entries.

Initial orbital coefficient file You can provide initial MO coefficients for the TURBOMOLE calculation. This can
provide a small speedup for the calculations and helps to ensure that all calculations are based on the same orbitals. In
many cases, no initial orbitals are required.

Resource usage The amount of memory and the number of CPU cores are required in this section. Note that the
SHARC-Ricc? interface always runs only one TURBOMOLE instance at the same time (if the number of CPU cores is
larger than one, it will use the SMP/OMP binaries of TURBOMOLE).

Wavefunction overlap program See section 7.4.3. setup_init.py will ask for the memory usage of wfoverlap.x.
The truncation threshold can usually be chosen as 0.99-1.00 (depending on the system, but it is recommended that it is
high enough that each state is described by at least 100 determinants in the generated files). See section 6.8 for details.

THEODORE setup See section 7.4.3.

QM/MM The script will ask for the two QM/MM-specific input files for the interface, which are called RICC2. gmmm. ff
and RICC2.qmmm.table. See section 6.8 for details on these files.

Input for LVC interface

Template file Enter the filename for the template input specifying the LVC parameters. For details, see the section
about the SHARC-LVC interface (6.9). The setup script will not check whether the template file is valid.

Input for GAussIAN interface

Path to GAussiaAN The path to the GaussiAN installation directory needs to be provided. Note that this needs to
be the path to the directory containing the GAUSSIAN executables, e.g., g09/g16, 19999.exe, etc. The interface will
automatically detect which GAussIAN version is used. For more details, see section 7.4.3.

Scratch directory See section 7.4.3.

Template file Enter the filename for the Gaussian template input. This file should contain at least the basis set,
functional, and charge keywords. For details, see the section about the SHARC-GAUssIAN interface (6.10). The setup
script will check whether the template file contains the necessary entries.

106

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

Initial orbital coefficient file You can provide initial MO coefficients for the GAussIAN calculation. This can provide
a small speedup for the calculations and helps to ensure that all calculations are based on the same orbitals. In many
cases, no initial orbitals are required.

Resource usage The amount of memory and the number of CPU cores are required in this section. If more than one
core is used, also the parallel scaling needs to be specified (see section 8.3).

Wavefunction overlap program See section 7.4.3. setup_init.py will ask for the memory usage of wfoverlap.x.
The truncation threshold for TD-DFT can usually be chosen as 0.99-1.00 (depending on the system and functional, but
it is recommended that it is high enough that each state is described by at least 100 determinants in the generated files).
See section 6.10 for details.

THEODORE setup See section 7.4.3.

Input for ORca interface

Path to OrRcA The path to the Orca installation directory needs to be provided. Note that this needs to be the path
to the directory containing the OrcA executables, e.g.,orca or orca_fragovl. For more details, see section 7.4.3.

Scratch directory See section 7.4.3.

Template file Enter the filename for the Orca template input. This file should contain at least the basis set, functional,
and charge keywords. For details, see the section about the SHARC-ORcA interface (6.11). The setup script will check
whether the template file contains the necessary entries.

Initial orbital coefficient file You can provide initial MO coefficients for the ORrca calculation. This can provide a
small speedup for the calculations and helps to ensure that all calculations are based on the same orbitals. In many
cases, no initial orbitals are required.

Resource usage The amount of memory and the number of CPU cores are required in this section. If more than one
core is used, also the parallel scaling needs to be specified (see section 8.3).

Wavefunction overlap program See section 7.4.3. setup_init.py will ask for the memory usage of wfoverlap.x.
The truncation threshold for TD-DFT can usually be chosen as 0.99-1.00 (depending on the system and functional, but
it is recommended that it is high enough that each state is described by at least 100 determinants in the generated files).
See section 6.11 for details.

THEODORE setup See section 7.4.3.

QM/MM The script will ask for the two QM/MM-specific input files for the interface, which are called ORCA. gmmm. ff
and ORCA.qmmm. table. See section 6.11 for details on these files.

Input for BAGEL interface

Path to BAGEL The path to the BAGEL installation directory needs to be provided. Note that this needs to be the path
to the main directory of BAGEL, with subdirectories like bin/ or 1ib/. For more details, see section 7.4.3.

Scratch directory See section 7.4.3.

Template file Enter the filename for the BAGEL template input. This file should contain at least the basis set, active
space, and charge keywords. For details, see the section about the SHARC-BAGEL interface (6.12). The setup script will
check whether the template file contains the necessary entries.

107

SHARC Manual 7 Auxilliary Scripts | 7.4 Setup of Initial Calculations: setup_init.py

Initial orbital coefficient file You can provide initial MO coefficients for the BAGEL calculation. This usually
provides a drastic speedup for the CASSCF calculations and helps to ensure that all calculations are based on the same
active space. In simple cases it might be acceptable to not provide an initial wave function.

Resource usage The amount of memory and the number of CPU cores are required in this section. If more than one
core is used, also the parallel mode needs to be specified (MPI or OpenMP).

Wavefunction overlap program See section 7.4.3. setup_init.py will ask for the memory usage of wfoverlap.x.
The truncation threshold for TD-DFT can usually be chosen as 0.99-1.00 (depending on the system and functional, but
it is recommended that it is high enough that each state is described by at least 100 determinants in the generated files).
See section 6.12 for details.

7.4.4 Input for Run Scripts

Run script mode The script setup_init.py generates a run script (Bash) for each initial condition calculation. Due
to the large variety of cluster architectures, these run scripts might not work in every case. It is the user’s responsibility
to adapt the generated run scripts to his needs.

setup_init.py can generate run scripts for two different schemes how to execute the calculations. With the first
scheme, the ab initio calculations are performed in the directory where they were setup (subdirectories of the directory
where setup_init.py was started). Note that the interfaces will still use their scratch directories to perform the actual
quantum chemistry calculations. Currently, this is the default option.

With the second option, the run scripts will transfer the input files for each ab initio calculation to a temporary directory,
where the interface is started. After the interface finishes all calculations, the results files are transferred back to the
primary directory and the temporary directory is deleted. Note that setup_init.py in any case creates the directory
structure in the directory where it was started. The name of the temporary directory can contain shell variables, which
will be expanded when the script is running (on the compute host).

Submission script The setup script can also create a Bash script for the submission of all ab initio calculations to
a queueing system. The user has to provide a submission command for that, including any options which might be
necessary. This submission script might not work with all queueing systems.

Project name The user can enter a project name. This is used currently only for the job names of submitted jobs (-N
option for queueing system).

7.4.5 Output

setup_init.py will create for each initial condition in the given range a directory whose names follow the format
ICOND_%05i/, where %051 is the index of the initial condition padded with zeroes to 5 digits. Additionally, the directory
ICOND_00000/ is created for the calculation of the excitation energies at the equilibrium geometry.

To each directory, the following files will be added:

« QM.in: Main input file for the interface, contains the geometry and the control keywords (to specify which
quantities need to be calculated).

« run.sh: Run script, which can be started interactively in order to perform the ab initio calculation in this directory.
Can also be adapted to a batch script for submission to a queue

« Interface-specific files: Usually a template file, a resource file, and an initial wave function.

The calculations in each directory can be simply executed by starting run.sh in each directory. In order to perform this
task consecutively on a single machine, the script all-run.sh can be executed. The file DONE contains the progress of
this calculation. Alternatively, each run script can be sent to a queueing system (you might need to adapt this script to
you cluster system). Note that if reference overlaps were requested, the calculation in ICOND_00000/ must be finished
before starting any of the other calculations.

In figure 7.1, the directory tree structure setup by setup_init.py is given.

After all calculations are finished, excite.py can be used to collect the results.

108

SHARC Manual 7 Auxilliary Scripts | 7.5 Excitation Selection: excite.py

$ (pwd)
—| all_gsub.sh

<Interface files>)

INIT_00001

Figure 7.1: Directory structure created by setup_init.py. Directories are in blue, executable scripts in green and
regular files in black and white. Interface files usually include initial MO coefficients, template files and
interface input files.

7.5 Excitation Selection: excite.py

excite.py has two tasks: adding excited-state information to the initconds file, and deciding which excited state for
which initial condition is a valid initial state for the dynamics.

7.5.1 Usage

The script is interactive, and can be started by simply typing
user@host> $SHARC/excite.py

7.5.2 Input

Initial condition file Enter the path to the initial conditions file, to which excite.py will add excited-state informa-
tion. This file can already contain excited-state information (in this case this information can be reused).

Generate excited state list There are three possibilities to add excited-state information to the initconds file:

1. generate a list of dummy excited states,

2. read excited-state information from the output of the initial ab initio calculations (prepare the calculations with
setup_init.py),

3. keep the existing excited-state information in the initconds file.

The first option is mainly used if no initial ab initio calculations need to be performed (e.g., the initial state is known).

In order to use the second option, one should first setup initial excited-state calculations using setup_init.py (see 7.4)
and run the calculations. excite.py can then read the output of the initial calculations and calculate excitation energies
and oscillator strengths.

The third option can be used to reuse the information in the initconds file, e.g., to apply a different selection scheme
to the states or to just read the number of states.

Path to ab initio results If excite.py will read the excited-state information from the ab initio calculation results,
here the user has to provide the path to the directory containing the ICOND_%05i subdirectories.

Number of states If a dummy list of states will be generated, the user has to provide the number of states per
multiplicity. Note that a singlet ground state has to be counted as well, e.g. if 4 singlet states are specified, the calculation
will involve the Sy, S, Sz and Ss. Also states of higher multiplicity can be given, e.g. doublet or triplet states (e.g.,2 2 1
for two singlets, two doublets and one triplet).

If the ab initio results are read the number of states will be automatically determined from the results.

109

SHARC Manual 7 Auxilliary Scripts | 7.5 Excitation Selection: excite.py

Excited-state representation When generating new lists of excited states (either dummy states or from ab initio
results), the user has to specify the representation of the excited states (either MCH or diagonal representation). The
MCH representation is spin-free, meaning that transition dipole moments are only allowed between states of the same
multiplicity. For molecules without heavy atoms, this option is sufficient. For heavier atoms, the diagonal representation
can be used, which includes the effects of spin-orbit coupling on the excitation energies and oscillator strengths. Note,
however, that excited-state selection with delta pulse excitation (option 3 under “Initial state selection”) should be
carried out in the MCH representation if the ground state is not significantly spin-orbit-mixed.

When reading ab initio results, excite.py will diagonalize the Hamiltonian and transform the transition dipole matrices
for each initial condition to obtain the diagonal representation.

When a dummy state list is generated, the representation will only be written to initconds.excited (but has no actual
numeric effect for excite. py). Note that the representation which is declared in the initconds.excited file influences
how SHARC determines the initial coefficients (see the paragraph on initial coefficients in 4.1.3).

Note that the representation cannot be changed if existing excited-state information is kept.

Hint: If the ICOND_%051 directories need to be deleted (e.g., due to disk space restrictions), making one read-out with
excite.py for each representation and saving the results to two different files will preserve most necessary information.

lonization probabilities If excite.py detects that the ab initio results contain ionization probabilities, then those
can be used instead of the transition dipole moments. Note that in this case the transition dipole moments are not
written to the initconds.excited file.

Reference energy excite.py can read the reference energy (ground state equilibrium energy) directly from the
ab initio results. If the ab initio data is read anyways, excite.py already knows the relevant path. If a dummy list of
states is generated, the user can provide just the path to the QM. out file of the ab initio calculation for the equilibrium
geometry. Otherwise, excite.py will prompt the user to enter a reference energy manually (in hartree).

Initial state selection Every excited state of each initial condition has a flag specifying it either as a valid initial
state or not. excite.py has four modes how to flag the excited states:

1. Unselect all excited states,

2. User provides a list of initial states,

3. States are selected stochastically based on excitation energies and oscillator strengths,
4. Keep all existing flags.

The first option can be used if excite.py is only used to read the ab initio results for the generation of an absorption
spectrum (using spectrum.py).

The second option can be used to directly specify a list of initial states, if the initial state is known (e.g., starting in the
ground state and exciting with an explicit laser field). In this case, the given states of all initial conditions are flagged as
initial states. This option is also useful if reference overlaps were computed (see 7.4.

The third option is only available if excited-state information exists (i.e., if no dummy list is generated). For details on
the stochastic selection procedure, see section 8.9.

The fourth option can only be used if the existing state information is kept. In this case excite.py does nothing except
counting the number of flagged initial states.

Excitation window This option allows to exclude excited states from the selection procedure if they are outside a
given energy window. This option is only available if excited state information exists, but not if a dummy list of states
is generated (because the dummy states have no defined excitation energy).

For the stochastic selection procedure, states outside the excitation window do not count for the determination of pyax
(see equation (8.45)). This allows to excite, e.g., to a dark nx* state despite the presence of a much brighter 7" state.

For the keep-flags option, this option can be used to count the number of excited states in the energy window.

Considered states Here the user can specify the list of desired initial states. If reference overlaps are present in the
excitation calculations, then the user can choose to specify the initial state in terms of diabatized states (as defined by
the overlap with the reference, where the diabatized states are identical to the computed states). See section 8.9.1 for
how the diabatization is carried out.

110

SHARC Manual 7 Auxilliary Scripts | 7.5 Excitation Selection: excite.py

For the stochastic selection procedure, the user can instead exclude certain states from the procedure. Excluded states
do not count for the determination of py.x (see equation (8.45)).

If the number of states per multiplicity is known, excite.py will print a table giving for each state index the multiplicity,
quantum number and M; value.

Random number generator seed The random number generator in excite.py is used in the stochastic selection
procedure. Instead of typing an integer, typing “!” will initialize the RNG from the system time. Note that this will not
be reproducible, i.e. repeating the excite.py run with “!” as random seed will give a different selection in each run.

7.5.3 Matrix diagonalization

When using the diagonal representation, excite.py needs to diagonalize and multiply matrices. By default, the Python
package NumPy is used, if available. If the script does not find a NumPY installation, it will use a small Fortran code
which comes with the SHARC suite. In order for this to work, you need to set the environment variable $SHARC to the
bin/ directory within your SHARC installation. See section 7.28 for more details.

7.5.4 Output

excite.py writes all output to a file <BASE>.excited, where <BASE> is the name of the initial conditions file used as
input. The output file is also an initial conditions file, but contains additional information regarding the excited states,
the reference energy and the representation of the excited states. An initial conditions file with excited-state information
is needed for the final preparatory step: setting up the dynamics with setup_traj.py. Additionally, spectrum.py can
calculate absorption spectra from excited-state initial condition files.

7.5.5 Specification of the initconds.excited file format

The initial conditions files initconds and initconds.excited contain lists of initial conditions, which are needed
for the setup of trajectories. An initial condition is a set of initial coordinates of all atoms and corresponding initial
velocities of each atom, and optionally a list of excited state informations. In the following, the format of this file is
specified.

The file contains of a header, followed by the body of the file containing a list of the initial conditions.

File header An examplary header looks like:

SHARC Initial conditions file, version 0.2 <Excited>

Ninit 100

Natom 2

Repr MCH

Eref -0.50
Eharm 0.04

States 201

Equilibrium
H 1.0 0.6 0.6 0.6 1.00782503 0.0 0.0 0.0
H 1.6 1.5 0.0 0.0 1.00782503 0.0 0.0 0.0

The first line must read SHARC Initial conditions file, version <VERSION>, with the correct version string fol-
lowed. The string Excited is optional, and marks an initial conditions file as being an output file of excite.py
(setup—_traj.py will only accept files marked like this). The following lines contain:

1. the number of initial conditions,

the number of atoms,

the electronic state representation (a string which is None, MCH or diag),

the reference energy (hartree),

the harmonic energy (zero point energy in the harmonic approximation, hartree),
optionally the number of states per multiplicity.

ARl

111

SHARC Manual 7 Auxilliary Scripts | 7.6 Setup of Trajectories: setup_traj.py

After the header, first the equilibrium geometry is expected. It is demarked with the keyword Equilibrium, followed
by natom lines, each specifying one atom. Unlike the actual initial conditions, the equilibrium geometry does not have a
list of excited states or defined energies.

File body The file body contains a list of initial conditions. Each initial condition is specified by a block starting with
a line containing the string Index and the number of the initial condition. In the file, the initial conditions are expected
to appear in order.

A block specifying an initial condition looks like:

Index 1
Atoms

H 1.0 -0.02 0.0 0.0 1.007825063 -0.001 0.0 0.0

H 1.6 1.52 0.6 0.0 1.00782503 0.001 0.0 0.0

States

001 0.49 -0.49 -0.16 0.0 -0.03 0.0 ©0.05 0.0 0.0 0.00 False
002 -0.25 -0.49 0.02 0.0 0.43 0.0 -1.77 0.0 6.5 0.53 True
003 -0.40 -0.49 0.00 0.0 0.00 0.0 ©0.00 0.0 2.5 0.00 False
004 -0.40 -0.49 0.00 0.0 0.00 0.0 ©0.00 0.0 2.5 0.00 False
005 0.40 -0.49 0.00 0.6 0.00 0.0 ©0.00 0.0 2.5 0.00 False
Ekin 0.004 a.u.

Epot_harm 0.026 a.u.

Epot 0.013 a.u.

Etot_harm 0.030 a.u.

Etot 0.018 a.u.

The formal structure of such a block is as follows. After the line containing the keyword Index and the index number,
the keyword Atoms indicates the start of the list of atoms. Each atom is specified on one line:

1. symbol,

2. nuclear charge,

3. x, y, z coordinate in Bohrs,

4. atomic mass,

5. x, y and z component of nuclear velocity in atomic units.

After the atom list, the keyword States indicates the list of electronic states. This list consists of one line per electronic
state, but can be empty, if no information of the electronic states is available. Each line consists of:

1. state number (starting with 1),

2. state energy in Hartree,

3. reference energy in Hartree (usually the energy of the lowest state),

4. six numbers defining the transition dipole moment to the reference state (usually the lowest state),

5. the excitation energy in eV,

6. the oscillator strength,

7. a string which is either True or False, specifying whether the electronic state was selected by excite.py as
initial electronic state.

The transition dipole moments are specified by six floating point numbers, which are real part of the x component,
imaginary part of the x component, then the real and imaginary parts for the y and finally the z component (the
transition dipole moments can be complex in the diagonal representation).

The electronic state list is terminated with the keyword Ekin, which at the same time gives the kinetic energy of all
atoms. The remaining entries give the potential energy in the harmonic approximation and the actual potential energy,
as well as the total energy.

7.6 Setup of Trajectories: setup_traj.py

This interactive script prepares the input for the excited-state dynamics simulations with SHARC. It works similarly to
setup_init.py, reading an initial conditions file, prompting the user for a number of input parameters, and finally
prepares one directory per trajectory. However, the setup_traj.py input section is noticeably longer, because most
options for the SHARC dynamics are covered.

112

SHARC Manual 7 Auxilliary Scripts | 7.6 Setup of Trajectories: setup_traj.py

7.6.1 Input

Initial conditions file Please be aware that setup_traj.py needs an initial conditions file generated by excite.py
(files generated by wigner.py, amber_to_initconds.py, or sharctraj_to_initconds.py are not allowed). The script
reads the number of initial states, the representation, and the reference energy automatically from the file.

Number of states This is the total number of states per multiplicity included in the dynamics calculation. Affects
the keyword nstates in the SHARC input file.

Only advanced users should use here a different number of states than given to setup_init.py. In this case, the
excited-state information in the initial conditions file might be inconsistent. For example, if 10 singlets and 10 triplets
were included in the initial calculations, but only 5 singlets and 5 triplets in the dynamics, then the sixth entry in the
initial conditions file corresponds to Ss, while setup_traj.py assumes the sixth entry to correspond to T;.

Active states States can be frozen for the dynamics calculation here. See section 8.2 for a general description of state
freezing in SHARC. Only the highest states in each multiplicity can be frozen, it is not possible to, e.g., freeze the ground
state in simulations where ground state relaxation is negligible. Affects the keyword actstates.

Contents of the initial conditions file Optionally, a map of the contents of the initial conditions file can be
displayed during the execution of setup_traj.py, showing for each state which initial conditions were selected (and
which initial conditions do not have the necessary excited-state information). For each state, a table is given, where
each symbol represents one initial condition. A dot “.” represents an initial condition where information about the
current excited state is available, but which is not selected for dynamics. A hash mark “#” represents an initial condition
which is selected for dynamics. A question mark “?” represents initial conditions for which no information about the

excited state is available (e.g. if the initial excited-state calculation failed). The tutorial shows an example of this output.

The content of the initial conditions file is also summarized in a table giving the number of initial conditions selected
per state.

Initial states for dynamics setup The user has to input all states from which trajectories should be launched. The
numbers must be entered according to the above table giving the number of selected initial conditions per state. It is
not allowed to specify inactive states as initial states. The script will give the number of trajectories which can be setup
with the specified set of states. If no trajectories can be setup, the user has to specify another set of initial states. The
initial state will be written to the SHARC input, specified in the same representation as given in the initial conditions file.
The initial coefficients will be determined automatically by SHARC, according to the description in section 4.1.3.

Starting index for dynamics setup Specifies the first initial condition within the initial condition file to be included
in the setup. This is useful, for example, if the user might setup 50 trajectories starting with index 1. setup_traj.py
reports afterwards the last initial condition to be used for setup, e.g. index 90. Later, the user can setup additional
trajectories, starting with index 91.

Random number generator seed The random number generator in setup_traj.py is used to randomly generate
RNG seeds for the SHARC input. Instead of typing an integer, typing “!” will initialize the RNG from the system time.
Note that this will not be reproducible, i.e. repeating the setup_traj.py run (with the same input) with “!” as random
seed will give for the same trajectories different RNG seeds. Affects the keyword RNGseed.

Interface In this point, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the
corresponding number. The choice of the interface influences some dynamics options which can be set in the next
section of the setup_traj.py input.

Simulation Time This is the maximum time that SHARC will run the dynamics simulation. If trajectories need to be
run for longer time, it is recommended to first let the simulation finish. Afterwards, increase the simulation time in
the corresponding SHARC input file (keyword tmax) and add the restart keyword (also make sure that the norestart
keyword is not present). Then the simulation can be restarted by running again the run.sh script. Sets the keyword
tmax in the SHARC input files.

113

SHARC Manual 7 Auxilliary Scripts | 7.6 Setup of Trajectories: setup_traj.py

Simulation Timestep This gives the time step for the dynamics. The on-the-fly ab initio calculations are performed
with this time step, as is the propagation of the nuclear coordinates. A shorter time step gives more accurate results,
especially if light atoms (hydrogen) are subjected to high kinetic energies or steep gradients. Of course a shorter time
step is computationally more expensive. A good compromise in many situations is 0.5 fs. Sets the keyword stepsize in
the SHARC input files.

Number of substeps This gives the number of substeps for the interpolation of the Hamiltonian for the propagation
of the electronic wave function. Usually, 25 substeps are sufficient. In cases where the diagonal elements of the
Hamiltonian are very large (very large excitation energies or a badly chosen reference energy) more substeps are
necessary. Sets the keyword nsubsteps in the SHARC input files.

Prematurely terminate trajectories Usually, trajectories which relaxed to the ground state do not recross to an
excited state, but vibrate indefinitely in the ground state. If the user is not interested in these vibrations, such trajectories
can be terminated prematurely in order to save computational resources. A threshold of 10-20 fs is usually a good
choice to safely detect ground state relaxation. Sets the keyword killafter in the SHARC input files.

Representation for the dynamics Either the diagonal representation can be chosen (by typing “yes”) to perform
dynamics with the SHARC methodology, or the dynamics can be performed on the MCH states (spin-diabatic dynamics
[26], FISH [25]). Sets the keyword surf in the SHARC input files.

Spin-orbit couplings If more than just singlet states are requested, the script asks whether spin-orbit couplings
should be computed. If the chosen interface cannot provide spin-orbit couplings, this question is automatically answered.

Non-adiabatic couplings Electronic propagation can be performed with temporal derivatives, nonadiabatic coupling
vectors or overlap matrices (Local diabatization). Enter the corresponding number. Note that depending on the chosen
interface, some options might not be available, as displayed by setup_traj.py. Also note that currently, no interface
can provide temporal derivatives (because their computation involves calculating the overlap matrix and then local
diabatization can be done instead). Sets the keyword coupling in the SHARC input files.

If nonadiabatic coupling vectors are chosen, the user is asked whether overlap matrices should be computed anyways

to provide wave function phase information. As the overlap calculations are usually fast compared to other steps, this
is recommended.

Gradient transformation The nonadiabatic coupling vectors can be used to correctly transform the gradients to
the diagonal representation. If nonadiabatic coupling vectors are used anyways, this option is strongly recommended,
since it gives more accurate gradients for no additional cost. Sets the keyword gradcorrect in the SHARC input files. If
the dynamics uses the MCH representation, this question is not asked.

Surface hop treatment This option determines how the total energy is conserved after a surface hop and whether
frustrated hops lead to reflection. Sets the keywords ekincorrect and reflect_frustrated in the SHARC input files.

Decoherence correction For most applications, a decoherence correction should be enabled. This controls the
decoherence_scheme (and decoherence_param keywords in the SHARC input files.

Note that setup_traj.py does not allow to modify the a parameter for the energy-based decoherence (keyword
decoherence_param). In order to change decoherence_param, the user has to manually edit the SHARC input files.

Surface hopping scheme Choose one of the available schemes to compute the hopping probabilities or turn off
hopping.

Scaling and Damping These two prompts set the keywords scaling and damping in the SHARC input files. The
scaling parameter has to be positive, and the damping parameter has to be in the interval [0, 1].

114

SHARC Manual 7 Auxilliary Scripts | 7.6 Setup of Trajectories: setup_traj.py

Atom masking In some cases, the script will ask to specify the atoms to which decoherence/rescaling/reflection
should be applied. See section 4 for explanations (keyword atommask).

Gradient and nonadiabatic coupling selection For dynamics in the MCH representation, selection of gradients
is used by default, and only one gradient (of the current state) is calculated. Selection of nonadiabatic couplings is only
relevant if they are used (for propagation, gradient correction or rescaling of the velocities after a surface hop). For the
selection threshold, usually 0.5 eV is sufficient, except if spin-orbit coupling is very strong and hence the gradients mix
strongly. Sets the keywords grad_select and nac_select in the SHARC input files.

Laser file The user can specify to use an external laser field during the dynamics, and has to provide the path to
the laser file (see section 7.7 and 4.5). setup_traj.py will check whether the number of steps and the time steps are
compatible to the dynamics. If the interface can provide dipole moment gradients, setup_traj.py will also ask whether
dipole moment gradients should be included in the simulations.

Dyson norm calculation If the interface is compatible, the user can request that Dyson norms are calculated on-the-
fly. This option is only asked if Dyson norms can be computed (i.e., if states are present which differ by one electron,
e.g., singlets and doublets).

THEODORE calculations If the interface is compatible, the user can request that THEODORE is run on-the-fly.

7.6.2 Interface-specific input

This input section is basically the same as for setup_init.py (section 7.4.3 and following sections). Note that for the
dynamics simulations an initial wave function file is even more strongly recommended than for the initial excited-state
calculations.

7.6.3 Output control

setup_traj.py will ask a number of questions regarding the content of the output.dat file, specifically about writing
gradients, nonadiabatic coupling vectors, properties (1D and 2D), and overlap matrices to this file. Note that this is only
possible if these quantities are actually calculated; otherwise, sharc.x will ignore these requestes.

7.6.4 Run script setup

Also this input section is very similar to the one in setup_init.py (see section 7.4).

7.6.5 Output

setup_traj.py will create for each initial state a directory where all trajectories starting in this state will be put. If the
initial conditions file specified that the initial conditions are in the MCH representation, then the initial states will be
assumed to be in the MCH representation as well. In this case, the directories will be named Singlet_0, Singlet_1, ...
Doublet_0, Triplet_1, ... If the initial states are in the diagonal representation, then the directories are simply called
X-1, ... since they do not have a definite spin.

In each directory, subdirectories called TRAJ_%05i are created, where %051 is the initial condition index, padded to 5
digits with zeroes. In each trajectory’s directory, an SHARC input file called input will be created, which contains all the
dynamics options chosen during the setup_traj.py run. Also, files geom and veloc will be created. For trajectories
setup with setup_traj.py, the determination of the initial wave function coefficients is done by SHARc. Furthermore,
in each trajectory directory a subdirectory QM is created, where the runQM. sh script containing the call to the interface
is put. In the directory QM also all interface-specific input files will be copied.

For each trajectory, a run.sh script will be created, which can be executed to run the dynamics simulation. You might
need to adapt the run script to your cluster setup.

setup_traj.py also creates a script all_run_traj.sh, which can be used to execute all trajectories sequentially. Note
that this is intended for small test trajectories, and should not be used for expensive production trajectories. For the

115

SHARC Manual 7 Auxilliary Scripts | 7.7 Laser field generation: laser.x

$ (pwd)

all_gsub.sh
Singlet_1

— TRAJ_00001

—— Singlet_...

Figure 7.2: Directory structure created by setup_traj.py. Directories are in blue, executable scripts in green and
regular files in black and white. Interface files usually include initial MO coeflicients, template files and
interface input files.

latter, setup_traj.py can optionally create a script all_qsub_traj.sh, which can be executed to submit all trajectories
to a queueing system. You might need to adapt also this script to your cluster setup.

The full directory structure created by setup_traj.py is given in figure 7.2.

7.7 Laser field generation: laser.x

The Fortran code laser.x can generate files containing laser fields which can be used with SHARc. It is possible to
superimpose several lasers, use different polarizations and apply a number of chirp parameters.

7.7.1 Usage

The program is simply called by
user@host> $SHARC/laser.x

It will interactively ask for the laser parameters. After input is complete, it writes the laser field to the file laser in the
format which SHARC expects (see 4.5).

Similar to the interactive Python scripts, laser.x will also write the user input to KEYSTROKES . laser. After modifying
this file, it can be used to directly execute laser.x without doing the interactive input again:

user@host> $SHARC/laser.x < KEYSTROKES.laser

7.7.2 Input

The first four options are global and need to be entered only once, all remaining input options need to be given for
every laser pulse. For the definition of laser fields see section 8.14.

Number of lasers Any number of lasers can be used. The output file will contain the sum of all laser pulses defined.

116

SHARC Manual 7 Auxilliary Scripts | 7.8 Calculation of Absorption Spectra: spectrum.py

Real-valued field If this is true, the output file will only contain the real parts of the laser field, while the columns
defining the imaginary part of the field will be zero. Note, however, that SHARC will anyways only use the real part of
the field in the simulations.

Time interval and steps The definitions of the starting time, end time and time step of the laser field must exactly
match the simulation time and time substeps of the SHARC simulation. Note, that the laser field must always start at t=0
fs to be used with SHARC. The end time for the laser field must therefore coincide with the total simulation time given
in the SHARC input. The number of time steps for the laser field is a1/ Atsub + 1.

Files for debugging This option is normally not needed, and can be set to False. If set to True, the chirped and
unchirped laser fields in both time and frequency domain will be written to files called DEBUG_. . ..

Polarization vector The polarization vector p (will be normalized).

Type of envelope There are two options possible for the envelope function &(t), either a Gaussian envelope or a
sinusoidal one (see 8.14).

Field strength There are two input lines for the field strength &, the first defining the unit in which the field strength
is defined, the second gives the corresponding number. Field strength can be read in in GV/m, TW/ecm™ or atomic units.

FWHM and time intervals This option depends on the type of envelope chosen. While in both cases all 5 numbers
need to be entered, for a Gaussian pulse only the first and third number have an effect. For a sinusoidal pulse all but the
first number has an effect.

For a Gaussian pulse, the first argument corresponds to FWHM in equation (8.71) and the third argument to ¢, in (8.70).

For a sinusoidal pulse, the second, third, fourth and fifth argument correspond to t, t., t.; and t., respectively, in
equation (8.72).

Central frequency There are two input lines for the central frequency wy. The first defines the unit (wavelength in
nm, energy in eV, or atomic units). The second line gives the value.

Phase The total phase ¢ is given in multiples of 7. For example, the input “1.5” gives a phase of 37”

Chirp parameters There are four lines giving the chirp parameters b1, by, bs and by. See equation (8.74) for the
meaning of these parameters.

7.8 Calculation of Absorption Spectra: spectrum.py

Aside from setting up trajectories, the initconds.excited files can also be used to generate absorption spectra based
on the excitation energies and oscillator strengths in the file. The script spectrum.py calculates Gaussian, Lorentzian,
or Log-normal convolutions of these data in order to obtain spectra. See section 8.1 for further details.

spectrum.py evaluates the absorption spectrum on a grid for all states it finds in an initial conditions file. Using
command-line options, some initial conditions can be omitted in the convolution, see table 7.4.

7.8.1 Input

The script is executed with the initial conditions file as argument:
user@host> $SHARC/spectrum.py [OPTIONS] initconds.excited

The script accepts a number of command-line options, which are given in table 7.4.

117

SHARC Manual 7 Auxilliary Scripts | 7.8 Calculation of Absorption Spectra: spectrum.py

Table 7.4: Command-line options for script spectrum. py.

Option Description Default

-h Display help message and quit. -

-0 FILENAME Output filename for the spectrum spectrum.out

-n INTEGER Number of grid points 500

-e FLOAT FLOAT Energy range (eV) for the spectrum 1to10eV

-1 INTEGER INTEGER Index range for the initial conditions 1 to 1000

-f FLOAT FWHM (eV) for the spectrum 0.1eV

-G Gaussian convolution Gaussian

-L Lorentzian convolution Gaussian

-N Log-normal convolution Gaussian

-s Use only selected initial conditions Use all

-1 Make a line spectrum Convolution

-D Compute density of states (ignore fosc) Compute absorption
--gnuplot FILENAME Write a GNUPLOT script No GNUPLOT script
-B INTEGER Perform B bootstrapping cycles (error estimation) 0

-b FILENAME Output filename for bootstrapping spectrum_bootstrap.out
-r INTEGER Seed for random number generator (for bootstrap) 16661

7.8.2 Output

The script writes the absorption spectrum to a file (by default spectrum.out). Using the -o option, the user can redirect
the output to a suitable file. The output is a table containing n + 2 columns, where n is the number of states found in
the initial conditions file. The first column gives the energy in eV, within the given energy interval. In columns 2 to
n + 1 the state-wise absorption spectra are given. The last column contains the total absorption spectrum, i.e., the sum
over all states. The table has ngjq + 1 rows. For line spectra the output format is exactly the same, however, the file
will contain one row for each excited state of each initial condition in the initial conditions file. If density of states is
computed, the script replaces the oscillator strength by a factor of 1 for all states.

Additionally, the script writes some information about the calculation to standard output, among these the maximum
of the spectrum, which can be used in order to normalize the spectrum. The reported maximum is simply the largest
value in the last column of the spectrum.

If requested, the script generates a GNUPLOT script, which can be used to directly plot the spectrum.

7.8.3 Error Analysis

The shape of the spectrum is strongly influenced by the number of initial conditions included and by the width of the
broadening function (FWHM). In principle, the FWHM of the broadening function should be as small as possible and
the number of initial conditions extremely large, in order to obtain a correctly sampled spectrum. In reality, if only few
initial conditions were considered, the FWHM should be chosen large enough to smooth out any artifical structure of
the spectrum arising solely from the small sample size.

In order to estimate whether the number of initial conditions and the FWHM are well-chosen, spectrum.py can
compute error estimates for the total absorption spectrum. This estimate is computed by a bootstrapping procedure
(similar to the one used in bootstrap.py). In order to use it, use the -B option with a positive integer argument (the
default is zero, and hence no bootstrapping is performed). The procedure will generate a second output file, called
spectrum_bootstrap.out by default. It contains in the first column the energy in €V, in the second the geometric
average spectrum from all bootstrap cycles, in column 3 and 4 the positive and negative errors of the spectrum, and in
all further columns the individual spectra obtained in the bootstrap cycles. In gnuplot, in order to plot the average
spectrum and the upper and lower error bounds, plot u 1:2, u 1:($2+$3), and u 1:($2+$4).

A suitable procedure is to start with a rather small FWHM, compute the spectrum with errors, and if the errors are
unsatisfactorily large, increase stepwise the FWHM. Note that the bootstrapping estimate will give very small errors if
the FWHM is very large—even though the actual spectrum can look very different in this case.

118

SHARC Manual 7 Auxilliary Scripts | 7.9 File transfer: retrieve.sh

7.9 File transfer: retrieve.sh

Usually, SHARC will run on some temporary directory, and not in the directory where the trajectories have been
submitted from. The shell script retrieve.sh is a simple scp wrapper, which can be executed (in a directory where a
trajectory has been sent from) in order to retrieve the output files of this trajectory. This might not work for every
cluster setup.

It relies on the presence of the file host_infos. All trajectories set up with setup_traj.py create this file after the
trajectory has been started with run.sh. retrieve.sh reads host_infos to determine the hostname and working
directory of the trajectory and then uses scp to retrieve the output and restart files.

The script can be called with the option “-1is” in order to only retrieve the output.lis file, but not the other output
files.

If the script is called with the option “-res” then also the restart files and the content of the restart/ directory are
copied.

It is advisable to configure public-key authentification for the hosts running the trajectories, so that not for every
execution of retrieve.sh a password has to be entered.

7.10 Data Extractor: data_extractor.x

The data_extractor.x is the primary tool to extract useful, tabular data from the output.dat file that is produced by
sharc.x. The produced files can then be further processed, e.g., by plotting them or by computing ensemble statistics
with data_collector.py (section 7.24).

7.10.1 Usage

The data_extractor.x is a command line tool, and is called with the output.dat file as an argument, and possibly
with some options.

user@host> $SHARC/data_extractor.x [options] output.dat

The program will create a directory output_data/ in the current working directory (not necessarily in the directory
where output.dat resides). In this directory, several files are written, containing, e.g., the potential energies depending
on time, populations depending on time, etc. Which files are created can be controlled with the command line options,
which are summarized in Table 7.5. For most applications, using the -xs or -s flags should be sufficient. The default is
equivalent to -s. Note that some options might not be available if the necessary data is not written to output.dat (see
write options in Table 4.1).

The program will extract the complete output.dat file until it reaches the EOF.

The data_extractor.x program will automatically detect the format of the output.dat file (the first SHARC release
had a different file format than the more recent SHARC releases).

7.10.2 Output

After the program finishes, the directory output_data/ contains a number of files. In each file, the number of columns
is dependent in the total number n of states i € {1...n}. The content of the files is listed in Table 7.6.

The file expec.out contains the information of energy.out, spin.out and fosc.out in one file. The content of
expec.out can be conveniently plotted by using make_gnuscript.py (section 7.13) to generate a GNUPLOT script.

119

SHARC Manual 7 Auxilliary Scripts | 7.10 Data Extractor: data_extractor.x

Table 7.5: Command-line options for data_extractor.x.

Option Description Default
-h Display help message and quit. -

-f File name (can also be given without file name) File name must be given
-sk skip parsing of geom., vel., grad., NAC. False
-e Write energy.out True

-d Write fosc.out True
-da Write fosc_act.out True
-sp Write spin.out True
-cd Write coeff_diag.out, coeff_class_diag.out, coeff_mixed_diag.out True
-cm Write coeff_MCH.out, coeff_class_MCH.out, coeff_mixed_MCH.out True
-cb Write coeff_diab.out, coeff_class_diab.out, coeff_mixed_diab.out True (if overlaps present)
-p Write prob.out True
-X Write expec.out True
-Xm Write expec_MCH.out True
-id Write ion_diag.out False
-im Write ion_MCH.out False
-dd Write dip_mom_diag.out False
-XS -e,, -d,, -cd,, -cm,, -p,, -Xx

-5 -sp,, -xm,, -cb,, -daplus -xs Default
-1 -id, , -implus -s

-x1 -dd plus -1 (i.e., all)

Table 7.6: Content of the files written by data_extractor.x. nis the total number of states, j is a state index (j € {1..n}),
and « is the active state.

File # Columns Columns
energy.out 4+n 1 Time ¢ (fs)
2 Kinetic energy (eV)
3 Potential energy (eV) of active state (diagonal)
4 Total energy (eV)
44 Potential energy (eV) of state j (diagonal)
fosc.out 2+n 1 Time ¢ (fs)
2 Oscillator strength from lowest to active state (diagonal)
2+ Oscillator strength from lowest state to state j (diagonal)
fosc_act.out 1+2n 1 Time ¢ (fs)
1+ Ej — Eqctive (in eV, diagonal)
14+n+j Oscillator strength from active state to state j (diagonal)
spin.out 2+n 1 Time ¢ (fs)
2 Total spin expectation value of active state
2+j Total spin expectation value of state j
coeff_diag.out 2+2n 1 Time t (fs)
2 Norm of wave function Y; |cjhag|2
1+42j R(c2¢)
2+2j J (c;{‘ag)
coeff_class_diag.out 2+n 1 Time ¢ (fs)
2 1
2+]j 5]'
coeff_mixed_diag.out 2+n 1 Time ¢ (fs)
2 1
2+]j 5j
coeff_MCH.out 2+42n 1 Time ¢ (fs)
2 Norm of wave function };; |C;AVICH|2
1+2j R(c}'M)

Continued on next page

120

SHARC Manual 7 Auxilliary Scripts | 7.11 Data Extractor for NetCDF: data_extractor_NetCDF.x

Table 7.6 — Continued from previous page

File # Columns Columns
2+ 2j 3(c}™M)
coeff_class_MCH.out 2+n 1 Time ¢ (fs)
2 1
2+ Uja|*
coeff_mixed_MCH.out 2+n 1 Time ¢ (fs)
2 1
2+] Ujal? + S 2R U7 68"
coeff_diab.out 2+2n 1 Time ¢ (fs)
2 Norm of wave function Y; |c}?1mb|2
1+2j R (cdiaby
2+ 2j 3 (c‘}{iab)
coeff_class_diab.out 2+2n 1 Time ¢ (fs)
2 1
2+ |Ta |
coeff_mixed_diab.out 2+2n 1 Time ¢ (fs)
2 1
2+] I Tial? + it 2R(Ti T ey e ™)
prob.out 2+n 1 Time ¢ (fs)
2 Random number from surface hopping
2+j Cumulated hopping probability ch:l Py
expec.out 4+ 3n 1 Time ¢t (fs)
2 Kinetic energy (eV)
3 Potential energy (eV) of active state (diagonal)
4 Total energy (eV)
4+ Potential energy (eV) of state j (diagonal)

4+n+j Total spin expectation value of state j (diagonal)
4+2n+j Oscillator strength of state j (diagonal)

expec_MCH.out 4+ 3n 1 Time ¢ (fs)
2 Kinetic energy (eV)
3 Potential energy (eV) of approximate active state (MCH)
4 Total energy (eV)
44 Potential energy (eV) of state j (MCH)

4+n+j Total spin expectation value of state j (MCH)
4+2n+j Oscillator strength of state j (MCH)

ion_diag.out 4+ 3n 1 Time ¢ (fs)

1+ E;j — Eactive (in eV, diagonal)

1+n+j Dysonnorm from active state to state j (diagonal)
ion_MCH.out 4+ 3n 1 Time ¢ (fs)

1 +j E j Eapproximate active (il’l eV, mCH)

1+n+j Dysonnorm from approximate active state to state j (MCH)
dip_mom_diag.out Formatted like a minimal output.dat

file containing the dipole moment matrices
in diagonal representation.

7.11 Data Extractor for NetCDF: data_extractor_NetCDF.x

This program has the same function as the data_extractor.x. While the latter acts on ASCII-formatted output.dat
files, the data_extractor_NetCDF.x reads only the header from output.dat, but the time step data from output.dat.nc.
This file is obtained by setting output_format to ascii in the SHARc input file. For more details, see Section 5.4.

121

SHARC Manual 7 Auxilliary Scripts | 7.12 Data Converter for NetCDF: data_converter.x

Note that this program currently does not support a few options of the data_extractor.x. In particular, the options
-sk, -dd, -id, and -im are ignored and no corresponding output is produced.

Using the -xyz flag, the data_extractor_NetCDF.x can be used to write an output.xyz file from the NetCDF data file.

7.11.1 Usage

The data_extractor_NetCDF.x is used in the same way as data_extractor.x:
user@host> $SHARC/data_extractor_NetCDF.x [options] output.dat

Note that both output.dat and output.dat.nc need to be present. The file name of output.dat.nc is hardcoded, if
your file is called differently, you should set a symbolic link.

7.11.2 Output

Same as data_extractor.x.

7.12 Data Converter for NetCDF: data_converter.x

This program can be used to convert an output.dat file into a NetCDF file (output.dat.nc). This significantly reduces
the size of the file, and allows deleting the output.xyz file (its content will be in the NetCDF file).

7.12.1 Usage

The data_converter.x usage is very simple:
user@host> $SHARC/data_converter.x output.dat

Note that the data_converter.x does not modify the output.dat file. Hence, in order to save disk space, remove the
data (below the header) afterwards:

user@host> sed -i ’'l,/End of header array data/!d’ output.dat

7.12.2 Output

The program writes a file called output.dat.nc. This file can be extracted as usual with data_extractor_NetCDF.x
(see section 7.11).

7.13 Plotting the Extracted Data: make_gnuscript.py

The contents of the output files of data_extractor.x can be plotted with GNUPLOT. In order to quickly generate an
appropriate GNUPLOT script, make_gnuscript.py can be used. The usage is:

user@host> $SHARC/make_gnuscript.py <S> [<D> [<T> [<Q> ...]]]

make_gnuscript.py takes between 1 and 8 integers as command-line arguments, specifying the number of singlet,
doublet, triplet, etc. states. It writes an appropriate GNUPLOT script to standard out, hence redirect the output to a file,

e.g.
user@host> $SHARC/make_gnuscript.py 3 0 2 > gnuscript.gp
Then, GNUPLOT can be run in the output_data directory of a trajectory:
user@host> gnuplot gnuscript.gp

This can also be accomplished in one step using a pipe, e.g.:

user@host> $SHARC/make_gnuscript.py 3 0 2 | gnuplot

122

SHARC Manual 7 Auxilliary Scripts | 7.14 Ensemble Diagnostics Tool: diagnostics.py

The created plot script generates four different plots (press ENTER in the command-line where you started GNUPLOT to
go to the next plot). The first plot shows the potential energy of all states in the dynamics over time in the diagonal
representation. The currently occupied state is marked with black circles. A thin black line gives the total energy (sum
of the kinetic energy and the potential energy of the currently occupied state). Each state is colored, with one color as
contour and one color at the core of the line. The contour color represents the total spin expectation value of the state.
The core color represents the oscillator strength of the state with the lowest state. See figure 7.3 for the relevant color
code. Note that by definition the “oscillator strength” of the lowest state with itself is exactly zero, hence the lowest
state is also light grey. This dual coloring allows for a quick recognition of different types of states in the dynamics, e.g.

singlets vs. triplets or nz* vs. 7" states.

The second plot shows the same data again, but using relative energies such that the energy of the lowest state is zero.
The third plot shows the population ICII.VICHI2 of the MCH electronic states over time. The line colors are auto-generated
in order to give a large spread of all colors over the excited states, but the colors might be sub-optimal, e.g. for printing.
In this cases, the user should manually adjust the colors in the generated script.

The fourth plot shows the population |c?iag|2 of the diagonal electronic states over time. These are the populations
which are actually used for surface hopping. However, since these states are spin-mixed, it is usually difficult to interpret

these populations.

The fifth plot shows the surface hopping probabilities over time. The plot is setup in such a way that the visible area
corresponding to a certain state is proportional to the probability to hop into the state. Hence, if for a given time step
the random number (black circles) lies within a colored area, a surface hop to the corresponding state is performed.

7.14 Ensemble Diagnostics Tool: diagnostics.py

The purpose of this script is to automatize the critical step of checking the trajectories in an ensemble for sanity before
beginning the ensemble analysis.

The tool can check several different aspects of the trajectories. First, it checks whether all relevant output files of
the trajectories are present, and if they are complete and consistent (e.g., no missing lines due to network/file system
problems). Second, it checks simulation progress and status (e.g., whether the trajectory is running, crashed, finished, or
stopped). Third, it can check several energy-related requirements: total energy conservation, smoothness of kinetic and
potential energy, and hopping energy differences. It also checks for conservation of total population, and for trajectories
using local diabatization also intruder states are checked.

Note that the diagnostics script can also be used to automatically run the data_extractor.x for all trajectories.

Also note that diagnostics.py will not work if the printlevel in the SHARC trajectories was lower than 2.

7.14.1 Usage

The script is interactive, simply start it with no command-line arguments or options:

user@host> $SHARC/diagnostics.py

Oscillator strength

[.

0.0 1075 107* 1072 1072 107! 1.0
Spin expectation value

S d T

q Q 6 7 8

Figure 7.3: Color code for plots generated with the use of make_gnuscript.py.

123

SHARC Manual 7 Auxilliary Scripts | 7.14 Ensemble Diagnostics Tool: diagnostics.py

7.14.2 Input

Paths to trajectories First the script asks the user to specify all directories for whose content the analysis should be
performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. diagnostics.py will automatically include all trajectories contained in these directories.

Unlike the ensemble analysis scripts (these are populations.py, transition.py, crossing.py, trajana_essdyn.py,
trajana_nma.py, and data_collector.py, see below), diagnostics.py ignores files which indicate the status of a
trajectory (CRASHED, RUNNING, DONT_ANALYZE) and carries out the diagnostics routines as long as it identifies a directory
as a SHARC trajectory.

Settings The settings for the diagnostics run can be modified with a simple menu, which can be navigated with the
commands show, help, end, and where the settings can be modified with <key> <value> (e.g., hop_energy 0.2 sets the
corresponding option to 0.2 eV). A list of the settings is given in Table 7.7.

Generally, the keywords missing_output, missing_restart, and normal_termination should always be left at True,
since checking them is cheap and the obtained information is important. Note that data_extractor.x is always run
for all trajectories, except if output.dat is older than the files in output_data/. During the check of each trajectory,
output.lis, output_data/energies.out, and output_data/coeff_diag.out are furthermore checked for missing
time steps.

Table 7.7: List of the settings for diagnostics. py.

Key Value Explanation

missing_output Boolean Checks if "output.lis”, "output.log”, "output.xyz", "output.dat” are existing. Set-
ting to False only suppresses output, but files are always checked.

missing_restart Boolean Checks if "restart.ctrl”, "restart.traj", "restart/" are existing. Files are not checked

if set to False.

normal_termination Boolean Checks for status of trajectory:
RUNNING: no finish message in output.log, last step started recently.
STUCK: no finish message in output.log, last step started long ago.
CRASHED: error message in output.log.
FINISHED: finish message in output.log.
FINISHED (stopped by user): finished due to STOP file.

etot_window Float Maximum permissible drift (along full trajectory) in the total energy (in eV).

etot_step Float ~ Maximum permissible total energy difference between two successive time
steps (in eV).

epot_step Float =~ Maximum permissible active state potential energy difference between two
successive time steps (in eV). Not checked for time steps where a hop occurred.

ekin_step Float Maximum permissible kinetic energy difference between two successive time
steps (in eV).

pop_window Float =~ Maximum permissible drift in total population.

hop_energy Float =~ Maximum permissible change in active state energy during a surface hop (in
ev).

intruders Boolean Checks if intruder state messages in "output.log" refer to active state.

always_update Boolean Run the data_extractor.x always, even if output.dat is older than the pro-
duced files.

extractor_mode String Controls command line flags for the data_extractor.x:

xs: Uses the -xs flag.

s: Uses the -s flag.

1: Uses the -1 flag.

x1: Uses the -x1 flag.

dont: data_extractor.x is never run (this leads to incomplete diagnostics,
but is very fast).

124

SHARC Manual 7 Auxilliary Scripts | 7.15 Calculation of Ensemble Populations: populations.py

Trajectory Flagging diagnostics.py determines for each trajectory a “maximum usable time” value (Tyyy,). This
value is either the total simulation time or the time when the first violation (problems with time step consistency,
total energy conservation, potential/kinetic energy smoothness, hopping energy restriction, or intruder states) in the
trajectory appeared. The script prints the Ty, values for all trajectories at the end.

The user can then give a threshold for T,,,, so that diagnostics.py excludes all trajectories with values smaller than the
threshold from analysis (the script will create a file DONT_ANALYZE in the directory of each affected trajectory). In this
way it is possible to perform ensemble analysis for a given simulation length while ignoring problematic trajectories.

When choosing the threshold for Ty, keep in mind that a compromise usually has to be made. A small value of the
threshold will mean that many trajectories are admitted for analysis (because problems occurring late do not matter),
giving good statistics, but that the analysis can only be carried out for the first part of the simulation time. On the other
hand, choosing a large threshold allows analysis of a satisfactory simulation time, but only few trajectories will be
included in the analysis (only the ones where no problems occurred for many time steps).

It is advisable that the chosen threshold value is used as input for the ensemble analysis scripts which ask for a maximum
analysis time (populations.py, transition.py, crossing.py, trajana_essdyn.py, trajana_nma.py).

7.15 Calculation of Ensemble Populations: populations.py

For an ensemble of trajectories, usually one of the most relevant results are ensemble-averaged populations. The
interactive script populations.py collects these populations from a set of trajectories.

Different methods to obtain populations or quantities approximating populations can be collected, as described below.

7.15.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/populations.py

Depending on the analysis mode (see below) it might be necessary to run data_extractor.x for each trajectory prior
to running populations.py (but populations.py can also call data_extractor.x for each subdirectory, if desired).

Paths to trajectories First, the script asks the user to specify all directories for whose content the analysis should
be performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. populations.py will automatically include all trajectories contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. populations.py will ignore all directories containing one of these
files. The file name is case insensitive, i.e., also files like crashed or even cRasHED will lead to the trajectory being
ignored. Additionally, populations.py will ignore trajectories with a DONT_ANALYZE file from diagnostics.py.

Analysis mode Using populations.py, there are two basic ways in obtaining the excited-state populations. The first
way is to count the number of trajectories for which a certain condition holds. For example, the number of trajectories
in each classical state can be obtained in this way. However, it is also possible to count the number of trajectories for
which the total spin expectation value is within a certain interval. The second way to obtain populations is to obtain
the sum of the absolute squares of the quantum amplitudes over all trajectories. Table 7.8 contains a list of all possible
analysis modes.

Run data extractor For analysis modes 6, 7, 8, 9 and 20 it is necessary to first run the data extractor (see section 7.10).
This task can be accomplished by populations.py. However, for a large ensemble or for long trajectories this may take
some time. Hence, it is not necessary to perform this step each time populations.py is run.

populations.py will detect whether the file output.dat or the content of output_data/ is more recent. Only if
output.dat is newer the data_extractor.x will be run for this trajectory.

Note that mode 20 can only be used for trajectories using local diabatization propagation (keyword coupling overlap
in SHARC input file) or .

125

SHARC Manual 7 Auxilliary Scripts | 7.15 Calculation of Ensemble Populations: populations.py

Table 7.8: Analysis modes for populations.py. The last column indicates whether data_extractor.x has to be run

prior to the ensemble analysis.

Mode

Description

From which file?

Extract?

1

12
13

14
15

20

21
22

For each diagonal state count how many trajectories
have this state as active state.

For each MCH state count how many trajectories
have this state as approximate active state (see sec-
tion 8.21.1).

For each MCH state count how many trajectories
have this state as approximate active state (see sec-
tion 8.21.1). Multiplet components are summed up.
Generate a histogram with definable bins (variable
width). Bin the trajectories according to their total
spin expectation value (of the currently active diago-
nal state).

Generate a histogram with definable bins (variable
width). Bin the trajectories according to their state
dipole moment expectation value (of the currently
active diagonal state).

Generate a histogram with definable bins (variable
width). Bin the trajectories according to the oscillator
strength between lowest and currently active diagonal
states.

Calculate the sum of the absolute squares of the diag-
onal coefficients for each state.

Calculate the sum of the absolute squares of the MCH
coeflicients for each state.

Calculate the sum of the absolute squares of the MCH
coefficients for each state. Multiplet components are
summed up.

Transform option 1 to MCH basis (section 8.5).
Transform option 1 to MCH basis (section 8.5). Multi-
plet components are summed up.

Wigner-transform option 1 to MCH basis (section 8.5).
Wigner-transform option 1 to MCH basis (section 8.5).
Multiplet components are summed up.

Calculate the sum of the absolute squares of the dia-
batic coefficients for each state (Only for trajectories
with local diabatization).

Transform option 1 to diabatic basis (section 8.5).
Wigner-transform option 1 to diabatic basis (sec-
tion 8.5). Multiplet components are summed up.

output.lis

output.lis

output.lis

output.lis

output.lis

output_data/fosc.out

output_data/coeff_diag.out

output_data/coeff_MCH.out

output_data/coeff_MCH.out

output_data/coeff_class_MCH.out

output_data/coeff_class_MCH.out

output_data/coeff_mixed_MCH.out
output_data/coeff_mixed_MCH.out

output_data/coeff_diab.out

output_data/coeff_class_diab.out
output_data/coeff_mixed_diab.out

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes
Yes

126

SHARC Manual 7 Auxilliary Scripts | 7.16 Calculation of Numbers of Hops: transition.py

Number of states For analysis modes 1, 2, 3, 7, 8 and 9 it is necessary to specify the number of states in each
multiplicity. The number is auto-detected from the input file of one of the trajectories.

Intervals For analysis modes 4, 5 and 6 the user must specify the intervals (i.e., the histogram bins) for the classification
of the trajectories. The user has to input a list of interval borders, e.g.:

Please enter the interval limits, all on one line.
Interval limits: le-3 0.01 0.1 1

Note that scientific notation can be used. Based on this input, for each time step a histogram is created with the number
of trajectories in each interval. The histogram bins are:

1. x <1073

2. 1073 < x <0.01
3. 0.01 <x<0.1
4. 0.1<x<1

5.1 <x

Note that there is always one more bin that interval borders entered.

Normalization If desired, populations.py can normalize the populations by dividing the populations by the number
of trajectories.

Maximum simulation time This gives the maximum simulation time until which the populations are analyzed.
For trajectories which are shorter than this value, the last population information is used to make the trajectory long
enough. Trajectories which are longer are not analyzed to the end. populations.py prints the length of the shortest
and longest trajectories after the analysis.

If diagnostics.py was executed previously, the user can enter here the threshold for the maximum usable time (see
section 7.14).

Setup for bootstrapping The output file of populations.py is sufficient to perform kinetic model fits with the script
make_fitscript.py. However, if error estimates for the kinetic model are desired (using bootstrap.py), the output
file of populations.py is not enough. The user can tell populations.py to save additional data which is required by
bootstrap.py.

Gnuplot script populations.py can generate an appropriate GNUPLOT script for the performed population analysis.

7.15.2 Output

By default, populations.py writes the resulting populations to pop.out. If the file already exists, the user is ask whether
it shall be overwritten, or to provide an alternative filename. Note that the output file is checked only after the analysis
is completed, so the program might run for a considerable amount of time before asking for the output file.

7.16 Calculation of Numbers of Hops: transition.py

Another important information from the trajectory ensemble is the number of hopping events and the involved states,
for example to judge the relative importance of competing reaction pathways.

The interactive script transition.py calculates from an ensemble the number of hops between each pair of states
and presents the results as “transition matrices”. Currently, the script employs the MCH active state information from
output.lis for this computations. Note that since the MCH active state is only an approximate quantity (since hops are
actually performed in the diagonal basis in SHARC), the results should be checked carefully. The script transition.py
is still partly work-in-progress.

127

SHARC Manual 7 Auxilliary Scripts | 7.17 Fitting population data to kinetic models: make_fit.py

7.16.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/transition.py

Paths to trajectories First the script asks the user to specify all directories for whose content the analysis should be
performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. populations.py will automatically include all trajectories contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. populations.py will ignore all directories containing one of these
files. The file name is case insensitive, i.e., also files like crashed or even cRasHED will lead to the trajectory being
ignored. Additionally, transition.py will ignore trajectories with a DONT_ANALYZE file from diagnostics.py.

Analysis mode The different analysis modes for transition.py are given in Table 7.9.

7.17 Fitting population data to kinetic models: make_fit.py

Often it is interesting to fit some functions to the population data from a trajectory ensemble, in order to provide a
way to abstract the data and to obtain some kind of rate constants for population transfer, which allows to compare to
experimental works. In simple cases, it might be sufficient to fit basic mono- and biexponential functions to the data,
which provides the sought-after time constants. However, often a more meaningful approach is based on a chemical
kinetics model. Such a model is specified by a set of chemical species (e.g., electronic states, reactants, products, etc)
connected by elementary reactions with associated rate constants, which together form a reaction network graph. For
an explanation of those graphs, see section 8.10.

The script make_fit.py helps the user in implementing and fitting such global fits to a kinetics model.

The script works in a stand-alone fashion, unlike its predecessors (make_fitscript.py and bootstrap.py). It solves
the differential equations numerically using a Runge-Kutta 5th order algorithm and fits the kinetic parameters using
a number of different optimization algorithms. The script requires Python2 with NumPy and ScIPy. If these are not
available, use make_fitscript.py and bootstrap.py.

Often, one is also interested in obtaining an estimate of the error associated to these rate constants, e.g., in order to
decide whether enough trajectories were computed. A possible way to obtain such error estimates is the statistical
bootstrapping procedure. The idea of bootstrapping is to generate resamples of the original ensemble; for an ensemble
of n trajectories, one draws n random trajectories with replacement to obtain one resample. The resample can then
be fitted like the original ensemble to obtain a second estimate of the rate constants. By generating many resamples,
one can thus obtain a “probability” distribution of the rate constants, from which a statistical error measure can be
calculated. For details on these statistical measures, see section 8.4.

The script make—fit.py implements this resampling—fitting—statistics procedure. It is dependent on the output of
populations.py, but otherwise works in a stand-alone fashion.

Table 7.9: Analysis modes for transition.py. The last column indicates whether data_extractor.x has to be run
prior to the ensemble analysis.

Mode Description From which Extract?

file?

1 Get transition matrix in MCH basis. output.lis No
Get transition matrix in MCH basis, ignoring hops within output.lis No
multiplets.

3 Write a tabular file with the transition matrix in the MCH output.lis No
basis for each time step.

4 Write a tabular file with the transition matrix in the MCH output.lis No

basis for each time step, ignoring hops within multiplets.

128

SHARC Manual 7 Auxilliary Scripts | 7.17 Fitting population data to kinetic models: make_fit.py

7.17.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/make_fit.py

Before you start the script, you need to prepare a file with the relevant populations data (usually, the output file of
populations.py will suffice). You also might want to run transition.py first, which can help in developing a suitable
kinetic model.

7.17.2 Input

The interactive input for this script consists of specifying the reaction network graph, the initial conditions and the data
file. Additionally, the user has to specify which species should be fitted to which data columns in the file. Optionally,
the user can specify the bootstrap settings for estimating errors.

Kinetic model species As a first step, the user has to specify the set of species in the model. Each species is fully
described by its label. A label must start with a letter and can be followed by letters, numbers and underscores (although
an underscore must not be directly followed by another underscore).

During input, the user can add one or several labels to the set of species, remove labels and display the current set of
defined labels. It is not possible to add a label twice. Once all labels are defined, the keyword end brings the user to the
next input section (hence, end is not a valid label).

Kinetic model elementary reactions Next, the reactions have to be defined. A reaction is specified by its initial
species, final species, and reaction rate label. Reaction rate labels are under the same restrictions as species labels and
must not be already used as a species label. Furthermore, initial and final species must be both defined previously and
they must be different. There can only be one reaction from any species to another species (If a second reaction is
defined, the first reaction label is simply overwritten). Note that reaction rate labels can be used in several reactions (in
this way, different rates can be restricted to be the same).

During input, the user can add and remove reactions and display the currently defined reactions (displayed as a matrix).
Unlike species labels, only one reaction can be added per line. Once all reactions are defined, the keyword end brings
the user to the next input section.

Kinetic model initial values In order to specify the initial values for each species, the user simply has to define
which species have non-zero initial population. These species will then be assigned an initial population constant,
which can be fitted along with the reaction rates.

During input, the user can add and remove species from the set of species with non-zero initial population. Once all
reactions are defined, the keyword end brings the user to the next input section.

Operation mode The script can either read a pop.out file for a simple global fit, or a bootstrap_data/ directory
for a global fit with error estimate. If the latter is chosen, the user needs to enter the number of bootstrap cycles.

Populations data file The user has to specify a path (autocomplete is enabled) to the file containing the population
data to which the model functions should be fitted. In bootstrap mode, instead the path to the bootstrap_data/
directory (can be prepared with populations.py) needs to be given. The script reads the file/files and automatically
detects the maximum time and the number of data columns.

The file/files should be formatted as a table, with one time step per line (e.g., an output file of populations.py). On
each line, the first number is interpreted as the time in femtoseconds and all consecutive numbers (separated by spaces)
as the populations at this time. Note that the first entry must be at t=0 and all subsequent lines must be in strictly
increasing order. Time steps can be unevenly spaced if necessary.

129

SHARC Manual 7 Auxilliary Scripts | 7.18 Fitting population data to kinetic models: make—fitscript.py

Species-Data mapping In the next setup section, the user has to specify which functions should be fitted to which
data column from the data file. In the simplest case, one species is fitted to a single data column (e.g., the species S0 is
fitted to data column 2). However, it is also possible to fit the sum of two species to a column (this can be useful, e.g., to
describe biexponential processes) and to fit a species to the sum of several columns (e.g., one can fit to the total triplet
population to obtain a total ISC rate constant). In general, it is also possible to fit sums of species to sums of columns.

It is not allowed to use one species or one column in more than one mapping. However, it is possible to leave species or
data columns unused in the global fit. While unused species still affect the outcome (through the reaction network
definitions), unused data columns are simply ignored in the fit.

During input, the user can add one mapping per line as well as display the current mappings. For the column definitions,
ranges can be given with the tilde symbol, e.g., 5~9 is interpreted as 5 6 7 8 9. If a typo is made, the user can reset the
mappings and repeat only the mapping input without the need to repeat the previous sections. Once all mappings are
defined, the keyword end finishes the input section.

Fitting procedure In the last section, the user can edit the initial guesses for the rate constants and initial populations.
To change a value, enter label = value. Use show to print the current values for all constants. end finishes the guess
edit step.

Afterwards, the script asks whether the initial populations should be optimized or not. This is usually only useful if
several species have non-zero initial populations. If you optimize initial populations, note that their sum might differ
from 1 after optimization.

The script also asks whether the rate constants should be constrained to positive values. If answered with yes, then
the optimized rate constants are restricted to the range 0.000 001 to infinity (i.e., the time constants are constrained
between 1000000 fs and 0 fs). Note that with constraints SciPy uses the Trust Region Reflective algorithm, and the
Levenberg-Marquardt algorithm for unconstrained cases.

7.17.3 Output

The script will write the output to standard out. It will first print the iterations of the fit, and the obtained results
afterwards (all fitted parameters with errors). The script will also write two files, fit_results.txt and fit_results.gp.
The latter is a GNUPLOT script that can be used to plot the global fit, which is useful for visual inspection.

Note that the errors printed for normal runs are just the intrinsic fitting errors, which assume that the population data
is error-free. To obtain realistic fitting errors that take into account the uncertainty due to the finite trajectory ensemble,
use the bootstrap mode.

In bootstrap mode, the script initially will perform the same steps as in normal mode, using the average population
from the bootstrap directory. After writing the fit results and the two files, the script will start performing the bootstrap
iterations, writing the fitted parameters in each iteration. In this way, the user can monitor the convergence of these
values, to decide whether more iterations are required. Typically, the values and errors will vary strongly during the
first iterations and stabilize later. The convergence rate is strongly dependent on the fitting model and the data.

After all iterations are done (or the script is interrupted with Ctrl-C), the script will print a summary of the statistical
analysis. For each fitting parameter (all time constants and all initial populations), the script will list the arithmetic
mean and standard deviation (absolute and relative), the geometric mean and standard deviation (separately for + and —,
absolute and relative), and the minimum and maximum values. The script will also print a histogram with the obtained
distribution for each parameter. For details on these statistical measures, see section 8.4.

bootstrap.py also creates an output file once it is finished. The file, fit_bootstrap.txt, contains the summary of the
statistical analysis with the computed statistical measures and the histograms. Additionally, at the end this file contains
a table with all obtained fitting parameters for resamples (e.g., for further statistical or correlation analysis).

7.18 Fitting population data to kinetic models: make_fitscript.py

This script has been superseded by make_fit.py (see section 7.17). You should use make_fitscript.py only if
make_fit.py does not work.

Often it is interesting to fit some functions to the population data from a trajectory ensemble, in order to provide a
way to abstract the data and to obtain some kind of rate constants for population transfer, which allows to compare to

130

SHARC Manual 7 Auxilliary Scripts | 7.18 Fitting population data to kinetic models: make—fitscript.py

experimental works. In simple cases, it might be sufficient to fit basic mono- and biexponential functions to the data,
which provides the sought-after time constants. However, often a more meaningful approach is based on a chemical
kinetics model. Such a model is specified by a set of chemical species (e.g., electronic states, reactants, products, etc)
connected by elementary reactions with associated rate constants, which together form a reaction network graph. For
an explanation of those graphs, see section 8.10.

The script make_fitscript.py helps the user in implementing and executing such global fits to a kinetics model.

The script employs the open-source computer algebra system MAXIMA as back-end to solve the differential equation
systems which describe the model kinetics. The script writes a GNUPLOT script containing all commands necessary for
the global fit. The fitting itself is performed with GNuPLOT.

7.18.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/make_fitscript.py

Before you start the script, you need to prepare a file with the relevant populations data (usually, the output file of
populations.py will suffice). You also might want to run transition.py first, which can help in developing a suitable
kinetic model.

7.18.2 Input

The interactive input for this script consists of specifying the reaction network graph, the initial conditions and the
data file. Additionally, the user has to specify which species should be fitted to which data columns in the file.

Kinetic model species As a first step, the user has to specify the set of species in the model. Each species is fully
described by its label. A label must start with a letter and can be followed by letters, numbers and underscores (although
an underscore must not be directly followed by another underscore).

During input, the user can add one or several labels to the set of species, remove labels and display the current set of
defined labels. It is not possible to add a label twice. Once all labels are defined, the keyword end brings the user to the
next input section (hence, end is not a valid label).

Kinetic model elementary reactions Next, the reactions have to be defined. A reaction is specified by its initial
species, final species, and reaction rate label. Reaction rate labels are under the same restrictions as species labels and
must not be already used as a species label. Furthermore, initial and final species must be both defined previously and
they must be different. There can only be one reaction from any species to another species (If a second reaction is
defined, the first reaction label is simply overwritten).

During input, the user can add and remove reactions and display the currently defined reactions (displayed as a matrix).
Unlike species labels, only one reaction can be added per line. Once all reactions are defined, the keyword end brings
the user to the next input section.

Kinetic model initial values In order to specify the initial values for each species, the user simply has to define
which species have non-zero initial population. These species will then be assigned an initial population constant (e.g.,
for species A the initial population constant would be A__8). These constants will show up in the GNUPLOT script and
their value can edited there. It is also possible to fit the initial populations to the data.

During input, the user can add and remove species from the set of species with non-zero initial population. Once all
reactions are defined, the keyword end brings the user to the next input section.

Populations data file The user has to specify a path (autocomplete is enabled) to the file containing the population
data to which the model functions should be fitted. The script reads the file and automatically detects the maximum
time and the number of data columns.

The file should be formatted as a table, with one time step per line (e.g., an output file of populations.py). On each
line, the first number is interpreted as the time in femtoseconds and all consecutive numbers (separated by spaces)
as the populations at this time. Note that the first entry must be at =0 and all subsequent lines must be in strictly
increasing order. Time steps can be unevenly spaced if necessary.

131

SHARC Manual 7 Auxilliary Scripts | 7.19 Estimating Errors of Fits: bootstrap.py

Species-Data mapping In the final setup section, the user has to specify which functions should be fitted to which
data column from the data file. In the simplest case, one species is fitted to a single data column (e.g., the species S0 is
fitted to data column 2). However, it is also possible to fit the sum of two species to a column (this can be useful, e.g., to
describe biexponential processes) and to fit a species to the sum of several columns (e.g., one can fit to the total triplet
population to obtain a total ISC rate constant). In general, it is also possible to fit sums of species to sums of columns.

It is not allowed to use one species or one column in more than one mapping. However, it is possible to leave species or
data columns unused in the global fit. While unused species still affect the outcome (through the reaction network
definitions), unused data columns are simply ignored in the fit.

During input, the user can add one mapping per line as well as display the current mappings. If a typo is made, the user
can reset the mappings and repeat only the mapping input without the need to repeat the previous input. Once all
mappings are defined, the keyword end finishes the input section.

Running MaxiMA Before the script attempts to call MAXIMa, it prints the command to be executed and asks the
user for permission to execute. If permission is denied, the user may enter another command to call maxima. After
permission is granted, the script calls Maxima. If the call takes more than a few seconds, the standard output of Maxima
is printed and standard input is switched to MAXIMA. In this way, the user can answer any questions by MaxiMa (e.g.,
whether a constant/combination of constants is larger than zero). To answer these questions, type the answer followed
by a semi-colon (e.g., pos;).

7.18.3 Output

After successful execution of the script, two files are created, model_fit.dat and model_fit.gp. The former file
contains the populations data formatted appropriately for the global fit. The latter file contains the GNUPLOT script
which can be executed by

user@host> gnuplot model_fit.gp
to perform the global fit. Please follow the instructions printed by make_fitscript.py at the end of the execution, in

particular by adjusting the starting guesses for the fitting parameters (you have to open and edit model_fit.gp for
this). Please do not change the structure of model_fit.gp if you intend to use this file with bootstrap.py.

7.19 Estimating Errors of Fits: bootstrap.py

This script has been superseded by make_fit.py (see section 7.17). You should use bootstrap.py only if make_fit.py
does not work.

As was described in section 7.18, the population data from populations.py can be fitted to a kinetic model to obtain
interpretable rate constants. Often, one is also interested in obtaining an estimate of the error associated to these
rate constants, e.g., in order to decide whether enough trajectories were computed. A possible way to obtain such
error estimates is the statistical bootstrapping procedure. The idea of bootstrapping is to generate resamples of the
original ensemble; for an ensemble of n trajectories, one draws n random trajectories with replacement to obtain one
resample. The resample can then be fitted like the original ensemble to obtain a second estimate of the rate constants.
By generating many resamples, one can thus obtain a “probability” distribution of the rate constants, from which a
statistical error measure can be calculated. For details on these statistical measures, see section 8.4.

The script bootstrap.py implements this resampling—fitting—statistics procedure. It is dependent on the output of
populations.py and make_fitscript.py, and employs GNUPLOT to perform the actual fits.

7.19.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/bootstrap.py

Before you start the script, you need to run populations.py to generate the bootstrapping data (populations.py asks
the related question near the end of the input query).

132

SHARC Manual 7 Auxilliary Scripts | 7.19 Estimating Errors of Fits: bootstrap.py

Additionally, you need to use make_fitscript.py to generate a GNUPLOT fitting script. Please, do not modify the script
(beyond initial values for the fitting constants), as bootstrap.py relies on the proper format of this file. It is advisable
to create the GNuUPLOT fitting script from one of the files contained in the bootstrap data directory (because then the
simulation time is consistent between the fitting script and the bootstrapping data).

7.19.2 Input

The interactive input consists in specifying the paths to the bootstrapping data directory (from populations.py), the
path to the fitting script, the number of resamples, and some other minor options.

Path to the bootstrapping data directory The user should enter here the path to the directory which was created
by populations.py and which contains the bootstrapping raw data (i.e., the populations for each individual trajectory
before summing up over the ensemble). bootstrap.py automatically detects the number of trajectories, time step,
number of steps, and number of data columns.

Note that bootstrap.py only considers files in this directory if their filename starts with pop—. Also note that
bootstrap.py creates a temporary subdirectory inside the bootstrapping data directory as scratch area.

Number of bootstrapping cycles Here, the number of resamples to generate and fit needs to be entered. The
default, 10 resamples, is very small and not sufficient to achieve convergence in the errors for most applications. It is
advisable to employ several hundred or thousand resamples to achieve good statistical convergence.

Note that the script can be interrupted during the iterations (using Ctrl-C) and then skips to the final analysis, so it is
no problem to enter a too large number of cycles.

Random number generator seed The script employs random numbers to generate the random resamples. For
reproducible results, do not use the default option (!), but enter an integer.

Path to the fitting script The user should enter the path to the appropriate GNuPLOT fitting script, generated with
make_fitscript.py. It is strongly advisable to adjust the initial guesses for the fitting parameters in the script in order
to ensure quick and stable convergence of the fits. Please, do not modify the generated GNUPLOT script in any other
way, as this might break bootstrap.py.

Command to execute Here, the user should enter the command to be used to call GNUPLOT. In most cases, this will
simply be gnuplot, but the user might want to use another installation of GNUpLOT for the fitting.

Number of CPUs bootstrap.py can be run in parallel mode, where multiple GNUPLOT processes are employed at
the same time. Currently, this parallelization is not very efficient due to process creation overheads, but for complicated
fitting scripts (where each fit takes relatively long), large data sets, or many resamples it can be useful.

Note that if more than one CPU is used, users should not prematurely terminate bootstrap.py with Ctrl-C, as some
of the subprocesses might get stuck and the script will not properly go to the final analysis.

7.19.3 Output

During the resample iterations, bootstrap.py prints the current values and errors (geometric mean and geometric
standard deviation) of the fitting parameters every few iterations. In this way, the user can monitor the convergence of
these values, to decide whether more iterations are required. Typically, the values and errors will vary strongly during
the first iterations and stabilize later. The convergence rate is strongly dependent on the fitting model and the data.

After all iterations are done (or the script is interrupted with Ctrl-C), the script will print a summary of the statistical
analysis. For each fitting parameter (all time constants and all initial populations), the script will list the arithmetic
mean and standard deviation (absolute and relative), the geometric mean and standard deviation (separately for + and —,
absolute and relative), and the minimum and maximum values. The script will also print a histogram with the obtained
distribution for each parameter. For details on these statistical measures, see section 8.4.

bootstrap.py also creates two output files. The first file, bootstrap_cycles.out, is written on-the-fly while the
resample iterations are running. It contains the same tabular output as is shown in standard output, and can be used to

133

SHARC Manual 7 Auxilliary Scripts | 7.20 Obtaining Special Geometries: crossing.py

visualize the convergence behavior of the parameters. For example, the first parameter can be monitored using GNUPLOT
with this command: plot "bootstrap_cycles.out" using 1:6:8 w yerrorbars. The scond file, bootstrap.out, is
written once the final analysis is complete. It contains the summary of the statistical analysis with the computed
statistical measures and the histograms. Additionally, at the end this file contains a table with all obtained fitting
parameters for resamples (e.g., for further statistical or correlation analysis).

7.20 Obtaining Special Geometries: crossing.py

In many cases, it is also important to obtain certain special geometries from the trajectories. The script crossing.py
extracts geometries fulfilling special conditions from an ensemble of trajectories.

Currently, crossing. py finds geometries where the approximate MCH state (see section 8.21.1) of the last time step is
different from the MCH state of the current time step (i.e. crossing.py finds geometries where surface hops occured).

7.20.1 Usage

The script is interactive, simply start it with no command-line arguments or options:
user@host> $SHARC/crossing.py

The input to the script is very similar to the one of populations.py.

Paths to trajectories First the script asks the user to specify all directories for whose content the analysis should be
performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. crossing.py will automatically include all trajectories contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. crossing.py will ignore all directories containing one of these files.
Additionally, crossing.py will ignore trajectories with a DONT_ANALYZE file from diagnostics. py.

Analysis mode Currently, crossing.py only supports one analysis mode, where crossing.py is scanning for each
trajectory the file output.lis. If the occupied MCH state (column 4 in output file output.lis) changes from one
time step to the next, it is checked whether the old and new MCH states are the ones specified by the user. If this is
the case, the geometry corresponding to the new time step (t) is retrieved from output.xyz (lines t(natom + 2) + 1 to

t(natom + 2) + natom)-

States involved in surface hop First, the user has to specify the permissible old MCH state. The state has to be
specified with two integers, the first giving the multiplicity (1=singlet, ...), the second the state within the multiplicity (1
1=S), 1 2=S;, etc.). If a state of higher multiplicity is given, crossing.py will report all geometries where the old MCH
state is any of the multiplet components.

For the new MCH state, the same is valid.

Third, the direction of the surface hop has to be specified. Choosing “Backwards” has the same effect as exchanging the
old and new MCH states.

7.20.2 Output
All geometries are in the end written to an output file, by default crossing.xyz. The file is in standard xyz format. The

comment of each geometry gives the path to the trajectory where this geometry was extracted, the simulation time and
the diagonal and MCH states at this simulation time.

134

SHARC Manual 7 Auxilliary Scripts | 7.21 Internal Coordinates Analysis: geo. py

7.21 Internal Coordinates Analysis: geo.py

SHARC writes at every time step the molecular geometry to the file output.xyz. The non-interactive script geo.py can
be used in order to extract internal coordinates from xyz files. The usage is:

user@host> $SHARC/geo.py [options] < Geo.inp > Geo.out

By default, the coordinates are read from output.xyz, but this can be changed with the -g option (see table 7.11). Note
that the internal coordinate specifications are read from standard input and the result table is written to standard out.

7.21.1 Input

The specifications for the desired internal coordinates are read from standard input. It follows a simple syntax, where
each internal coordinate is specified by a single line of input. Each line starts with a one-letter key which specifies the
type of internal coordinate (e.g. bond length, angle, dihedral, ...). The key is followed by a list of integers, specifying
which atoms should be measured. As a simple example, r 1 2 specifies the bond length (r is the key for bond lengths)
between atoms 1 and 2. Note that the numbering of the atoms starts with 1. Each line of input is checked for consistency
(whether any atom index is larger than the number of atoms, repeated atom indices, misspelled keys, wrong number of
atom indices, ...), and erroneous lines are ignored (this is indicate by an error message).

Table 7.10 lists the available types of internal coordinates. The output is a table, where the first column is the time
(Actually, the geometries are just enumerated starting with zero, and the number multiplied by the time step from the
-t option). The successive columns in the output table list the results of the internal coordinates calculations. Each
request generates at least one column, see table 7.10.

Note that for most internal coordinates, the order of the atoms is crucial, since e.g. aj23 # dz13. This also holds for the
Cremer-Pople parameter requests. For these input lines, the atoms should be listed in the order they appear in the ring
(clockwise or counter-clockwise).

Table 7.10: Possible types of internal coordinates in geo. py.

Key Atom Description Output columns
Indices

X a x coordinate of atom a x

y a y coordinate of atom a y

z a z coordinate of atom a z

r ab Bond length between a and b r

a ab Angle between a-b and b-c a

d abcd Dihedral, i.e., angle between normal vectors of (a,b, c) and (b,c,d) d
(between -180° and 180°, same sign conventions as MOLDEN)

p abcd Pyramidalization angle: 90° minus angle between bond a—b p
and normal vector of (b, c,d)

q abcd Pyramidalization angle (alternative definition; angle between q
bond a-b and average of bonds b-c and b—d

5 abcde Cremer-Pople parameters for 5-membered rings [79] and g2, $2, Boeyens
comformation classification.

6 abcdef Cremer-Popleparametersfor 6-membered rings [79] and Q, ¢, 0, Boeyens
Boeyens classification [80].

i a-f Angle between average plane through 3-rings (a - c)and(d - f) i

j a-h Angle between average plane through 4-rings (a - d)and (e - f) j

k a-]j Angle between average plane through 5-rings (a - e) and (f - j) &k

1T a-1 Angle between average plane through 6-rings (a - f)and(g - 1) [

C Writes the comment (second line of the Comment

xyz format) to the table.

As an advice, it is always a good idea to put the comment as the last request, if needed. Since the comment may contain
blanks, having the comment not as the very last column might make it impossible to plot the resulting table.

The Boeyens classification symbols which are output for 6-membered rings are reported in BKIEX math code. Note
that in the Boeyens classification scheme by definition a number of symbols are equivalent, and only one symbol is

135

SHARC Manual 7 Auxilliary Scripts | 7.22 Essential Dynamics Analysis: trajana_essdyn.py

reported. These are the equivalent symbols: 1Cy = 3C¢ = 5C,, *Cy = °C5 = 2Cs, 1 T3 = *T¢, 2Ty = °Ts, 2T, = 5Ty, 3Ty = °Ty,
6T2 = 3T5 and 4T2 = 1T5.

For 5-membered rings, the classification symbols are chosen similar to the Boeyens symbols. For the E and E, symbols,
atom a is puckered out of the plane and the four other atoms are coplanar, while for the “Hj, symbols the neighboring
atoms a and b are puckered out of the plane in opposite directions and only the three remaining atoms are coplanar.

It is also possible to measure angles between the average planes through two n-membered rings. Currently, this is only
possible if both rings have the same number of atoms (3, 4, 5, or 6).

7.21.2 Options

geo.py accepts a number of command-line options, see table 7.11. All options have sensible defaults. However, especially
if long comments should be written to the output file, it might be necessary to increase the field width. Note that
the minimum column width is 20 so that the table header can be printed correctly. Also note that the column for the
comment is enlarged by 50 characters.

Table 7.11: Command-line options for geo. py.

Option Description Default

-h Display help message and quit. -

-b Report x, y, z, r, g2 and Q in Bohrs Angstrom
-r Report a, d, p, q, ¢2, ¢, 0, i, j, k, and | in Radians Degrees

-g FILENAME Read coordinates from the specified file output.xyz
-t FLOAT Assumed time step between successive geometries (fs) 1.0 fs

-T INTEGER Start counting time step 0

-w INTEGER Width of each column (min=20) 20

-p INTEGER Precision (Number of decimals, min=width-3) 4

7.22 Essential Dynamics Analysis: trajana_essdyn.py

An essential dynamics analysis [83] is a procedure to find the most active vibrational modes in an ensemble of trajectories.
It is based on the computation of the covariance matrix between all Cartesian (or mass-weighted Cartesian) coordinates
of all steps of all trajectories and a singular value decomposition of this covariance matrix. For details on the computation,
see section 8&.8.

The interactive script trajana—_essdyn.py can be used to perform such an analysis.

7.22.1 Usage

trajana_essdyn.py is an interactive script, which is started with:
user@host> $SHARC/trajana_essdyn.py

Note that before executing the script you should prepare an XYZ geometry file with the reference geometry (e.g., the
ground state minimum or the average geometry from the trajectories).

7.22.2 Input

During interactive input, the script queries for the paths to the trajectories, the path to the reference structure, and a
few other settings.

Path to the trajectories First the script asks the user to specify all directories for whose content the analysis should
be performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. trajana_essdyn.py will automatically include all trajectories contained in these directories.

136

SHARC Manual 7 Auxilliary Scripts | 7.23 Normal Mode Analysis: trajana_nma.py

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. trajana_essdyn.py will ignore all directories containing one of
these files. Additionally, trajana_essdyn.py will ignore trajectories with a DONT_ANALYZE file from diagnostics. py.

Path to reference structure For the essential dynamics analysis, a reference structure is required. This structure is
substracted from all geometries for the correlation analysis. The structure can be in any format understandable by
OpPENBABEL, but the type of format needs to be specified. In most cases, the reference structure will be either in XYZ or
MoLDEN format.

Mass-weighted coordinates If enabled, the correlation analysis will be carried out in mass-weighted Cartesian
coordinates. In the output file, the mass-weighting will be removed properly.

Number of steps and time step These parameters are automatically detected and suggested as defaults. It is not
necessary to change them.

Time step intervals By default, trajana_essdyn. py will analyze the full length of the simulations together. However,
it is also possible to compute the essential dynamics for different time intervals (e.g., if the molecular motion is different
in the beginning of the dynamics). Multiple, possibly overlapping, intervals can be entered; for each of the intervals,
one set of output files is produced.

Results directory The path to the directory where the output files are stored. The path has to be entered as a relative
or absolute path. If it does not exist, trajana_essdyn.py will create it.

7.22.3 Output

Inside the results directory, trajana_essdyn.py will create two subdirectories, total_cov/ and cross_av/. In the
directory total_cov/ the results of the full covariance analysis are stored (i.e., essential modes found here have large
total activity, but the trajectories could behave very differently). On the contrary, cross_av/ will contain the results
of the analysis of the average trajectory (i.e., essential modes found here have strongly coherent activity, where all
trajectories behave similarly).

For each time step interval entered, one output file (e.g., 0-1000.molden) is created in each of the two subdirectories.

7.23 Normal Mode Analysis: trajana_nma.py

A normal mode analysis [81] is a procedure to find the activity of given normal modes in an ensemble of trajectories
For details on the computation, see section 8.17.

The interactive script trajana_nma.py can be used to perform such an analysis.

7.23.1 Usage

trajana_nma. py is an interactive script, which is started with:
user@host> $SHARC/trajana_nma.py

Note that before executing the script you should prepare a MoLDEN file with the relevant normal modes.

7.23.2 Input

During interactive input, the script queries for the paths to the trajectories, the path to the normal mode file, and a few
other settings.

137

SHARC Manual 7 Auxilliary Scripts | 7.23 Normal Mode Analysis: trajana_nma.py

Path to the trajectories First the script asks the user to specify all directories for whose content the analysis should
be performed. Enter one directory path at a time, and finish the directory input section by typing “end”. Please do not
specify each trajectory directory separately, but specify their parent directories, e.g. the directories Singlet_1 and
Singlet_2. trajana_nma.py will automatically include all trajectories contained in these directories.

If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. trajana_nma.py will ignore all directories containing one of these
files. Additionally, trajana_nma.py will ignore trajectories with a DONT_ANALYZE file from diagnostics.py.

Path to normal mode file The normal mode file (in MOLDEN format) needs to contain the normal modes for which
the analysis should be carried out. The file needs to have the same atom ordering as the trajectories.

Mass-weighted coordinates If enabled, the correlation analysis will be carried out in mass-weighted Cartesian
coordinates. In the output file, the mass-weighting will be removed properly.

Number of steps and time step These parameters are automatically detected and suggested as defaults. It is not
necessary to change them.

Automatic plot creation If available, the user can choose to automatically create total activity and temporal plots
of the normal mode analysis.

Non-totally symmetric modes For symmetry reasons, the average value of a non-totally symmetric normal mode
will always be close to zero for a sufficiently large ensemble. In order to still obtain useful information for such modes,
the user can specify modes whose absolute value should be considered. Note that in the input it is possible to specify
ranges, e.g., 2~8 for all modes from 2 to 8.

Multiplication by -1 The user can choose to multiply certain normal modes by -1. This is only for convenience
when viewing the results. Note that in the input it is possible to specify ranges, e.g., 2~8 for all modes from 2 to 8.

Time step intervals By default, trajana_nma.py will analyze the full length of the simulations together. However,
it is also possible to compute the essential dynamics for different time intervals (e.g., if the molecular motion is different
in the beginning of the dynamics). Multiple, possibly overlapping, intervals can be entered; for each of the intervals,
one set of output files is produced.

Results directory The path to the directory where the output files are stored. The path has to be entered as a relative
or absolute path. If it does not exist, trajana_nma.py will create it.

7.23.3 Output

Inside the results directory, trajana_nma.py will create one subdirectory, nma/. By default, four output files are written
into this subdirectory. The file total_std. txt will contain the mode activity for each normal mode and for each
time interval; a large value indicates that across all time steps and trajectories there is a large variance in that normal
mode. Similarly, the file cross_av_std. txt will contain the mode activity for each normal mode and for each time
interval; this is computed from the average trajectory, therefore only showing coherent mode activity. The files
mean_against_time.txt and std_against_time.txt contain for all normal modes and for all time steps the mean and
standard deviation, respectively.

Also by default, additionally, inside each of the trajectory directories, trajana_nma.py generates three output files. The
file nma_nma. txt is a table containing the normal mode coordinates of the trajectory for each time step; functionally, it
is very similar to the output of geo.py. The files nma_nma_av . txt and nma_nma_std.txt contain for each time interval
and each normal mode the mean and average for that trajectory.

Finally, if automatic plots were requested, the results subdirectory will contain two directories, bar_graphs/ and
time_plots/. The former contains plots of the data in total_std.txt and cross_av_std.txt, whereas the latter will
contain plots of mean_against_time.txt and std_against_time.txt.

138

SHARC Manual 7 Auxilliary Scripts | 7.24 General Data Analysis: data_collector.py

7.24 General Data Analysis: data_collector.py

Whereas most of the other analysis scripts in the SHARC suite are intended for rather specific tasks, data_collector.py
is aimed at providing a general analysis tool to carry out a large variety of tasks. The primary task of data_collector.py
is to collect tabular data from files which are present in all trajectories, possibly perform some analysis procedures
(smoothing, averaging, convoluting, integrating, summing), and output the combined data as a single file. Possible
applications of this functionality are statistical analysis of internal coordinates (e.g., mean and variation in a bond length),
the creation of hair figures (e.g., a specific bond length plotted for all trajectories), data convolutions (e.g., distribution
of bond length over time, simulation of time- and energy-resolved spectra), or data integration (e.g., computation of
time-resolved intensities).

7.24.1 Usage

data_collector.py is an interactive script, which is started with:
user@host> $SHARC/data_collector.py

7.24.2 Input

In general, the first step in data_collector.py is to collect tabular data files which exist in the directories of multiple
trajectories. For each trajectory, this file needs to have the same file name and the same tabular format; for example,
one could read for all trajectories the output.1lis files.

Collecting Hence, in the first input section, the script asks the user to specify all directories for whose content the
analysis should be performed. Enter one directory path at a time, and finish the directory input section by typing
“end”. Please do not specify each trajectory directory separately, but specify their parent directories, e.g. the directories
Singlet_1 and Singlet_2. data_collector.py will automatically include all trajectories contained in these directories.
If you want to exclude certain trajectories from the analysis, it is sufficient to create an empty file called CRASHED or
RUNNING in the corresponding trajectory directory. data_collector.py will ignore all directories containing one of
these files. Additionally, data_collector.py will ignore trajectories with a DONT_ANALYZE file from diagnostics. py.

In the second step, data_collector.py displays all files which appear in multiple trajectories and which might be
suitable for analysis (the script ignores files which it knows to be not suitable, e.g., output.dat, output.xyz, most files
in the QM/ or restart/ subdirectories, ...). All other files (e.g., output.lis, files in output_data/, ...) will be displayed,
together with the number of appearances.

Once one of the files has been selected, one needs to assign the different data columns. (i) One column is designated the
time column T, which defines the sequentiality of the data: (ii) Multiple columns can then be designated as data columns,
called X columns in the following. (iii) The same number of columns is designated as weight columns, called Y columns
here (weights can be set equal to 1 by selecting column “0” in the relevant menu). For example, for a time-resolved
spectrum, the transition energies would be the X data, whereas the oscillator strengths would be the Y data (weights).
With these assignments, the full data set is defined:

« For each trajectory a
— For each time step ¢
« For each X column i there will be a value pair (x{(¢),y{()) or (x{(),1).
In the simplest case, there will be exactly one (x%(t),1) pair for each trajectory and time, which is a two-dimensional
data set. Keep in mind that in general, each trajectory could have different time steps at this point. We refer to this kind
of data set (independent trajectories with possibly different time axes) as Typel data set. As will be described below, in

data_collector.py, during certain processing steps the format of the data set is changed, which will create Type2 or
Type3 data sets.

Once this data set is collected from the files (where too short or commented lines are ignored), data_collector.py
allows for a number of subsequent processing steps, which are summarized in Figure 7.4.

Smoothing In this step, each trajectory is individually smoothed, using one of several smoothing kernels (Gaussian,
Lorentzian, Log-normal, rectangular). Smoothing does not change the size or format of the data set, each value is simply

139

SHARC Manual 7 Auxilliary Scripts | 7.24 General Data Analysis: data_collector.py

Collecting

|
¥
2

Synchronizing

Convoluting(X)
< 6 :
Summing(Y)

A
ape—

ntegrating00

I<

&

Convoluting(T)

:

¥ 9

Integrating(T)

| ' 10
| Typel | | Type2 |

Figure 7.4: Possible workflows in data_collector.py. Grey boxes denote the different computational actions, yellow
diamonds denote the different decisions which are queried in the input dialog, and the boxes at the denote
the three different data set types (dark blue=Typel, light blue=Type2, green=Type3). The different actions
and data set types are explained in the text.

replaced by the corresponding smoothed value; hence, a new Typel data set is obtained. Smoothing is applied to each X
and each Y column independently, but always with the same kernel.

2o X () f (. 1)

X0= = e

and analogously for Y;(t). (7.1)
Here, f(t,t") is the smoothing kernel.

Synchronizing In this step, the Typel data set is reformatted, by merging all trajectories together. This step creates a
Type2 data set, which has a common T axis for all trajectories (simply the union of the T columns from all trajectories).
For each time step, all X and Y values of all trajectories are collected. If a trajectories does not have data at a particular
time step, NaNs will be inserted. In this way, a rectangular, two-dimensional data set is obtained, with as many rows as
time steps, and 2ny,jnx data columns.

A simple application of Collecting+Synchronizing could be to generate a table with the bond length for all time steps
for all trajectories, in order to generate a “hair figure”. This task could in principle also be accomplished with Bash tools
like awk and paste, but this is troublesome if the trajectories are of different length, with different time steps, or if the
table files contain comments.

Averaging The Type2 data set from the Synchronizing step can contain a large number of data columns (2n,jnx).
In order to reduce this amount of information, the Averaging step can be used to compute the mean and standard
deviation across all trajectories, separately for each time step. This will create a new Type2 data set, which still has a

140

SHARC Manual 7 Auxilliary Scripts | 7.24 General Data Analysis: data_collector.py

common time axis, but will only contain 4nx + 1 data columns; these are the mean and standard deviation of all X and
Y columns, plus one column giving the number of trajectories for each time step.

Currently, this step can be performed with either arithmetic mean/standard deviation or geometric mean/standard
deviation.

Statistics Similar to the Averaging step, the Statistics step computes mean and standard deviations from a Type2 data
set. The difference is that during Statistics, these values are computed for all values from the first to the current time
step. The data in the last time step thus gives the total statistics over all time steps and trajectories. The Type2 data set
from the Statistics step contains the same number of data columns as the one from the Averaging step.

Currently, this step can be performed with either arithmetic mean/standard deviation or geometric mean/standard
deviation.

With the Averaging and Statistics steps, it is possible to compute the same data as with trajana_nma.py (if the
appropriate files are read), namely the total (Statistics) and coherent (Averaging+Statistics) activity of the normal modes.
Using data_collector.py, the same analysis can also be applied to internal coordinates computed with geo.py.

Convoluting(X) In order to create a data set which has common T and X axes (a Type3 data set), it is in general
necessary to perform some kind of data convolution involving the X column data. In order to do this, data_collector.py
creates a grid along the X axis (ng4 points from the minimum value to the maximum value of all X data in the data set,

plus some padding).
Yilt.X) =) YAOFGX{ (D). (7.2)

The created Type3 data set has nx data points for each time step and each X grid point.

Using energies as X columns and oscillator strengths/intensities as Y columns, in this way it is possible to compute
time-dependent spectra.

Summing(Y) When nx is larger than one, the Summing step can be used to compute the sum over all data points for
each time step and each X grid point.

Y(t,X) = Z Yi(t, X). (7.3)

This creates a new Type3 data set, which will only contain one data point for each time step and each X grid point.

For example, for a transient spectrum involving multiple final states (nx > 1), after the Convoluting(X) step one obtains
one transient spectrum for each final state. With the Summing(Y) step, one can then compute the total transient
absorption spectrum.

Integrating(X) When computing transient spectra, one is often interested in integrating the spectrum within a
certain energy window. This can be done with the Integrating(X) step. After entering a lower and upper X limit, a
new Type3 data set is created, with only three data points per time step. The first data point contains the integral from
minus infinity to the lower limit, the second data point the integral between lower and upper limit, and the third data
point the integral from the upper limit to infinity. If Summing(Y) was not carried out, this integration is carried out
independently for each of the nx data columns.

Convoluting(T) The Type3 data set can also be convoluted along the time axis (e.g., in order to apply an instrument
response function to a time-resolved spectrum). In order to do this, a uniform grid along the T axis is generated (with
NTgrid points from the minimum value to the maximum value of the previous T axis, plus some padding).

Yi(t', X) = Z Yi(t, X)f(t,1)). (7.4)

The created Type3 data set has as many data points for each X grid point as before, but the number of time steps is now
ngrid- Convoluting(T) can be applied also if Summing(Y) and/or Integrating(X) were used (in this case, the kernel is
applied to the summed up or integrated data).

141

SHARC Manual 7 Auxilliary Scripts | 7.24 General Data Analysis: data_collector.py

Integrating(T) This step carries out a cumulative summation along the T axis.

t
Yi(t, X) == Z Yi(t', X). (7.5)
t'=0

In this way, the data in the last time step constitute the integral over all time steps. Since all the partial cumulative sums
are also computed, integrals within some bounds can simply be computed as differences between partial cumulative
sums.

Converting At the end of the workflow, a Type3 data set can be converted back into a Type2 data set, which affects
how the output file is formatted. This is usually a good idea if the Integrating(X) step was performed, but might not be
a good idea otherwise. See below for how the different data set types are formatted on output.

7.24.3 Output

After the input dialog is finished, data_collector.py will start carrying out the requested analyses. For each of
the workflow steps, one output file is written, so that all intermediate results can be used as well. Output files have
automatically generated filenames, which describe how the data was obtained. Filenames are always in the form
collected_data_<T>_<X>_<Y>_<steps>.<type>.txt, where <T> is an integer giving the T column index, <X> and <y>
are lists of integers of the X and Y column indices, <steps> is a string denoting which workflow steps were carried out, and
<type> denotes the data set type. For example, an output file could be named collected_data_1_2_0_sy_cX.type3. txt,
where column 1 was the T column, column 2 the X column, no Y column was used, Synchronizing and Convoluting(X)
were performed, resulting in a Type3 data set.

Format of Typel data set output Typel data sets are formatted such that each trajectory is given as a continuous
block, separated by an empty line. Within each block, each line contains the data of one time step, order increasingly.
Each line contains a trajectory index, the relative file path, the time, all X column data, and then all Y column data.

1 2 3 4 5 6 7
#Index Filename Time X Column 5 X Column 6 Y Column 0 Y Column ©
0 Singlet_1//TRAJ_00001/./Geo.out 0.00000000E+00 1.13340000E-01 7.99096900E+00 1.00000000E+00 1.00000000E+00
0 Singlet_1//TRAJ_00001/./Geo.out 5.00000000E-01 1.59173000E-01 7.94395200E+00 1.00000000E+00 1.00000000E+00
0 Singlet_1//TRAJ_00001/./Geo.out 1.00000000E+00 2.10868000E-01 7.89084000E+00 1.00000000E+00 1.00000000E+00
1 Singlet_1//TRAJ_00002/./Geo.out 0.00000000E+00 5.03990000E-02 7.99078100E+00 1.00000000E+00 1.00000000E+00
1 Singlet_1//TRAJ_00002/./Geo.out 1.00000000E+00 3.80370000E-02 8.00349700E+00 1.00000000E+00 1.00000000E+00
1 Singlet_1//TRAJ_00002/./Geo.out 2.00000000E+00 1.09515000E-01 7.93073500E+00 1.00000000E+00 1.00000000E+00
2 Singlet_1//TRAJ_00004/./Geo.out 0.00000000E+00 2.10908000E-01 8.29417600E+00 1.00000000E+00 1.00000000E+00
2 Singlet_1//TRAJ_00004/./Geo.out 5.00000000E-01 1.49506000E-01 8.35651800E+00 1.00000000E+00 1.00000000E+00
2 Singlet_1//TRAJ_00004/./Geo.out 1.00000000E+00 1.05887000E-01 8.40056700E+00 1.00000000E+00 1.00000000E+00

Note here in the example that the second trajectory has a time step of 1.0 fs and thus no data at 0.5 fs.

Format of Type2 data set output Type2 data sets are formatted such that all trajectories share a common time axis,
hence for each time step there will be one line of data. Each line starts with the time, followed columns with the data for
the first trajectory, followed by the data for the second trajectory, etc. Within each trajectory, first all X columns, then
all Y columns are given. If a Y column contains only unit weights (using special file column “0”), then this Y column is
omitted from the Type2 formatted output.

1 2 3 4 5 6 7
Time X Column 5 X Column 6 X Column 5 X Column 6 X Column 5 X Column 6
0.00000000E+00 1.13340000E-01 7.99096900E+00 5.03990000E-02 7.99078100E+00 2.10908000E-01 8.29417600E+00
5.00000000E-01 1.59173000E-01 7.94395200E+00 NaN NaN 1.49506000E-01 8.35651800E+00

1.00000000E+00 2.10868000E-01 7.89084000E+00 3.80370000E-02 8.00349700E+00 1.05887000E-01 8.40056700E+00

142

SHARC Manual 7 Auxilliary Scripts | 7.25 Optimizations: orca_External and setup_orca_opt.py

Note here in the example that the second trajectory does not have data at 0.5 fs.

Format of Typ3 data set output Type3 data sets are formatted such that all trajectories share common time and X
axes. The data is formatted block-wise, with the first block corresponding to the first time step and containing all points
on the X grid, followed by an empty line, followed by the second block, etc. Each block consists of ngq lines, each
starting with the time and X value in the first two columns and followed by nx columns with the convoluted data.

1 2 3 4
Time X_axis Conv(5,0) Conv(6,0)
0.00000000E+00 -1.45534000E-01 .38544715E-05 0.00000000E+00
0.00000000E+00 .30671958E-01 .51462322E+00 0.00000000E+00
0.00000000E+00 .06877917E-01 .07930050E-01 ©0.00000000E+00

=
N

N
=

[}
[y

5.00000000E-01 -
.00000000E-01
5.00000000E-01

=

.45534000E-01
.30671958E-01
.06877917E-01

=

.31312692E-04 0.00000000E+00
28614756E+00 ©0.00000000E+00
.46251462E-10 0.00000000E+00

ul
N
=

o
IS

1.00000000E+00 -1.45534000E-01 8.75871124E-05 0.00000000E+00
1.00000000E+00 2.30671958E-01 2.42291042E+00 0.00000000E+00
1.00000000E+00 6.06877917E-01 1.60277894E-16 0.00000000E+00

7.25 Optimizations: orca_External and setup_orca_opt.py

All SHARC interfaces can deliver gradients for (multiple) ground and excited states in a uniform manner. This allows in
principle to perform optimizations of excited-state minima, conical intersections, or crossing points. In order to employ
a high-quality geometry optimizer for this task, the SHARC suite is interfaced to the external optimizer feature of ORca.
This is accomplished by providing the script orca_External, which is called by Orca, runs any of the SHARC interfaces,
constructs the appropriate gradient, and returns that to Orca. For the methodology used to construct the gradients, see
section 8.18.

In order to easily prepare the input files for such an optimization, the script setup_orca_opt.py can be used. It takes a
geometry file, interface input files, and the path to Orca, and creates a directory containing all relevant input files. In the
following, setup_orca_opt.py is described first, because it is the script which the user directly employs. Afterwards,
orca_External is specified.

7.25.1 Usage

setup_orca_opt.py is an interactive script, which is started with:
user@host> $SHARC/setup_orca_opt.py

Note that before executing the script you should prepare a template for the interface you want to use (as, e.g., in
setup_init.py or setup_traj.py).

7.25.2 Input

In the input section, the script asks for: (i) the path to Orca, (ii) the input geometries, (iii) the optimization settings, (iv)
the interface settings.

Path to Orca Here the user is prompted to provide the path to the Orca directory. Note that the script will not
expand the user (~) and shell variables (since possibly the calculations are running on a different machine than the one
used for setup). ~ and shell variables will only be expanded during the actual calculation.

Interface In this point, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the
corresponding number.

143

SHARC Manual 7 Auxilliary Scripts | 7.25 Optimizations: orca_External and setup_orca_opt.py

Input geometry Here the user is prompted for a geometry file in XYZ format, containing one or more geometries
(with consistent number of atoms). For each geometry in this file, a directory with all input files is created, in order to
carry out multiple optimizations (e.g., with output from crossing. py).

Number of states Here the user can specify the number of excited states to be calculated. Note that the ground state
has to be counted as well, e.g., if 4 singlet states are specified, the calculation will involve the Sy, S;, Sz and Ss5. Also
states of higher multiplicity can be given, e.g. triplet or quintet states.

States to optimize Two different optimization tasks can be carried out: optimization of a minimum (ground or
excited state) or optimization of a crossing point (either a conical intersection between states of the same multiplicity
or a minimum-energy crossing points between states of different multiplicities; this is detected automatically).

For minima, the state to optimize needs to be specified. For crossing points, the two involved states need to be specified.
In all cases, the specified states need to be included in the number of states given before.

Cl optimization parameters If you are optimizing a conical intersection (states of same multiplicity) with an inter-
face which cannot provide nonadiabatic coupling vectors (e.g., SHARC_RICC2. py, SHARC_ADF . py, or SHARC_GAUSSIAN. py),
then the optimization will employ the the penalty function method of Levine, Coe, and Martinez [86]. In this method, a
penalty function is optimized, which depends on the energies of the two states and on two parameters, o and « (see
section 8.18 for their mathematical meaning).

Practically, the parameters affect how close the minimum of the penalty function is to the true minimum on the crossing
seam and how hard the optimization will be to converge. Generally, a large o will allow going closer to the true conical
intersection, but will make the penalty function more stiff (steeper harmonic) and thus harder to optimize. A small «
will also allow going closer to the true conical intersection, but will make the penalty function less harmonic; at = 0,
the penalty function will have a cusp at the minimum, making it unoptimizable because the gradient never becomes
zero.

The default values, 3.5 and 0.02, are the ones suggested in [86]. They can be regarded as relatively soft, i.e., they enable
a very smooth convergence but might lead to unacceptably large energy gaps at convergence (i.e., the minimum of
the penalty function is too far from the true minimum of the crossing seam). In this case, it is advisable to restart the
optimization from the last point with increased o (e.g., by a factor of 4), and simultaneously reducing the maximum
step (see next point). The « is best left at the suggested value of 0.02 to avoid the cusp problem.

Maximum allowed displacement Within Orca, it is possible to restrict the maximum step (the trust radius) of the
optimizer. A larger maximum step might decrease the number of iterations necessary, but might also lead to instabilities
in the optimization (if the potential energy surface is very steep or anharmonic). Hence, it can be advisable to reduce
the maximum allowed step (from the default of 0.3 a.u.), especially if the starting geometry is already very good (e.g.,
after restart with increase of o) or if the potential is known to be stiff (strong bond, large o, small , ...). Note that the
maximum step can be restricted even the penalty function method is not used and ¢ and « are not relevant.

Interface-specific input This input section is basically the same as for setup_init.py (sections 7.4.3). Also for the
optimizations an initial wave function file should be provided, especially for the multi-reference methods.

Run script setup Here the user needs to provide the path to the directory where the optimizations should be setup.

7.25.3 Output

Inside the specified directory, setup_orca_opt.py creates one subdirectory for each geometry in the input geometry file.
Each subdirectory is prepared with the corresponding initial geometry file (geom.xyz), the Orca input file (orca. inp),
the appropriate interface-specific files (template, resources, QM/MM), and a shell script for execution (run—_EXTORCA. sh).

In order to run one of the optimizations, execute the shell script or send it to a batch queuing system. Note that
$SHARC needs to be added to the $PATH so that Orca can find orca_External (this is automatically done inside
run_EXTORCA. sh).

When the shell script is started, Orca will write a couple of output files, where the two most relevant are orca.trj and
orca.log. The former is an XYZ file with all geometries from the optimization steps. The latter (the Orca standard

144

SHARC Manual 7 Auxilliary Scripts | 7.26 Single Point Calculations: setup_single_point.py

output) contains all details of the optimization (convergence, step size, etc) as well as a summary of what orca_External
did (after the line EXTERNAL SHARC JOB). This summary contains all relevant energies and shows how the gradient is
constructed. Note that in each iteration, a line starting with »> is written, which contains the energies of the optimized
state(s). This line can easily be extracted with grep to follow the optimization of a crossing point.

7.25.4 Description of orca_External

orca_External provides a connection between the external optimizer of Orca and any of the SHARC interfaces. In
figure 7.5, the file communication between ORca, orca_External, and the interfaces is presented.

resources

|n|t|a| MOs

SN

Orca orca Exte rnal Interface

orca.extcomp. out}/ \w

orca.log

orca.inp

MoLPRO

MoLcas

orca.extcomp.inp COLUMBUS

Analytlcal

TU RBOMOLE

GAUSSIAN

. WFOVERLAP
orca.trj

Figure 7.5: Communication between ORca, orca_External, the interfaces, and the quantum chemistry codes.

As can be seen, orca_External writes QM. in and QM. out files, in the same way that sharc.x is doing. All information
to write the QM. in file comes from the ORca communication file orca.extcomp.inp (geometry) and the Orca input
file (number of states, interface, states to optimize). To provide the latter information, orca_External reads specially
marked comments from the Orca input file which are ignored by Orca. These comments start with #SHARC:, followed
by a keyword (states, interface, opt, or param) and the keyword arguments.

7.26 Single Point Calculations: setup_single_point.py

It is possible to run single point calculations through the SHARC interfaces. This is useful, e.g., to do a computation in
exactly the same way as during the dynamics simulations. Single point calculations using the interfaces can also be
easily automatized.

7.26.1 Usage

setup_single_point.py is an interactive script, which is started with:
user@host> $SHARC/setup_single_point.py

Note that before executing the script you should prepare a template for the interface you want to use (as, e.g., in
setup_init.py or setup_traj.py).

7.26.2 Input

In the input section, the script asks for: (i) the input geometries, (ii) the number of states, and (iii) the interface settings.

145

SHARC Manual 7 Auxilliary Scripts | 7.27 Format Data from QM. out Files: QMout_print.py

Interface First, choose any of the displayed interfaces to carry out the ab initio calculations. Enter the corresponding
number.

Input geometry Here the user is prompted for a geometry file in XYZ format, containing one or more geometries
(with consistent number of atoms). For each geometry in this file, a directory with all input files is created, in order to
carry out multiple optimizations (e.g., with output from crossing. py).

Number of states Here the user can specify the number of excited states to be calculated. Note that the ground state
has to be counted as well, e.g., if 4 singlet states are specified, the calculation will involve the Sy, S;, Sz and Ss5. Also
states of higher multiplicity can be given, e.g. triplet or quintet states.

Interface-specific input This input section is basically the same as for setup_init.py (sections 7.4.3). Also for the
optimizations an initial wave function file should be provided, especially for the multi-reference methods.

Run script setup Here the user needs to provide the path to the directory where the optimizations should be setup.

7.26.3 Output

Inside the specified directory, setup_single_point.py creates one subdirectory for each geometry in the input geometry
file. Each subdirectory is prepared with the corresponding geometry file (QM. in), the appropriate interface-specific files
(template, resources, QM/MM), and a shell script for execution (run.sh).

In order to run one of the optimizations, execute the shell script or send it to a batch queuing system.

When the shell script is started, the chosen SHARC interface is executed. The interface writes a file called QM. log which
contains details of the computation and progress status. The final results of the computation are written to QM. out,
which can be inspected manually. Alternatively, some basic data (excitation energies, oscillator strengths) can be
computed with QMout_print.py (section 7.27).

7.27 Format Data from QM.out Files: QMout_print.py

With the script QMout_print.py one can print a table with energies and oscillator strengths from a QM. out file, as it is
produced by the interfaces.

7.27.1 Usage

QMout_print.py is a command line tool, and is executed like this:
user@host> $SHARC/QMout_print.py [options] QM.out

The options are summarized in Table 7.12

Table 7.12: Command-line options for QMout_print. py.

Option Description Default

-h Display help message and quit. —

-1 FILENAME Path to QM.in file (to read number of states) —

-s INTEGERS List of numbers of states per multiplicity 1

-e FLOAT Absolute energy shift in Hartree 0.0

-D Output diagonal states MCH states

7.27.2 Output

The script prints a table with state index, state label, energy, relative energy, oscillator strength, and spin expectation
value to standard output.

146

7.28 Diagonalization Helper: diagonalizer.x

SHARC Manual 7 Auxilliary Scripts

7.28 Diagonalization Helper: diagonalizer.x

The small program diagonalizer.x is used by the Python scripts to diagonalize matrices if the NumPy library is
not available. Currently, only excite.py and SHARC_Analytical.py need to diagonalize matrices. The program
diagonalizer.x is implemented as a simple front-end to the LAPACK libary.

% «

The program reads from stdin. The first line consists of the letter “r” or “c”, followed by two integers giving the matrix
dimensions. For “r”, the program assumes a real symmetric matrix, for “c” a Hermitian matrix. The matrix must be
square. The second line is a comment and is ignored. In the following lines, the matrix elements are given. On each
line one row of the matrix has to be written. If the matrix is complex, each line contains the double number of entries,
where real and imaginary part are always given subsequently. The following is an example input:

c22
comment
1.0 0.0 2.0 0.1
2.0 -0.1 6.0 0.0

for the matrix
1 2+0.1i

A=y 01i 6

(7.6)

The diagonal matrix and the matrix of eigenvectors is written to stdout.

147

8 Methods and Algorithms

In this chapter different aspects of SHARC simulations are discussed in detail. The topics are ordered alphabetically.

8.1 Absorption Spectrum

Using spectrum.py, an absorption spectrum can be calculated as the sum over the absorption spectra of each individual
initial condition:

Minit

o(E) =) ailE), (8.1)

1
where i runs over the initial conditions.

The spectrum of a single initial condition is the convolution of its line spectrum, defined through a set of tuples (E*, f%.)
for each electronic state , where E“ is the excitation energy and f.%.) is the oscillator strength.

The convolution of the line spectrum can be performed with spectrum.py using either Gaussian or Lorentzian functions.
The contribution of a state & to the absorption spectrum o*(E) is given by:

a\2
08 ssian(E) = (fosc)§ e FE) (8.2)
41n(2
with c= _—FWrII-iN)IZ , (8.3)
or
(fose)i
G].li)rentzian(E) =T 2 (8.4)
HE-E) 1
1
with ¢= ZFWHMZ, (8.5)
or
a a lq — o 2 (ln(E)—ln(Ef"))2
GLog-normal(E) = (fosc)i fe @) e A (8.6)
2
FWHM + \[FWHM? + 4(E%)2
with ¢=|ln , (8.7)

2E7

where FWHM is the full width at half maximum.

8.2 Active and inactive states

SHARC allows to “freeze” certain states, which then do not participate in the dynamics. Only energies and dipole
moments are calculated, but all couplings are disabled. In this way, these states are never visited (hence also no gradients
and nonadiabatic couplings are calculated, making the inclusion of these states cheap). Example:

148

SHARC Manual 8 Methods and Algorithms | 83 Amdahl’s Law

nstates 2 0 2
actstates 2 0 1

In the example given, state T; is frozen. The corresponding Hamiltonian looks like:

E(So) oy Ay bsy bg; Qo1 Qo2
E(S) &y, e by b, an ar
ao1 an E(T) py, —qh,
_ ag2 a, pz ET) 4,
H= bo1 by —q12 E(Ty) —qi; (5

b bz qu2 E(T2) qj,
ay, ay —q1z2 E(T1) prz
dgy aj, 912 P2 E(T)

where all matrix elements marked = red are deleted, since T, is frozen.

The corresponding matrix elements are also deleted from the nonadiabatic coupling and overlap matrices. For propaga-
tion including laser fields, also the corresponding transition dipole moments are neglected, while the transition dipole
moments still show up in the output (in order to characterize the frozen states).

Active and frozen states are defined with the states and actstates keywords in the input file. Note that only the
highest states in each multiplicity can be frozen, i.e., it is not possible to freeze the T; while having T, active. However,
it is possible to freeze all states of a certain multiplicity.

8.3 Amdahl’s Law

Some of the interfaces (SHARC_MOLCAS. py, SHARC_ADF.py SHARC_GAUSSIAN.py, SHARC_ORCA.py) use Amdahl’s law to
predict the most efficient way to run multiple calculations in parallel, where each calculation itself is parallelized. For
example, in SHARC_GAUSSIAN.py it might be necessary to compute the gradients of five states, using four CPU cores.
The most efficient way to run these five jobs depends on how well the GAaussIAN computation scales with the number
of cores—for bad scaling, running four jobs on one core each followed by the fifth job might be best, whereas for
good scaling, running each job on four cores subsequently is better because no core is idle at any time. In order to
automatically distribute the jobs efficiently, the interfaces use Amdahl’s law, which can be stated as:

T(ncore) = T(l) (1 —-r+) . (89)

Mcore
Here, T(1) is the run time of the job with one CPU core, and r is the fraction of T(1) which benefits from parallelization.
The parameter r can be given to the interfaces; it is between 0 and 1, where 0 means that the calculation does not get
faster at all with multiple cores, whereas 1 means that the run time scales linearly with the number of cores.

8.4 Bootstrapping for Population Fits

Bootstrapping, in the context of population fitting, is a statistical method to obtain the statistical distribution of the fitted
parameters, which can be used to infer the error associated with the fitted parameter. The general idea of bootstrapping
is to take the original sample (the set of trajectories in the ensemble), and generate new samples (resamples) by randomly
drawing trajectories “with replacement” from the original ensemble. These resamples will differ form the original
ensemble by containing some trajectories multiple times while other trajectories might be missing. For each of the
resamples, the fitting parameter are obtained normally and saved for later analysis.

After many resamples, we obtain a list of many “alternative” parameters, which can be plotted in a histogram to see the
statistical distribution of the fitting parameter. The number of resamples should generally be large (several hundred or
thousand resamples), although with bootstrap.py, one can inspect the convergence of the fitting parameters/errors to
decide how many resamples are sufficient.

149

SHARC Manual 8 Methods and Algorithms | 8.5 Computing electronic populations

From the computed list of parameters, error measures can be computed. Assume that {x;} is the set of fitting parameters
obtained. bootstrap.py and make_fit.py compute the arithmetic mean and standard deviation like this:

1 N
Xarith = N Zixia (8~10)

X
Oarith(¥) = N_1 Z(x - x)%. (8.11)

Because the distribution of {x;} might be skewed (e.g., contains some very large values but few very small ones), the
script also computes the geometric mean and standard deviation like this:

ZN 11'1(3(1) (8.12)

Xgeom = €N
N
Tgeom(x) = e T1 27 (0O (8.13)

Note that the geometric standard deviation is a dimensionless factor (unlike the arithmetic standard deviation, which
has the same dimension as the mean). Therefore, within bootstrap.py and make_fit.py the geometric errors are
always displayed with separate upper and lower bounds as f_;’(cf‘/’;’(c))(;_l)l) Note that bootstrap.py and make_fit.py will

always report one times the standard deviation in the output. If larger confidence intervals are desired, simply multiply
= +x(o(x)*-1)

the arithmetic error as usual. For the geometric error, use for example x 2
-x(1/o(x)*-1)"

8.5 Computing electronic populations

The electronic populations from SHARC trajectories can be obtained in different ways. This is primarily due to the fact
that in surface hopping one could either consider the active state or the electronic wave function coefficients. This issue
is discussed in detail in [35], where it is shown that the optimal way to obtain the electronic populations is actually a
combination of both kinds of information in a Wigner-like transformation. Hence, there are three options in SHARC: (i)
based on classical active state, (ii) based on electronic wave function coefficients, and (iii) based on Wigner-transform.
Additionally, the populations can be analyzed in different representations (diagonal, MCH, diabatic).

Diagonal representation The diagonal representation, there is no basis transformation involved, and hence the
equations are very simple. For a single trajectory, the three possible populations can be obtained by:

p;ilag(l) 5]:1’ (8.14)
p}iiag(ii) _ |cj§iag|2, (8.15)
p}iiag(iii) = /0, (8.16)

where « is the active diagonal state.

MCH representation To obtain the MCH representation, one needs to transform the populations with the matrix U.
Hence, one obtains:

pj\/ICH(l) Us|?, (8.17)
MCH(u) ZU cdlaglz (8.18)
MCH(iii x odiag diags
£y = Ul +) 2R U6, (819)
k<l

150

SHARC Manual 8 Methods and Algorithms | 8.6 Damping

Diabatic representation To obtain the diabatic representation, one needs to transform the populations with the
appropriate transformation matrix T, which in SHARC is obtained as the matrix product of reference overlap matrix,
time-ordered overlap matrices, and U for the current time step. Hence, one obtains:

P = T (8.20)
Py =Y T, (8.21)
k
MCH(iii 5 di diags
Pj (iii) _ |Tja|2 " Z 2%(Tjijlcklagcllag). (8.22)
k<l

8.6 Damping

If damping is activated in SHARC (keyword dampeddyn), in each time step the following modification to the velocity
vector is made

v =v-VC (8.23)

where C is the damping factor given in the input. Hence, in each time step the kinetic energy is modified by
Eigy = Eun - C (8.24)

The damping factor C must be between 0 and 1.

8.7 Decoherence

In surface hopping, without any corrections the coherence between the states is usually too large [21]. A trajectory
in state 5, but where state has a large coefficient, will still travel according to the gradient of state f. However, the
gradients of state o are almost certainly different to the ones of state . As a consequence, too much population of
state « is following the gradient of state 8. Decoherence corrections damp in different ways the population of all states
a # P, so that only population of § follows the gradient of state f.

Currently, in SHARC there are two decoherence corrections implemented, “energy-based decoherence”, or EDC, as given
in [105] and “augmented fewest-switches surface hopping”, or AFSSH, as described in [30].

8.7.1 Energy-based decoherence

In this scheme, after the surface hopping procedure, when the system is in state §, the coefficients are updated by the
following relation

Eq—E c\!
—aplfe Bl 1+ 5]

— | : 8.25
= B a#p (8.25)

[
C, =Cq * €XPp

’ Cﬁ 72
ch=—-[1- [l (8.26)
B legl 0;3 *

where C is the decoherence parameter. The decoherence correction can be activated with the keyword decoherence in
the input file. The decoherence parameter C can be set with the keyword decoherence_param (the default is 0.1 hartree,
as suggested in [105]).

151

SHARC Manual 8 Methods and Algorithms | 8.7 Decoherence

8.7.2 Augmented FSSH decoherence

Augmented FSSH by Subotnik and coworkers is described in [30]. For SHARc, the augmented FSSH algorithm was
adjusted to the case of the diagonal representation.

The basic idea is that besides the actual trajectory, the program maintains an auxiliary trajectory for each state. The
auxiliary trajectories are propagated using the gradients of the associated (not active) state, and because the gradients
are different, the auxiliary trajectories eventually diverge from each other and from the main trajectory. From this
diverging, one can compute decoherence rates which can be used to stochastically set the electronic coefficients of the
diverging state to zero.

First, we compute two matrices:

SUB(¢, t + At) = UT(£)S(t, t + At)U(t + At), (8.27)
HORe (s 4 Ap) = UT(0)S(t, t + AOHMH (¢ + ADST(2, £ + ADU(2), (8.28)

where S is the overlap matrix, as used in 8.29. Hence, Sdiag(t, t + At) is the overlap matrix in the diagonal basis and
Helddi2g (¢ 4 At) is the Hamiltonian at time ¢ + At expressed in the diagonal basis of time step t.

We then propagate the auxiliary trajectories for each state j, considering that the active state is . For this, we need the
gradient matrix G42¢ from section 8.11. We define:

o = |c;(t)|. (8.29)
We do the X step of the velocity-Verlet algorithm:

B ((GYi28);; — (GY48)) 0

/(1) = 8.30
ay(t) M, (8.30)
. . . 1,
R/(t + At) = RI(t) + v/ (1) At + Eaf(t)Atzaj, (8.31)
where A goes over the atoms. Then, we compute the new gradient:
g/t + AD) = ~(GY8) g + > (SUE(t, £ + AL);i(GH9). (8.32)
i
We then carry out the v step:
: 1o @+AD)a
afq(t + At) = Eafq(t) - M—A, (833)
VI (t + At) = V(1) + al,(t + At)Ata;. (8.34)

We then perform a diabatization of the auxiliary trajectories (e.g., for a trivially avoided crossing, the moments between
the crossing states are interchanged):

R/ =) ($U8(t, ¢ + At)RY, (8.35)
v = (8% (4 Ay (8.36)
(8.37)

to transform the data back into the adiabatic basis at time t + At.

Finally, we carry out the decoherence correction procedure for each auxiliary trajectory. We compute the displacement
from the auxiliary trajectory of the active state:

D=R -R“ (8.38)
We compute two rate constants:
. 1 .
r = —EgJ(t +At)-D, (8.39)
r; = 2/(G*),; - D), (8.40)

152

SHARC Manual 8 Methods and Algorithms | 8.8 Essential Dynamics Analysis

or if no nonadiabatic coupling vectors are available:

1ddi
_2|H2j “ID.v (8.41)
2= At vev '

We draw a random number (identical for all states) r between 0 and 1. If r < At(r{ - ré) then we collapse state j, by
setting its coefficient to zero and enlarging the coefficient of the active state such that the total norm is conserved; we
also set the moments R/ and v/ to zero. If no collapse occurred, if r < —Atrl’ , we set the moments R/ and v/ to zero.

After a surface hop occurred, we reset all auxiliary trajectories.

8.8 Essential Dynamics Analysis

As an alternative to normal mode analysis (see section 8.17), essential dynamics analysis can be used to identify important
modes in the dynamics. This procedure is a principal component analysis of the geometric displacements.[82, 83]
Unlike normal mode analysis, it does not depend on the availability of the normal mode vectors.

The covariance matrix is computed from the following equation (z and v are indices over the 3N,op, degrees of freedom):

) 1 Niragj kend i
R v 3 k; R (kAt) (8.42)
and l N | |
Ay = N (o o) 2 k; R (kADR (kAt) (8.43)
as a matrix C with elements:
Cuv = Auy — RyR,. (8.44)

Diagonalization of the symmetric matrix C gives a set of eigenvalues and eigenvectors. The eigenvectors represent
the essential dynamics modes, and the corresponding eigenvalues are the variances of the modes. Modes with large
variances show strong motion in the dynamics, whereas small variances are found for modes which show weak motion.
Because the modes are uncorrelated, the few modes with the largest variance describe most of the molecular motion,
which shows that essential dynamics analysis can be used to for data reduction.

8.9 Excitation Selection

excite.py can select initial active states for the dynamics based on the excitation energies Ei , and the oscillator
strengths f°° for each initial condition k and excited state a.

First, for all excited states of all initial conditions, the maximum value ppax of

0SC
k,

Phoa = =5 (8.45)
k,a

is found. Then for each excited state, a random number r¢_, is picked from [0, 1]. If

Pk,a

max

Teoa < (8.46)

then the excited state is selected as a valid initial condition. This excited-state selection scheme is taken from [107].

Within excite. py it is possible to restrict the selection to a subset of all excited states (only certain adiabatic states/within
a given energy range). In this case, also pmay is only determined based on this subset of excited states.

153

SHARC Manual 8 Methods and Algorithms | 8.10 Global fits and kinetic models

8.9.1 Excitation Selection with Diabatization

The active states can be selected based on a diabatization. This necessitates the wave function overlaps between a
reference geometry (ICOND_00000/) and the current initial condition k.

The overlap matrix with elements
SPF = (Wi(Ro)|¥;(Ry)) (8.47)

can be computed with wfoverlap.x (calculations can be setup with setup_init.py). This overlap matrix is rescaled
during the excitation selection procedure such S?f is equal to one (by dividing all elements by |S(1){C 2). Then, assume
we want to start all trajectories in the state which corresponds to state x at the reference geometry. The excitation
selection will select a state y as initial state if Sg’; > 0.5.

8.10 Global fits and kinetic models

In this section, we specify the basic assumptions of the chemical kinetic models used with the scripts make_fitscript.py
and make_fit.py and the globals fits of these models to data.

8.10.1 Reaction networks

The kinetic models used by make_fitscript.py and make_fit.py are based on a chemical reaction network, where
chemical species react via unimolecular reactions.

The reaction networks allowed in the script are a simple directed graphs, where the species are the vertices and the
reactions are the directed edges. Each reaction is characterized by an associated rate constant and connects exactly one
reactant species to exactly one product species.

In order to obtain rate laws which can be integrated easily, there are a number of restrictions imposed on the network
graphs. Some restrictions and possible features of the graphs are depicted exemplarily in Figure 8.1. First, each species
and each reaction rate needs to have a unique label. There cannot be two species with the same label, but there can
be two reactions with the same reaction rate constant. Second, the graph must be a simple directed graph, hence
there cannot be any (self-) loops or more than one reaction with the same initial and the same final species. All
restrictions marked as “Not allowed” in the Figure are enforced in the input dialogue of make_fitscript.py However,
back reactions are allowed (as a back reaction has a different initial and a different final species as the corresponding
reaction). Except from these restrictions, the graph may contain combinations of sequential and parallel reactions. The
graph may also be disjoint, i.e., it can be the union of several independent sub-networks. Disjoint graphs with repeated
reaction labels can be useful to fit population data from ensembles with identical settings but different initial conditions
(in this case, merge the population files with paste before starting the fit.

There are two kinds of cycles possible, called here parallel pathways and closed walks. Parallel pathways are independent
sequences of reactions with the same initial and final species (e.g., A — C and A — B — C). A closed walk is a sequence
of reactions where the initial species is equal to the final species. These cycles can sometimes lead to problems. If you
use make_fitscript.py, then it is necessary that the system of differential equations of the rate laws can be integrated
in closed form by Maxima. Since make_fit.py solves the differential equation system numerically, it is not necessary
that the solution can be given in closed form. However, cycles can also lead to problems in the fitting procedure (rate
constants in parallel pathways can be strongly correlated and cause large errors and bad convergence in fitting).

An example reaction network graph is shown in Figure 8.2. In this graph, there are 5 species (Sz, S1, So, T2, and T;) and
6 reactions, each with a rate constant (ks, kgiyx, ka2, k11, k21, k12). This graph shows some features which are allowed in
the reaction networks for make_fitscript.py: sequential reactions, parallel reactions, back reactions, and converging
reaction pathways. Note that this reaction network is likely to cause problems in the fitting step (large errors).

8.10.2 Kinetic models

Based on the reaction network graph, a system of differential equations describing the rate laws of all species can be
setup. The system of equations (equivalently, the matrix differential equation) can be written as:

%s(t) = A-s(t), (8.48)

154

SHARC Manual 8 Methods and Algorithms | 8.10 Global fits and kinetic models

Not allowed

® ® ' ()
a A @ an
®

® ®

Repeated Repeated Loop Repeated
species label label reaction
Allowed
(») QP (™ ©
b a a a @ b C a C
b
Back Repeated Sequential Parallel Disjoint
reaction rate label reactions reactions network

Problematic

® ®
® 0 6 0O

Parallel Closed
pathways walks

Figure 8.1: Forbidden and allowed features of the reaction network graphs.

Figure 8.2: Example reaction network graph. For explanation see text.

where s is the vector of the time-dependent populations of each species and A is the matrix containing the rate constants.

In order to construct A, start with A = 0 and, for each reaction from species i to species j with rate k, substract k from
Aii and add k to Aji~

In order to integrate this system of equations, in practice one also needs to define initial conditions. In the present
context, the initial conditions are fully specified by s(t = 0) = so, where s, are constant expressions defined by the user.

Solving (8.48) yields (in not too complicated cases) the closed-form expressions for the functions s(t), which contain as
parameters all rate constants k and all initial values s.

155

SHARC Manual 8 Methods and Algorithms | 8.11 Gradient transformation

8.10.3 Global fit

Suppose there is a data set p(t) = (p1(¢), p2(2), . ..) of time-dependent populations of several states k = 1,2,... and
which is given at several points of time {t; : 0 < #; < tpax}. We can fit to one data set py(t) a function s;(¢) from s(t) by
optimizing the parameters (mainly the rate constants) such that Y; |px(t;) — s;(¢;)|? becomes minimal.

In order to perform global fit including several species [and several states k, we construct piecewise global functions
from p(¢) and s(¢) and then optimize the parameters accordingly.

8.11 Gradient transformation

Since the actual dynamics is performed on the PESs of the diagonal states, also the gradients have to be transformed to
the diagonal representation. To this end, first a generalized gradient matrix GM“H is constructed from the gradients

MCH — _vrHMCH and the nonadiabatic coupling vectors K%I(SH:
g1 —(Hu — H22)Kiz —(Hu — H33)Ky3
GMCH _ —(Hzz — H11)Ka1 g2 —(Hz2 — H33)Kos

—(Hs3 — H11)Ks; —(Hs3 — Hyp)K3 g3 (8.49)

Note that all quantities in the matrix are in the MCH representation, the superscripts were omitted for brevity.

The matrix GMH is subsequently transformed into the diagonal representation, using the transformation matrix U:
Gdise = yTGMCHy, (8.50)

The diagonal elements of G428 now contain the gradients of the diagonal states, while the off-diagonal elements contain

the scaled nonadiabatic couplings —(Hgi;g - Hgi;g)KdﬁiZg . The gradients are needed in the Velocity Verlet algorithm in
order to propagate the nuclear coordinates. The nonadiabatic couplings are necessary if the velocity vector is to be
rescaled along the nonadiabatic coupling vector.

Since the matrix GMH contains elements which are itself vectors with 3N components, the transformation is done

component-wise (e.g. first a matrix Gy atom1 is constructed from the x components of all gradients (and nonadiabatic
couplings) for atom 1, this matrix is transformed and written to the x, atom 1 component of G%28, then this is repeated
for all components).

M

Since the calculation of the nonadiabatic couplings K 5 CH might add considerable computational cost, there is the input

a
keyword nogradcorrect which tells SHARC to neglect the K%ASH in the gradient transformation.

8.11.1 Dipole moment derivatives

For strong laser fields, the derivative of the dipole moments might be a non-negligible contribution to the gradients. In
this case, they should be included in the gradient transformation step:

. d
Gdiag = UT |GMH _ (1) - LS (8.51)

This can be activated with the keyword dipole_grad in the SHARC input file.

8.12 Internal coordinates definitions

In this section, the internal coordinates available in geo.py are defined.

156

SHARC Manual 8 Methods and Algorithms | 8.13 Kinetic energy adjustments

Bond length The bond length between two atoms a and b is:

Fab = V(a = xp)2 + (Yo = yp)* + (20 = 2)? (8.52)
Bond angle The bond angle for atoms a, b and c is defined as the angle

6 = cos™! (M) (8.53)
[Vial * [Vpel

where vy, is the vector from atom b to atom a.

Dihedral The dihedral angle is defined via the vectors w; and wy:
Wi = Vgp X Vpe and Wy = Vpe X Veg- (8.54)

The dihedral is given as the angle between w; and w; according to equation (8.53). In order to distinguish left- and
right-handed rotation, also the vector Q = w; X w; is computed, and if the angle between Q and vy, is larger than 90°
then the value of the dihedral is multiplied by -1.

Pyramidalization angle The pyramidalization angle is defined via the vectors v, and
W1 = Vpe X Vpq. (8.55)

The pyramidalization angle is then given as 90° — 6(vp,4, w1). This definition of the pyramidalization angle works best
for nearly planar arrangements, like in amino groups.

An alternative definition of the pyramidalization angle works better for strongly pyramidalized situations (e.g., fac-
arranged atoms in a octahedral metal complex). This pyramidalization angle is defined as 180° minus the angle between
v, and the average of vy, and vpg.

Cremer-Pople parameters The definitions of the Cremer-Pople parameters for 5- and 6-membered rings is described
in [79].

Boeyens classification For 6-membered rings, the Boeyens classification scheme is described in [80].

Angle between two rings In order to compute angles between the mean planes of two rings, we compute the
normal vector of the two rings as in [79]. We then compute the angle between the two normal vectors.

8.13 Kinetic energy adjustments

There are several options how to adjust the kinetic energy after a surface hop occurred. The simplest option is to not
adjust the kinetic energy at all (input: ekincorrect none), but this obviously leads to violation of the conservation of
total energy.

Alternatively, the velocities of all atoms can be rescaled so that the new kinetic energy and the potential energy of the
new state f again sum up to the total energy.

Etotal — Eﬂ
1mn
vi=fv (8.57)
Egn = fExin (8.58)

Within this methodology, when the energy of the old state « was lower than the energy of the new state f the kinetic
energy is lowered. Since the kinetic energy must be positive, this implies that there might be states which cannot be

157

SHARC Manual 8 Methods and Algorithms | 8.14 Laser fields

reached (their potential energy is above the total energy). A hop to such a state is called “frustrated hop” and will be
rejected by SHARC. Rescaling parallel to the nuclear velocity vector is requested with ekincorrect parallel_vel.

Alternatively, according to Tully’s original formulation of the surface hopping method [14], after a hop from & to f only
the component of the velocity along the direction of the nonadiabatic coupling vector K, should be rescaled. With

Natom
a= E Zpad Dpad (8.59)

- 2M;
Natom
b= Z Vi - Kpa.i (8.60)
i
the available energy can be calculated:
A = 4a (E, — Ep) + b*. (8.61)
If A < 0, the hop is frustrated and will be rejected. Otherwise, the scaled velocities v’ can be calculated as
K .
V) =vi— f% (8.62)
b+VA b<0
with =4 24 ’ 8.63
/ {” B pxo. (869

This procedure can be requested with ekincorrect parallel_nac. Note that in this case SHARC will request the
nonadiabatic coupling vectors, even if they are not used for the wave function propagation.

8.13.1 Reflection for frustrated hops

As suggested by Tully [14], during a frustrated hop one might want to reflect the trajectory (i.e., invert some component of
the velocity vector). In SHARC, there are three possible options to this, the first being no reflection (reflect_frustrated
none). Alternatively, one can invert the total velocity vector v := —v (reflect_frustrated parallel_vel).

As this leads to a nearly complete time reversal and might be inappropriate, as a third option one can choose to only
reflect the velocity component parallel to the nonadiabatic coupling vector between the active state and the state to
which the frustrated hop was attempted. The condition for reflection in this case is based on three scalar products:

ki = ga - taf, (8.64)

ko = gr - taf, (8.65)

ks =) Mava(tar)a, (8.66)
A

Reflection is only carried out if k1k; < 0 and kzks < 0. In order to reflect, we compute:

va-ta

VAI=Vy —2 ta. (8.67)

ta - ta

where t4 is the component of t, ¢ corresponding to atom A.

8.14 Laser fields

The program laser.x can calculate laser fields as superpositions of several analytical, possibly chirped, laser pulses. In
the following, the laser parametrization is given (see [108] for further details).

8.14.1 Form of the laser field

In general, the laser field e(¢) is a linear superposition of a number of laser pulses [;(t):

€(t) = Z pili(t), (8.68)

158

SHARC Manual 8 Methods and Algorithms | 8.14 Laser fields

where p; is the normalized polarization vector of pulse i.

A pulse [(¢) is formed as the product of an envelope function and a field function.

I(t) =&Wf(@) (8.69)

8.14.2 Envelope functions

There are two types of envelope function defined in laser.x, which are Gaussian and sinusoidal.

The Gaussian envelope is defined as:

E(t) = e Pt (8.70)
4In2

=— 8.71

b FWHM? ®.71)

where & is the peak field strength, FWHM is the full width at half maximum and . is the temporal center of the pulse.

The sinusoidal envelope is defined as:

0 if t < t,
sin? (;Y:‘tz))) ifty <t <t,,
E)=8Egq1 if t, <t <ty (8.72)
cos? (%) ifty, <t <t
0 ift, < t,

where again & is the peak field strength, #; and ¢, define the interval where the field strength increases, and ¢, and t,
define the interval where the field strength decreases. Figure 8.3 shows the general form of the envelope functions and
the meaning of the temporal parameters t, t., t;c and t,.

a) Gaussian

W
= te
t‘\) 1
[
(e}
o 1
E 1
> 1
c 1
w 1

1

b) Sinusoidal

ot te teo ot
= 0 c c2 e
b\) 1 1 1 1
o 1 1
8- 1 1
E 1 1
> 1 1
< 1 1
w 1 1

Time t

Figure 8.3: Types of laser envelopes implemented in laser.x.

8.14.3 Field functions

The field function f(¢) is defined as:
@) = ell@(t=te)+g) (8.73)

where wy is the central frequency and ¢ is the phase of the pulse. Even though the laser field is complex in this
expression, in the propagation of the electronic wave function in SHARC only the real part is used.

159

SHARC Manual 8 Methods and Algorithms | 8.15 Laser interactions

8.14.4 Chirped pulses

In order to apply a chirp to the laser pulse [(¢), it is first Fourier transformed to the frequency domain, giving the
function /(w). The chirp is applied by calculating:

(o) = i(w)efi[bl|wfwo|+%<w7wo)H%(ww@ﬂ%(wwo)“] (8.74)

The chirped laser in the time domain I'(¢) is then obtained by Fourier transform of the chirped pulse I'(w).

8.14.5 Quadratic chirp without Fourier transform

If 1aser.x was compiled without the FFTW package, the only accessible chirps are quadratic chirps for Gaussian pulses:

I(¢) =8(’)e—/3'(t—fc)2e—i(wo(f—tc)ﬂlz(t—tc)2+¢) (8.75)
4In2
- FWIE .
1
/ —— (8.77)
% +4pb2
b
a =———— (8.78)
W + b2

/ 1
FST ST . — 8.79
0 T\ 2ib, B + 1 (8.79)

Other chirps are only possible with the Fourier transformation.

8.15 Laser interactions

The laser field € is included in the propagation of the electronic wave function. In each substep of the propagation, the
interaction of the laser field with the dipole moments is included in the Hamiltonian. The contribution V; is in each
time step added to the Hamiltonian in equations (8.146) or (8.151), respectively:

Vi=-R(y;), (8.80)

o =) + - (e a0 -) (3.81)

€; =€ (t + i.Al‘) (8.82)
n

where i, n t and At are defined as in section 8.29.

8.15.1 Surface Hopping with laser fields

If laser fields are present, there can be two fundamentally different types of hops: laser-induced hops and nonadiabatic
hops. The latter ones are the same hops as in the laser-free simulations, and demand that the total energy is conserved.
The laser-induced hops on the other hand demand that the momentum (kinetic energy) is conserved. Hence, SHARC
needs to decide for every hop whether it is laser-induced or not.

Consider a previous state @ and a new state 5. Currently, the hop is classified based on the energy gap AE = | E;iag _Eg,iag|
and the instantaneous central energy of the laser pulse w. The hop is assumed to be laser-induced if

IAE - 0| < W, (8.83)

where W is a fixed parameter. W can be set using the input keyword laserwidth.

If a hop has been classified as laser-free, the momentum is adjusted according to the equations given in section 8.13.

160

SHARC Manual 8 Methods and Algorithms | 8.16 Linear Vibronic Coupling Models

8.16 Linear Vibronic Coupling Models
In the vibronic coupling model [106] the diabatic energy and coupling matrix V is constructed as
V=V1+W, (8.84)

where Vj is the reference potential and W includes the state-specific vibronic terms.

Within SHARC, the reference potential is chosen to be harmonic. The reference potential is expressed in dimensionless
mass-frequency-scaled normal coordinates, which can be computed from the Cartesian coordinates r4 as

Qi = Vo; ZKAi My (rA - rfff) (8.85)
A

where w; is the frequency of normal mode i, M4 is an atomic mass, and K,4; denotes the conversion matrix between
mass-weighted Cartesian and normal coordinates. Using these coordinates, the harmonic reference potential is given as

Vo = %Qf, (8.86)

i

In the case of the linear vibronic coupling model, one additionally considers the following state-specific terms that
constitute the W matrix.

Wog = €4 + Z K90, (8.87)
i

Wap = Nap + Z AE“in, a#*f (8.88)
i

Here the €, are the vertical excitation energies, the 7,4 are the SOC constants, and the Kga) and /1(1.'1/3) are termed
intrastate and interstate vibronic coupling constant [106].

8.16.1 Obtaining LVC parameters from ab initio data

All LVC parameters are either constant or linear, implying that they can be obtained from either a single ab initio

computation or from some first derivative. The following equations show how the parameters €4, 7744, k () and)t(l.aﬁ)
are obtained.
The parameters €, are simply the vertical excitation energies at the reference geometry:
MCH(3 MCH (ref f
« =Hyy (Q=0)=H,, () -E*°, (8.89)

where E™f is some reference energy. Likewise, the SOC parameters 7, s are simply the SOC matrix elements at the
reference geometry:

These two equations hold because in the LVC model we assume that at the reference geometry diabatic basis and MCH

basis coincide.

The intrastate linear vibronic coupling term Kga) is the gradient of the diabatic energy of state n. Since at the reference

geometry, diabatic and MCH basis coincide, this is equivalent to the gradient of the corresponding MCH state. This
gradient needs only be transformed from Cartesian coordinates into normal mode coordinates:

(8.91)

g Ly K 9
T o LM, o

F=pref

The interstate linear vibronic coupling term /I(aﬁ) is the gradient of the diabatic coupling between states n and m.

If analytical nonadiabatic coupling vectors are available, these parameters can be obtained—similarly as the K(@)

parameters—by coordinate transformation of the energy-difference-scaled nonadiabatic coupling vector:

/1(101/3) \/_ Z Kai (Hg/[gH 7ref) _ HE/IﬁCH(;:ref)) <[//n ¢m> (8.92)

F=pref

161

SHARC Manual 8 Methods and Algorithms | 8.17 Normal Mode Analysis

If gradients or nonadiabatic coupling vectors are not available, then the KEM and /Ig.aﬁ) parameters can be obtained

numerically. To this end, one performs ab initio calculations at displaced geometries +5Q;, where

(8.93)

i

The ab initio calculations at these geometries provide the energies H %:H(rji) and the wave function overlaps S* 5=

(ngACH(?ref)ltjngCH(?ﬂ)). From these data, the KED’) values can be computed as:

@ _ 1 +igyMCH (2+iy (o +i\T —ipgMCH (2—i\ (q—i\T
i ‘FQ,.((S HYCH (S))0 = (8 HIHGE (S e) (8.94)
and the A(iaﬁ) as:
(af) _ L +i CHz+iy(q+i\T _ (q-i CH/=—i\/a—i\T
A= %0, ((S HYHED(S™) N ap = (STHYHGET)(S))aﬂ)- (8.95)

8.17 Normal Mode Analysis

The normal mode analysis can be used to find important vibrational modes in the excited-state dynamics.[81, 82]

Given a matrix Q containing the normal mode vectors and a reference geometry R, calculate for each trajectory
R(t) = Q7'(R'(1) - R*) (8.96)

to obtain the displacements in normal mode coordinates. Averaging over the displacements gives the average trajectory:

Mraj
_ 1 .
R(t) = R'(t 8.97
0= 5 ?:1 (1) (8.97)

which should contain only coherent motion, since random motion cancels out in an ensemble.

A measure for the coherent activity in a mode is the standard deviation (over time) of the average trajectory:

2

1 Kend 1 Kend
R - RkA? - | — N Rekar))| 8.98
coh kend — Kstart ke=ogart (: kend = kstart k;snrt (: ()

where kot and keng are the start and end time steps for the analysis. R a vector with one number per normal mode,
where larger number mean that there is more coherent activity in this mode.

A measure for the total motion in a mode is the total standard deviation:

Ntraj kend

Z Ri(kA)? —

=1 k=Kstart

Mraj kend
Z Ri(kAt) | . (8.99)

=1 k=Kstart

1

1
R} S S—
Ntraj(kend - kstart) i

total —
ot Ntraj(kend - kstart) i

8.18 Optimization of Crossing Points

With orca_External it is possible to optimize different kinds of crossing points. In all cases, these optimizations involve
the energies of the lower state E; and upper state E,,, the energy difference AE = E,, — Ej, the gradients of the lower
state g; and upper state g,,, the gradient difference vector d, and/or the nonadiabatic coupling vector t.

The simplest case is the optimization of minimum-energy crossing points between states of different multiplicity,
because in this case the nonadiabatic coupling vector is zero and the branching space is one-dimensional. In this case

162

SHARC Manual 8 Methods and Algorithms | 8.19 Phase tracking

[85], the energy to optimize is E, inside the intersection space, and AE inside the branching space. The corresponding
gradient to follow F can be written as:

Su
d-

-d
F=gy— 3 gd+2(E - El)i (8.100)

|d|’

More complicated is the optimization of a conical intersection, between states of the same multiplicity, because the
branching space is two-dimensional. The corresponding gradient to follow F is:

d t d
U -G

F: u E)
™ d % Tt Id]

(8.101)

where d and t need to be orthogonalized.

If no nonadiabatic coupling vector is available because the interface cannot deliver them, conical intersections are
optimized with the penalty function method of Levine et al. [86]. The effective energy to optimize is defined as:
E;+Ey (Eu - El)z
= + o .
2 E,-E +«a

Eet (8.102)
This equation is a combination of the two main targets of the optimization, the average energy and the energy gap. The
parameter o allows prioritizing either of the two, with a larger ¢ leading to smaller energy gaps. The parameter « is
there to avoid the discontinuity at E,, = E;. The corresponding gradient to follow F is:

+
=gl zgu+20'

F

E, - E 1(@)2 q (5.103)

E,—-E +a 2\E,—E +a

Note that o and @ might strongly influence the quality (i.e., with the penalty function method the optimization will not
converge to the true minimum energy conical intersection point) of the result and the convergence behavior. A large o
and a small « will improve the quality of the result, but make the optimization harder to converge.

8.19 Phase tracking
8.19.1 Phase tracking of the transformation matrix

A Hermitian matrix HMCH can always be diagonalized. Its eigenvectors form the rows of a unitary matrix U, which can
be used to transform between the original basis and the basis of the eigenfunctions of H.

Hdee = yTHMCHy, (8.104)

However, the condition that U diagonalizes HMH is not sufficient to define U uniquely. Each normalized eigenvector u
can be multiplied by a complex number on the unit circle and still remains a normalized eigenvector.

Hu = hu and uflu=1 (8.105)
leads to A ‘ ‘ A
H (e‘¢u) = ¢! (Hu) = ehu = h (e‘¢u) (8.106)
and ;
(ei¢u) (ei¢u) =ulePefu=vlu=1 (8.107)

Thus, for all diagonal matrices ® with elements 5ﬁaei¢5 , also the matrix U’ = U® diagonalizes HV!! (if U diagonalizes
it).

The propagation of the coefficients in the diagonal basis is written as (see section 8.29):

(¢t + Ar) = UT(t + AORMH (1 + At, 1)U(2) cB28(1) (8.108)

Rdiag(t4+At,t)

163

SHARC Manual 8 Methods and Algorithms | 820 Random initial velocities

where U(t) and U(t + At) are determined independently from diagonalizing the matrices H'“H(¢) and HMCH(t + At),
respectively. However, depending on the implementation of the diagonalization, U(¢) and U(t + At) may carry unrelated,
random phases. Even if HMCH(t) and HMCH(t + At) were identical, U(t) and U(t + At) might still differ, e.g.:

U(t)z((l) ‘1)) and U(t+At):(é i) (8.109)

The result is that the coefficients ¢ pick up random phases during the propagation, leading to random changes in the
direction of population transfer, invalidating the whole propagation.

In order to make the phases of U(#) and U(¢ + At) as similar as possible, SHARC employs a projection technique. First,
we define the overlap matrix V between U(t) and U(t + At):

V =U'(t + ADU(t) (8.110)
For At = 0, clearly
U(t + AtV = U(t) (8.111)

and V can be identified with the phase matrix ®.

For At # 0, we must now find a matrix P so that
U(t + At)P = U'(t + At) (8.112)
still diagonalizes HMCH(¢ + At), but which minimizes the phase change with regard to U(t). The matrix P has elements
Ppo = Vpo6 (Ep — Eq) . (8.113)

where Eg is the -th eigenvalue of HMCH(t + A).

Within the SHARC algorithm, the phase of U(f + At) is adjusted to be most similar to U(¢) by calculating first V, generating
P from V and the eigenvalues of H“H(¢ + At) and calculating the phase-corrected matrix U’(t + At) as U(t + At)P.

8.19.2 Tracking of the phase of the MCH wave functions

Additionally, within the quantum chemistry programs, the phases of the electronic wave functions may change from
one time step to the next one. This will result in changes of the phase of all off-diagonal matrix elements (spin-orbit
couplings, transition dipole moments, nonadiabatic couplings). SHARC has several possibilities to correct for that:

« The interface can provide wave function phases through QM. out.

« If the overlap matrix is available, its diagonal contains the necessary phase information.

« Otherwise the scalar products of old and new nonadiabatic couplings and the relative phase of SOC matrix
elements can be used to construct phase information.

8.20 Random initial velocities

Random initial velocities are calculated with a given amount of kinetic energy E per atom a. For each atom, the velocity
is calculated as follows, with two uniform random numbers 6 and ¢, from the interval [0, 1[:

cosOsin¢

v =+/2E/m,|sinfsin¢ (8.114)

cos¢

This procedure gives a uniform probability distribution on a sphere with radius +/2E/m,.

Note that the translational and rotational components of random initial velocities are not projected out in the current
implementation.

Random initial velocities can be requested in the input with veloc random E, where E is a float defining the kinetic
energy per atom (in eV).

164

SHARC Manual 8 Methods and Algorithms | 821 Representations

8.21 Representations

Within SHARC, two different representations for the electronic states are used. The first is the so-called MCH basis,
which is the basis of the eigenfunctions of the molecular Coulomb Hamiltonian. The molecular Coulomb Hamiltonian
is the standard electronic Hamiltonian employed by the majority of quantum chemistry programs. It contains only the
kinetic energy of the electrons and the potential energy arising from the Coulomb interaction between the electrons
and nuclei.

AN = Ko + Vee + Ve + Vin. (8.115)

With this hamiltonian, states of the same multiplicity couple via the nonadiabatic couplings, while states of different
multiplicity do not interact at all.
The second representation used in SHARC is the so-called diagonal representation. It is the basis of the eigenfunctions

of the total Hamiltonian.
AR = YT 4 J (8.116)

The term ﬁeclo P contains additional couplings not contained in the molecular Coulomb Hamiltonian. The most common
couplings are spin-orbit couplings and interactions with an external electric field.

H"™ = HC - pe™ (8.117)

Both of these couplings introduce off-diagonal elements in the total Hamiltonian. Thus, the eigenfunctions of the
molecular Coulomb Hamiltonian are not the eigenfunctions of the total Hamiltonian.

Within SHARc, usually quantum chemistry information is read in the MCH representation, while the surface hopping is
performed in the diagonal one.

8.21.1 Current state in MCH representation

Oftentimes, it is very useful to know to which MCH state the currently active diagonal state corresponds. If 1'31210 P s
small or the state separation is large, then each diagonal state approximately corresponds to one MCH state. Only in

the case of large couplings and/or near-degenerate states are the MCH states strongly mixed in the diagonal states.
In order to obtain for a given time step from the currently active diagonal state f§ the corresponding MCH state «, a
vector ¢4 with c?lag = §;4 is generated. The vector is transformed into the MCH representation

MCH — yediag, (8.118)

The corresponding MCH state « is the index of the (absolute) largest element of vector ¢MCH,

8.22 Sampling from Wigner Distribution

The sampling is based on references [75, 76].

Besides the equilibrium geometry R.q, the optimization plus frequency calculation provides a set of vibrational frequen-
cies {v;} and the corresponding normal mode vectors {n;}, where i runs from 1 to N = 3natom.

The normal mode vectors need to be provided in terms of mass-weighted Cartesian normal modes, in atomics units
(Bohrs times square root of electron mass, i.e., ag - y/m.). Most quantum chemistry programs follow different conventions
when writing MOLDEN files. MoLPRO and MoLcas write these files with unweighted Cartesian normal modes, with
units of ag (Bohrs). Gaussian, TurBoMOLE, Q-CHEM, ADF, and Orca employ what could be called the "Gaussian
convention”, which are normalized Cartesian normal modes. COLUMBUS uses yet another convention in the output
of their suscal.x module. The script wigner.py automatically transforms these different conventions; it does so by
applying all possible transformations to the input data until it finds one transformation which produces an orthonormal
normal mode matrix. The latter one is then used for the Wigner sampling.

In order to create an initial condition (R, v), the following procedure is applied. Initially, Ry = Req and vy = 0. Then, for
each normal mode i, two random numbers P; and Q; are chosen uniformly from the interval [-5, 5]. The value of a
ground state quantum Wigner distribution for these values is calculated:

W; = e (Fi+QD, (8.119)

165

SHARC Manual 8 Methods and Algorithms | 823 Scaling

W; is compared to a uniform random r; number from [0, 1]. If W; > r;, then P; and Q; are accepted. Subsequently, the
coordinates:

Q
R;=R;_1 + ‘/?Vini (8120)
and velocities
P+\lv;
Vi =Vj_1+ £Ili (8.121)

V2

are updated. The random number procedure and updates are repeated for all normal modes, until (Ry, v)x is obtained,
which constitutes one initial condition. Finally, the center of mass is restored and translational and rotational components
are projected out of v. The harmonic potential energy is given by:

1
Epot = 5 Z viQ? (8.122)

1

8.22.1 Sampling at Non-zero Temperature

In the case of a non-zero temperature, the molecule might not be in the vibrational ground state of the harmonic
oscillator, but rather in an excited vibrational state. For a given mode i, the probability to be in any given vibrational
state j (j = 0 is the ground state) is:

_y 1
T P
wij=e ¥ (1 — | (8.123)
where y is v; divided by kgT. In order to find the vibrational state for mode i, a random number is drawn (from [0, 1])
and used as in equation (8.129).

The displacements and velocity contributions for mode i in state j are then obtained as in equations (8.120) and (8.121),
except that the Wigner distribution for state j is calculated as:

2P? +20%)™. (8.124)

J
Wi = (e e S L

8.23 Scaling

The scaling factor (keyword scaling) applies to all energies and derivatives of energies. Hence, the full Hamiltonian is
scaled, and the gradients are scaled. Nothing else is scaled (no dipole moments, nonadiabatic couplings, overlaps, etc).

8.24 Seeding of the RNG

The standard Fortran 90 random number generator (used for sharc.x, but not for the auxiliary scripts) is seeded by a
sequence of integers of length n, where n depends on the computer architecture. The input of SHARC, however, takes
only a single RNG seed, which must reproducibly produce the same sequence of random numbers for the same input.

In order to generate the seed sequence from the single input x, the following procedure is applied:

+ Query for the number n,

« Generate a first seed sequence s with s; = x + 37i + 172,

« Seed with the sequence s,

« Obtain a sequence r of n random numbers on the interval [0, 1],
+ Generate a second seed sequence s’ with s] = int (65536(r; — %)),
« Reseed with the sequence s’.

The fifth step will generate a sequence of nearly uncorrelated numbers, distributed uniformly over the full range of
possible integer values.

166

SHARC Manual 8 Methods and Algorithms | 825 Selection of gradients and nonadiabatic couplings

8.25 Selection of gradients and nonadiabatic couplings

In order to increase performance, it is possible to omit the calculation of certain gradients and nonadiabatic couplings.
An energy-gap-based algorithm selects at each time step a subset of all possible gradients and nonadiabatic couplings
to be calculated. Given the diagonal energy E?ag of the current active state &, the gradient g¥'“!! of MCH state « is
calculated if: o

|15§“ag - EQ}CH) < Egrad (8.125)
where £g44 is the selection threshold.
Similarly, a nonadiabatic coupling vector K}H is calculated if:

Po

’E?ag - EI;ACH‘ < éme and)E?ag - EI/}ACH‘ < nac (8.126)

with selection threshold ¢,c.

Neither g¥“H nor K%I;:H are ever calculated if a or f§ are frozen states.

There is only one keyword (eselect) to set the selection threshold, so £grag and ep,c are the same in most cases.

8.26 State ordering

The canonical ordering of MCH states of different S and Mg in SHARC is as follows. In the innermost loop, the quantum
number is increased; then Mg and finally S. Example:

nstates 3 0 3

In this example, the order of states is given as:

Number Label S Ms n
1S 0 0 1
2 5 0 0 2
3.8 0 0 3
4 T 2 -1 1
5 T, 2 -1 2
6 T, 2 -1 3
7 T 2 0 1
8 T, 2 0 2
9 T 2 0 3

10 T 2 +1 1
11 T 2 +1 2
12 T 2 +1 3

The canonical ordering of states is for example important in order to specify the initial state in the MCH basis (using
the state keyword in the input file).

Note that the diagonal states do not follow the same prescription. Since the diagonal states are in general not
eigenfunctions of the total spin operator, they do not have a well-defined multiplicity. Hence, the diagonal states are
simply ordered by increasing energy.

167

SHARC Manual 8 Methods and Algorithms | 8.27 Surface Hopping

8.27 Surface Hopping

Given two coefficient vectors c¢¥?8(¢) and ¢28(¢ + At) and the corresponding propagator matrix R%&(t + At, t), the
surface hopping probabilities are given by

. 2 . . *
c;‘;ag(t+m)| R [ci‘ag(HAt)R; , (cdﬁ‘ag(t))]
Pposa = [1= X —— - . (8.127)
iag iag _ iag * 1ag
& (t)‘ ‘cﬁ (t)| ‘R[cﬂ (t+ADRY (cﬁ (t))]

where, however, Ps_,5 = 0 and all negative Ps_,, are set to zero. This equation is the default in SHARC, and can be used
with hopping_procedure sharc.

Alternatively, the hopping probabilities can be obtained with the “global flux surface hopping” method by Prezhdo and
coworkers [71]. The equation is:

diag 2 d&i di
R ‘s (”A”‘ |cg "5t + At — | 5(1)? (8.128)
- ia 2 di di ’ ’
¢ g(n) > max [0, —(|e (¢ + At)[2 — [c¥(1)]2)

As above, Pg_,s = 0 and all negative Pg_,, are set to zero. This equation and can be used with hopping_procedure
gfsh.

In any case, the hopping procedure itself obtains a uniform random number r from the interval [0, 1]. A hop to state

is performed, if
a—1 a—1

Ppi <71 <Ppg+ ZPﬁHi (8.129)
=1 =

i=1

1

See section 8.13.1 for further details on how frustrated hops (hops according to the hopping probabilities, but where not
enough energy is available to execute the hop) are handled.

8.28 Velocity Verlet

The nuclear coordinates of atom A are updated according to the Velocity Verlet algorithm [109], based on the gradient
of state § at R(t) and R(t + At):

au(t) = — miAVRAEﬂ(R(t)) (8.130)

aa(t + AP = — —— Vo, E5(R(t + Ab)) (8.131)
ma

Ra(t + Af) =Ru(t) + va(D)AL + %aA(t)Atz (8.132)

VAt + A) =va(t) + % [aa(t) + aa(t + AD)] At (8.133)

Currently, there are no other integrators for the nuclear motion implemented in SHARC.

8.29 Wavefunction propagation

The electronic wave function is needed in order to carry out surface hopping. The electronic wave function is expanded
in the basis of the so-called model space S, which includes the few lowest states |¢/}!!!) of the multiplicities under
consideration (e.g. the 3 lowest singlet and 2 lowest triplet states).

Pa(t) = > chfH [yycH) (8.134)

a€eS

168

SHARC Manual 8 Methods and Algorithms | 8.29 Wavefunction propagation

All multiplet components are included explicitly, i.e., the inclusion of an MCH triplet state adds three explicit states to
the model space (the three components of the triplet).
Within SHARc, the wave function is represented just by the vector ¢M“H. The Hamiltonian HMH is represented in

matrix form with elements:
HMCH <¢MCH Htotal

MCH> (8.135)

a

From the MCH representation, the diagonal representation can be obtained by unitary transformation within the model
space S (UTHMCHU = Hdi#8 and UTMCH = cdiag).

P, (t) = Z cJiag giag> (8.136)
aeS
and
dlag <¢dlag Htota] d1ag> (8 137)
« .

The propagation of the electronic wave function from time ¢ to t + At can then be written as the product of a propagation
matrix with the coefficients at time t:

cB28(¢ + At) = RY%(¢ + At, t)cH98(1) (8.138)

or
c98(t + Ar) = UT(t + ADRMCH(t + At, 1)U(2) cBi28(1) (8.139)

Rdiag(¢+At,t)

In order to calculate RMCH(¢ + At, t), SHARC uses (unitary) operator exponentials.

8.29.1 Propagation using nonadiabatic couplings

Here we assume that in the dynamics the interaction between the electronic states is described by a matrix of nonadiabatic
couplings KMCH(¢), such that

(ki) <¢ﬁ(r>

%(t)> (8.140)
or

(k) = <¢ﬁ(t> wa(t>> (5.141)

In equation (8.140), the time-derivative couplings are dlrectly calculated by the quantum chemistry program (use
coupling ddt in the SHARC input), while in (8.141) the matrix KMCH(t) is obtained from the scalar product of the
nuclear velocity and the nonadiabatic coupling vectors (use coupling ddr in the input).

The propagation matrix can then be written as

t+At

RMCH(t 4 At 1) = fﬁexp - / (l
t

hHMCH(r) + KMCH(T)) dr (8.142)

with the time-ordering operator T. For small time steps At, HM®H(7) and KMH(z) can be interpolated linearly

RMCH(t + AL, 1) = exp [—— (h

HMCH(1) + - HMCH(t + Ar) + KMOH() + KMCH(¢ 4+ At)) At] (8.143)

And in order to have a sufficiently small time step for this to work, the interval (¢, t + At) is further split into subtime

steps At = %.

n
RMCH(; 4 A1) = 1_[R (8.144)

i=1
R; =exp [— (%Hl + Kl-) AT] (8.145)
HMCH(p) 4 L (HMCH(t + AL - HMCH(t)) (8.146)

n
K, =KMCH(p) 4 L (KMCH(t + AL - KMCH(t)) (8.147)
n

169

SHARC Manual 8 Methods and Algorithms | 8.29 Wavefunction propagation

8.29.2 Propagation using overlap matrices

In many situations, the nonadiabatic couplings in KM®H are very localized on the potential hypersurfaces. If this is the

case, in the dynamics very short time steps are necessary to properly sample the nonadiabatic couplings. If too large
time steps are used, part of the coupling may be missed, leading to wrong population transfer. The local diabatization
algorithm gives more numerical stability in these situations. It can be requested with the line coupling overlap in the
input file.

Within this algorithm, the change of the electronic states between time steps is described by the overlap matrix
SMCH(; t + At)

(sMCTi(e, £ + At))ﬁ = (Yp(O|Valt + AD)) (8.148)
(o4
With this, the propagator matrix can be written as
n
RMCH(4 At 1) =SMM (e ¢+ AD' [| R, (8.149)
i=1
i
R; =exp —ﬁH,—AT] (8.150)
H; =HMCH () 4+ L (HﬁffH - HMCH(t)) (8.151)
n
HMCH —gMCH(¢ 4 AHMH(t + ADSMH(E, t + AT (8.152)

170

Bibliography

(1]
(2]

(3]

(4]

(5]

(6]

(7]

[12]

M. Kasha: i “Characterization of electronic transitions in complex molecules”. Discuss. Faraday Soc., 9, 14 (1950).

C. M. Marian: ¢ “Spin-orbit coupling and intersystem crossing in molecules”. WIREs Comput. Mol. Sci., 2, 187-203
(2012).

L. Wilkinson, A. E. Boguslavskiy, J. Mikosch, D. M. Villeneuve, H.-]. Worner, M. Spanner, S. Patchkovskii, A. Stolow:
7 “Non-adiabatic and intersystem crossing dynamics in SO, I: Bound State Relaxation Studied By Time-Resolved
Photoelectron Photoion Coincidence Spectroscopy”. J. Chem. Phys., 140, 204 301 (2014).

S. Mai, P. Marquetand, L. Gonzalez: ¢ “Non-Adiabatic Dynamics in SO,: II. The Role of Triplet States Studied by
Surface-Hopping Simulations”. J. Chem. Phys., 140, 204 302 (2014).

C. Lévéque, R. Taieb, H. Koéppel: 7 “Communication: Theoretical prediction of the importance of the B, state in
the dynamics of sulfur dioxide”. . Chem. Phys., 140, 091101 (2014).

T.J. Penfold, R. Spesyvtsev, O. M. Kirkby, R. S. Minns, D. S. N. Parker, H. H. Fielding, G. A. Worth: & “Quantum
dynamics study of the competing ultrafast intersystem crossing and internal conversion in the "channel 3” region
of benzene”. J. Chem. Phys., 137, 204310 (2012).

R. A. Vogt, C. Reichardt, C. E. Crespo-Hernandez: i “Excited-State Dynamics in Nitro-Naphthalene Derivatives:
Intersystem Crossing to the Triplet Manifold in Hundreds of Femtoseconds”. 7. Phys. Chem., 117, 6580-6588
(2013).

C. E. Crespo-Hernandez, B. Cohen, P. M. Hare, B. Kohler: &7 “Ultrafast Excited-State Dynamics in Nucleic Acids”.
Chem. Rev,, 104, 1977-2020 (2004).

M. Richter, P. Marquetand, J. Gonzalez-Vazquez, L. Sola, L. Gonzélez: ¢ “Femtosecond Intersystem Crossing in the
DNA Nucleobase Cytosine”. J. Phys. Chem. Lett., 3, 3090-3095 (2012).

L. Martinez-Fernandez, L. Gonzalez, I. Corral: 7 “An Ab Initio Mechanism for Efficient Population of Triplet
States in Cytotoxic Sulfur Substituted DNA Bases: The Case of 6-Thioguanine”. Chem. Commun., 48, 2134-2136
(2012).

S. Mai, P. Marquetand, M. Richter, J. Gonzalez-Vazquez, L. Gonzalez: 7 “Singlet and Triplet Excited-State Dynamics
Study of the Keto and Enol Tautomers of Cytosine”. ChemPhysChem, 14, 2920-2931 (2013).

C. Reichardt, C. E. Crespo-Hernandez: 7 “Ultrafast Spin Crossover in 4-Thiothymidine in an Ionic Liquid”. Chem.
Commun., 46, 5963-5965 (2010).

[13] J. C. Tully, R. K. Preston: 7 “Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The

Reaction of H* with D,”. J. Chem. Phys., 55, 562-572 (1971).

[14] J. C. Tully: & “Molecular dynamics with electronic transitions”. J. Chem. Phys., 93, 1061-1071 (1990).

[15]

M. Barbatti: ¢ “Nonadiabatic dynamics with trajectory surface hopping method”. WIREs Comput. Mol. Sci., 1,
620-633 (2011).

[16] J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, N. Bellonzi: @ “Understanding the Surface Hopping View

of Electronic Transitions and Decoherence”. Annu. Rev. Phys. Chem., 67, 387-417 (2016).

171

http://dx.doi.org/10.1039/df9500900014
http://dx.doi.org/10.1002/wcms.83
http://dx.doi.org/10.1063/1.4875035
http://dx.doi.org/10.1063/1.4875035
http://dx.doi.org/10.1063/1.4875036
http://dx.doi.org/10.1063/1.4875036
http://dx.doi.org/10.1063/1.4867252
http://dx.doi.org/10.1063/1.4867252
http://dx.doi.org/10.1063/1.4767054
http://dx.doi.org/10.1063/1.4767054
http://dx.doi.org/10.1063/1.4767054
http://dx.doi.org/10.1021/jp405656n
http://dx.doi.org/10.1021/jp405656n
http://dx.doi.org/10.1021/cr0206770
http://dx.doi.org/10.1021/jz301312h
http://dx.doi.org/10.1021/jz301312h
http://dx.doi.org/10.1039/C2CC15775F
http://dx.doi.org/10.1039/C2CC15775F
http://dx.doi.org/10.1002/cphc.201300370
http://dx.doi.org/10.1002/cphc.201300370
http://dx.doi.org/10.1039/C0CC01181A
http://dx.doi.org/doi:10.1063/1.1675788
http://dx.doi.org/doi:10.1063/1.1675788
http://dx.doi.org/10.1063/1.459170
http://dx.doi.org/10.1002/wcms.64
http://dx.doi.org/10.1146/annurev-physchem-040215-112245
http://dx.doi.org/10.1146/annurev-physchem-040215-112245

SHARC Manual Bibliography | Bibliography

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

L. Wang, A. Akimov, O. V. Prezhdo: & “Recent Progress in Surface Hopping: 2011-2015”. J. Phys. Chem. Lett., 7,
2100-2112 (2016).

N. L. Doltsinis: “Molecular Dynamics Beyond the Born-Oppenheimer Approximation: Mixed Quantum-Classical
Approaches”. In J. Grotendorst, S. Bliigel, D. Marx (editors), Computational Nanoscience: Do It Yourself!, volume 31
of NIC Series, 389-409, John von Neuman Institut for Computing, Jiilich (2006).

N. L. Doltsinis, D. Marx: ¢ “First Principles Molecular Dynamics Involving Excited States And Nonadiabatic
Transitions”. J. Theor. Comput. Chem., 1, 319-349 (2002).

S. Hammes-Schiffer, J. C. Tully: & “Proton transfer in solution: Molecular dynamics with quantum transitions”. .
Chem. Phys., 101, 4657-4667 (1994).

G. Granucci, M. Persico: ¢ “Critical appraisal of the fewest switches algorithm for surface hopping”. 7. Chem.
Phys., 126, 134 114 (2007).

M. Thachuk, M. Y. Ivanov, D. M. Wardlaw: c7 “A semiclassical approach to intense-field above-threshold dissocia-
tion in the long wavelength limit”. J. Chem. Phys., 105, 4094-4104 (1996).

B. Maiti, G. C. Schatz, G. Lendvay: & “Importance of Intersystem Crossing in the S(3P, 1D) + H2 — SH + H
Reaction”. J. Phys. Chem. A, 108, 8772-8781 (2004).

G. A. Jones, A. Acocella, F. Zerbetto: 7 “On-the-Fly, Electric-Field-Driven, Coupled Electron-Nuclear Dynamics”.
7. Phys. Chem. A, 112, 96509656 (2008).

R. Mitri¢, J. Petersen, V. Bona¢ié-Koutecky: & “Laser-field-induced surface-hopping method for the simulation
and control of ultrafast photodynamics”. Phys. Rev. A, 79, 053 416 (2009).

G. Granucci, M. Persico, G. Spighi: 7 “Surface hopping trajectory simulations with spin-orbit and dynamical
couplings”. . Chem. Phys., 137, 22A501 (2012).

B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli: i7 “Local Control Theory using Trajectory Surface
Hopping and Linear-Response Time-Dependent Density Functional Theory”. Chimia, 67, 218-221 (2013).

G. Cui, W. Thiel: @ “Generalized trajectory surface-hopping method for internal conversion and intersystem
crossing”. J. Chem. Phys., 141, 124101 (2014).

[29] J. Pittner, H. Lischka, M. Barbatti: & “Optimization of mixed quantum-classical dynamics: Time-derivative

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(37]

coupling terms and selected couplings”. Chem. Phys., 356, 147 — 152 (2009).

A. Jain, E. Alguire,]J. E. Subotnik: 7 “An Efficient, Augmented Surface Hopping Algorithm That Includes
Decoherence for Use in Large-Scale Simulations”. J. Chem. Theory Comput., 12, 5256-5268 (2016).

M. Ruckenbauer, S. Mai, P. Marquetand, L. Gonzélez: 7 “Revealing Deactivation Pathways Hidden in Time-
Resolved Photoelectron Spectra”. Sci. Rep., 6, 35 522 (2016).

F. Plasser, M. Wormit, A. Dreuw: & “New tools for the systematic analysis and visualization of electronic
excitations. I. Formalism”. J. Chem. Phys., 141, 024 106 (2014).

F. Plasser, S. A. Bappler, M. Wormit, A. Dreuw: 7 “New tools for the systematic analysis and visualization of
electronic excitations. II. Applications”. J. Chem. Phys., 141, 024 107 (2014).

F. Plasser: “TheoDORE: A package for theoretical density, orbital relaxation, and exciton analysis”. http://theodore-
qc.sourceforge.net (2017).

B. R. Landry, M. J. Falk, J. E. Subotnik: ¢ “Communication: The correct interpretation of surface hopping
trajectories: How to calculate electronic properties”. J. Chem. Phys., 139, 211 101 (2013).

S. Mai, P. Marquetand, L. Gonzalez: 7 “Nonadiabatic dynamics: The SHARC approach”. WIREs Comput. Mol. Sci.,
8, e1370 (2018).

S. Mai, M. Richter, M. Heindl, M. F. S. J. Menger, A. J. Atkins, M. Ruckenbauer, F. Plasser, L. M. Ibele, S. Kropf,
M. Oppel, P. Marquetand, L. Gonzalez: “SHARC2.1: Surface Hopping Including Arbitrary Couplings — Program
Package for Non-Adiabatic Dynamics”. sharc-md.org (2019).

172

http://dx.doi.org/10.1021/acs.jpclett.6b00710
http://dx.doi.org/10.1142/S0219633602000257
http://dx.doi.org/10.1142/S0219633602000257
http://dx.doi.org/10.1063/1.467455
http://dx.doi.org/10.1063/1.2715585
http://dx.doi.org/10.1063/1.472281
http://dx.doi.org/10.1063/1.472281
http://dx.doi.org/10.1021/jp049143o
http://dx.doi.org/10.1021/jp049143o
http://dx.doi.org/10.1021/jp805360v
http://dx.doi.org/10.1103/PhysRevA.79.053416
http://dx.doi.org/10.1103/PhysRevA.79.053416
http://dx.doi.org/10.1063/1.4707737
http://dx.doi.org/10.1063/1.4707737
http://dx.doi.org/doi:10.2533/chimia.2013.218
http://dx.doi.org/doi:10.2533/chimia.2013.218
http://dx.doi.org/10.1063/1.4894849
http://dx.doi.org/10.1063/1.4894849
http://dx.doi.org/10.1016/j.chemphys.2008.10.013
http://dx.doi.org/10.1016/j.chemphys.2008.10.013
http://dx.doi.org/10.1021/acs.jctc.6b00673
http://dx.doi.org/10.1021/acs.jctc.6b00673
http://dx.doi.org/10.1038/srep35522
http://dx.doi.org/10.1038/srep35522
http://dx.doi.org/10.1063/1.4885819
http://dx.doi.org/10.1063/1.4885819
http://dx.doi.org/10.1063/1.4885820
http://dx.doi.org/10.1063/1.4885820
http://dx.doi.org/10.1063/1.4837795
http://dx.doi.org/10.1063/1.4837795
http://dx.doi.org/10.1002/wcms.1370

SHARC Manual Bibliography | Bibliography

(38]

[39]

[40]

[41]

[42]

[43]

[46]

(47]

(48]

[51]

(52]

(53]

M. Richter, P. Marquetand, J. Gonzalez-Vazquez, 1. Sola, L. Gonzalez: & “SHARC: Ab Initio Molecular Dynamics
with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings”. J. Chem. Theory Comput.,
7, 1253-1258 (2011).

M. Richter, P. Marquetand, J. Gonzélez-Vazquez, I. Sola, L. Gonzalez: i “Correction to SHARC: Ab Initio Molecular
Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings”. . Chem. Theory
Comput., 8, 374-374 (2012).

J.J. Bajo, J. Gonzalez-Vazquez, 1. Sola, J. Santamaria, M. Richter, P. Marquetand, L. Gonzalez: & “Mixed Quantum-
Classical Dynamics in the Adiabatic Representation to Simulate Molecules Driven by Strong Laser Pulses”. 7.
Phys. Chem. A, 116, 2800-2807 (2012).

P. Marquetand, M. Richter, J. Gonzalez-Vazquez, L. Sola, L. Gonzélez: i “Nonadiabatic ab initio molecular dynamics
including spin-orbit coupling and laser fields”. Faraday Discuss., 153, 261-273 (2011).

S. Mai, P. Marquetand, L. Gonzalez: &7 “A General Method to Describe Intersystem Crossing Dynamics in Trajectory
Surface Hopping”. Int. J. Quantum Chem., 115, 1215-1231 (2015).

S. Mai, F. Plasser, P. Marquetand, L. Gonzalez: ¢ “General trajectory surface hopping method for ultrafast
nonadiabatic dynamics”. In M. Vrakking, F. Lepine (editors), Attosecond Molecular Dynamics, chapter 10, 348-385,
The Royal Society of Chemistry (2018).

S. Mai, M. Richter, P. Marquetand, L. Gonzélez: 7 “Excitation of Nucleobases from a Computational Perspective
II: Dynamics”. In M. Barbatti, A. C. Borin, S. Ullrich (editors), Photoinduced Phenomena in Nucleic Acids I, volume
355 of Topics in Current Chemistry, 99-153, Springer Berlin Heidelberg (2015).

L. Gonzélez, P. Marquetand, M. Richter, J. Gonzélez-Vazquez, 1. Sola: ¢ “Ultrafast laser-induced processes described
by ab initio molecular dynamics”. In R. de Nalda, L. Bafiares (editors), Ultrafast Phenomena in Molecular Sciences,
volume 107 of Springer Series in Chemical Physics, 145-170, Springer (2014).

M. Richter, S. Mai, P. Marquetand, L. Gonzalez: & “Ultrafast Intersystem Crossing Dynamics in Uracil Unravelled
by Ab Initio Molecular Dynamics”. Phys. Chem. Chem. Phys., 16, 24 423-24 436 (2014).

L. Martinez-Fernandez,]. Gonzélez-Vazquez, L. Gonzalez, I. Corral: & “Time-resolved insight into the photosensi-
tized generation of singlet oxygen in endoperoxides”. J. Chem. Theory Comput., accepted (2014).

M. E. Corrales, V. Loriot, G. Balerdi, J. Gonzalez-Vazquez, R. de Nalda, L. Bafares, A. H. Zewail: 7 “Structural
dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction”. Phys. Chem. Chem.
Phys., 16, 8812-8818 (2014).

C. E. Crespo-Hernandez, L. Martinez-Fernandez, C. Rauer, C. Reichardt, S. Mai, M. Pollum, P. Marquetand,
L. Gonzaélez, I. Corral: &7 “Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine
Nucleobase Derivatives”. J. Am. Chem. Soc., 137, 4368-4381 (2015).

M. Marazzi, S. Mai, D. Roca-Sanjuan, M. G. Delcey, R. Lindh, L. Gonzalez, A. Monari: ¢ “Benzophenone Ultrafast
Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics”. 7. Phys. Chem. Lett., 7, 622-626
(2016).

M. Richter, B. P. Fingerhut: & “Simulation of Multi-Dimensional Signals in the Optical Domain: Quantum-Classical
Feedback in Nonlinear Exciton Propagation”. J. Chem. Theory Comput., 12, 3284-3294 (2016).

J. Cao, Z.-Z. Xie, X. Yu: & “Excited-state dynamics of oxazole: A combined electronic structure calculations and
dynamic simulations study”. Chem. Phys., 474, 25 — 35 (2016).

A. Banerjee, D. Halder, G. Ganguly, A. Paul: 7 “Deciphering the cryptic role of a catalytic electron in a photo-
chemical bond dissociation using excited state aromaticity markers”. Phys. Chem. Chem. Phys., 18, 25308-25 314
(2016).

S. Mai, P. Marquetand, L. Gonzalez: & “Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-
Thiouracil: A Time-Dependent Picture”. J. Phys. Chem. Lett., 7, 1978-1983 (2016).

173

http://dx.doi.org/10.1021/ct1007394
http://dx.doi.org/10.1021/ct1007394
http://dx.doi.org/10.1021/ct2005819
http://dx.doi.org/10.1021/ct2005819
http://dx.doi.org/10.1021/jp208997r
http://dx.doi.org/10.1021/jp208997r
http://dx.doi.org/10.1039/c1fd00055a
http://dx.doi.org/10.1039/c1fd00055a
http://dx.doi.org/10.1002/qua.24891
http://dx.doi.org/10.1002/qua.24891
http://dx.doi.org/10.1039/9781788012669-00348
http://dx.doi.org/10.1039/9781788012669-00348
http://dx.doi.org/10.1007/128_2014_549
http://dx.doi.org/10.1007/128_2014_549
http://dx.doi.org/10.1007/978-3-319-02051-8_7
http://dx.doi.org/10.1007/978-3-319-02051-8_7
http://dx.doi.org/10.1039/C4CP04158E
http://dx.doi.org/10.1039/C4CP04158E
http://dx.doi.org/10.1021/ct500909a
http://dx.doi.org/10.1021/ct500909a
http://dx.doi.org/10.1039/C3CP54677B
http://dx.doi.org/10.1039/C3CP54677B
http://dx.doi.org/10.1021/ja512536c
http://dx.doi.org/10.1021/ja512536c
http://dx.doi.org/10.1021/acs.jpclett.5b02792
http://dx.doi.org/10.1021/acs.jpclett.5b02792
http://dx.doi.org/10.1021/acs.jctc.6b00371
http://dx.doi.org/10.1021/acs.jctc.6b00371
http://dx.doi.org/10.1016/j.chemphys.2016.05.003
http://dx.doi.org/10.1016/j.chemphys.2016.05.003
http://dx.doi.org/10.1039/C6CP03789E
http://dx.doi.org/10.1039/C6CP03789E
http://dx.doi.org/10.1021/acs.jpclett.6b00616
http://dx.doi.org/10.1021/acs.jpclett.6b00616

SHARC Manual Bibliography | Bibliography

[55]

[66]

[67]

(68]

S. Mai, M. Pollum, L. Martinez-Fernandez, N. Dunn, P. Marquetand, L. Corral, C. E. Crespo-Hernandez, L. Gonzélez:
7 “The Origin of Efficient Triplet State Population in Sulfur-Substituted Nucleobases”. Nat. Commun., 7, 13 077
(2016).

F. Peccati, S. Mai, L. Gonzalez: 7 “Insights into the Deactivation of 5-Bromouracil after UV Excitation”. Phil. Trans.
R. Soc. A, 375, 20160 202 (2017).

M. Murillo-Sanchez, S. M. Poullain, J. Gonzélez-Vazquez, M. Corrales, G. Balerdi, L. Bafares: 7 “Femtosecond
photodissociation dynamics of chloroiodomethane in the first absorption band”. Chem. Phys. Lett., 683, 22 — 28
(2017), ahmed Zewail (1946-2016) Commemoration Issue of Chemical Physics Letters.

A. C. Borin, S. Mai, P. Marquetand, L. Gonzalez: & “Ab initio molecular dynamics relaxation and intersystem
crossing mechanisms of 5-azacytosine”. Phys. Chem. Chem. Phys., 19, 5888-5894 (2017).

S. Mai, M. Richter, P. Marquetand, L. Gonzalez: 2 “The DNA Nucleobase Thymine in Motion — Intersystem
Crossing Simulated with Surface Hopping”. Chem. Phys., 482, 9-15 (2017).

F. M. Siouri, S. Boldissar, J. A. Berenbeim, M. S. de Vries: ¢ “Excited State Dynamics of 6-Thioguanine”. J. Phys.
Chem. A, 121, 5257-5266 (2017).

D. Bellshaw, D. A. Horke, A. D. Smith, H. M. Watts, E. Jager, E. Springate, O. Alexander, C. Cacho, R. T. Chapman,
A. Kirrander, R. S. Minns: ¢ “Ab-initio surface hopping and multiphoton ionisation study of the photodissociation
dynamics of CS2”. Chem. Phys. Lett., 683, 383-388 (2017).

S. Sun, B. Mignolet, L. Fan, W. Li, R. D. Levine, F. Remacle: & “Nuclear Motion Driven Ultrafast Photodissociative
Charge Transfer of the PENNA Cation: An Experimental and Computational Study”. 7. Phys. Chem. A, 121,
1442-1447 (2017).

C. Rauer, J. J. Nogueira, P. Marquetand, L. Gonzélez: & “Cyclobutane Thymine Photodimerization Mechanism
Revealed by Nonadiabatic Molecular Dynamics”. J. Am. Chem. Soc., 138, 15911-15916 (2016).

A. J. Atkins, L. Gonzéalez: @@ “Trajectory Surface-Hopping Dynamics Including Intersystem Crossing in
[Ru(bpy)s]2*”. J. Phys. Chem. Lett., 8, 3840-3845 (2017).

T. Schnappinger, P. Kolle, M. Marazzi, A. Monari, L. Gonzélez, R. de Vivie-Riedle: &z “Ab initio molecular dynamics
of thiophene: the interplay of internal conversion and intersystem crossing”. Phys. Chem. Chem. Phys., 19,
25662-25 670 (2017).

S. Mai, F. Plasser, M. Pabst, F. Neese, A. Kohn, L. Gonzalez: 7 “Surface Hopping Dynamics Including Intersystem
Crossing using the Algebraic Diagrammatic Construction Method”. J. Chem. Phys., 147, 184 109 (2017).

J. P. Zobel, J. J. Nogueira, L. Gonzalez: i7 “The Mechanism of Ultrafast Intersystem Crossing in 2-Nitronaphthalene”.
Chem. Eur. 7., DOI:10.1002/chem.201705854 (2018).

C. Rauer, J. J. Nogueira, P. Marquetand, L. Gonzalez: 7 “Stepwise photosensitized thymine dimerization mediated
by an exciton intermediate”. Monatsh. Chem., 149, 1-9 (2018).

[69] J. Cao: &7 “The position of the N atom in the pentacyclic ring of heterocyclic molecules affects the excited-state

[70]

decay: A case study of isothiazole and thiazole”. J. Mol. Struct., DOI:10.1016/j.molstruc.2017.11.008 (2018).

R. J. Squibb, M. Sapunar, A. Ponzi, R. Richter, A. Kivimiki, O. Plekan, P. Finetti, N. Sisourat, V. Zhaunerchyk,
T. Marchenko, L. Journel, R. Guillemin, R. Cucini, M. Coreno, C. Grazioli, M. Di Fraia, C. Callegari, K. C. Prince,
P. Decleva, M. Simon, J. H. D. Eland, N. Dosli¢, R. Feifel, M. N. Piancastelli: 7 “Acetylacetone photodynamics at a
seeded free-electron laser”. Nat. Commun., 9, 63 (2018).

L. Wang, D. Trivedi, O. V. Prezhdo: 7 “Global Flux Surface Hopping Approach for Mixed Quantum-Classical
Dynamics”. J. Chem. Theory Comput., 10, 3598-3605 (2014).

G. Granucci, M. Persico, A. Toniolo: ¢ “Direct Semiclassical Simulation of Photochemical Processes with Semiem-
pirical Wave Functions”. J. Chem. Phys., 114, 10 608—10 615 (2001).

F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico, H. Lischka: ¢ “Surface Hopping Dynamics using a
Locally Diabatic Formalism: Charge Transfer in The Ethylene Dimer Cation and Excited State Dynamics in the
2-Pyridone Dimer”. J. Chem. Phys., 137, 22A514 (2012).

174

http://dx.doi.org/10.1038/ncomms13077
http://dx.doi.org/10.1098/rsta.2016.0202
http://dx.doi.org/https://doi.org/10.1016/j.cplett.2017.02.037
http://dx.doi.org/https://doi.org/10.1016/j.cplett.2017.02.037
http://dx.doi.org/10.1039/C6CP07919A
http://dx.doi.org/10.1039/C6CP07919A
http://dx.doi.org/10.1016/j.chemphys.2016.10.003
http://dx.doi.org/10.1016/j.chemphys.2016.10.003
http://dx.doi.org/10.1021/acs.jpca.7b03036
http://dx.doi.org/https://doi.org/10.1016/j.cplett.2017.02.058
http://dx.doi.org/https://doi.org/10.1016/j.cplett.2017.02.058
http://dx.doi.org/10.1021/acs.jpca.6b12310
http://dx.doi.org/10.1021/acs.jpca.6b12310
http://dx.doi.org/10.1021/jacs.6b06701
http://dx.doi.org/10.1021/jacs.6b06701
http://dx.doi.org/10.1021/acs.jpclett.7b01479
http://dx.doi.org/10.1021/acs.jpclett.7b01479
http://dx.doi.org/10.1039/C7CP05061E
http://dx.doi.org/10.1039/C7CP05061E
http://dx.doi.org/10.1063/1.4999687
http://dx.doi.org/10.1063/1.4999687
http://dx.doi.org/10.1002/chem.201705854
http://dx.doi.org/10.1007/s00706-017-2108-4
http://dx.doi.org/10.1007/s00706-017-2108-4
http://dx.doi.org/https://doi.org/10.1016/j.molstruc.2017.11.008
http://dx.doi.org/https://doi.org/10.1016/j.molstruc.2017.11.008
http://dx.doi.org/10.1038/s41467-017-02478-0
http://dx.doi.org/10.1038/s41467-017-02478-0
http://dx.doi.org/10.1021/ct5003835
http://dx.doi.org/10.1021/ct5003835
http://dx.doi.org/10.1063/1.1376633
http://dx.doi.org/10.1063/1.1376633
http://dx.doi.org/10.1063/1.4738960
http://dx.doi.org/10.1063/1.4738960
http://dx.doi.org/10.1063/1.4738960

SHARC Manual Bibliography | Bibliography

(74]

F. Plasser, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. Gonzalez: ¢ “Efficient and Flexible Computation
of Many-Electron Wave Function Overlaps”. J. Chem. Theory Comput., 12, 1207 (2016).

[75] J.P. Dahl, M. Springborg: & “The Morse oscillator in position space, momentum space, and phase space”. . Chem.

[76]

[79]

Phys., 88, 4535-4547 (1988).

R. Schinke: Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules. Cambridge
University Press (1995).

M. Barbatti, K. Sen: 7 “Effects of different initial condition samplings on photodynamics and spectrum of pyrrole”.
Int. J. Quantum Chem., 116, 762-771 (2016).

M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksi¢, H. Lischka: ¢z “The on-
the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic
photodynamics of benchmark systems”. J. Photochem. Photobiol. A, 190, 228-240 (2007).

D. Cremer, J. A. Pople: 7 “General definition of ring puckering coordinates”. . Am. Chem. Soc., 97, 1354—-1358
(1975).

[80] J. C. A. Boeyens: 7 “The conformation of six-membered rings”. J. Cryst. Mol. Struct., 8, 317 (1978).

(81]

(82]

(83]

(84]

L. Kurtz, A. Hofmann, R. de Vivie-Riedle: “Ground state normal mode analysis: Linking excited state dynamics
and experimental observables”. J. Chem. Phys., 114, 6151-6159 (2001).

F. Plasser: Dynamics Simulation of Excited State Intramolecular Proton Transfer. Master’s thesis, University of
Vienna (2009).

A. Amadei, A. B. M. Linssen, H. J. C. Berendsen: ¢ “Essential dynamics of proteins”. Proteins: Struct., Funct.,
Bioinf, 17, 412-425 (1993).

S.Nangia, A. W. Jasper, T. F. Miller, D. G. Truhlar: 2 “Army Ants Algorithm for Rare Event Sampling of Delocalized
Nonadiabatic Transitions by Trajectory Surface Hopping and the Estimation of Sampling Errors by the Bootstrap
Method”. J. Chem. Phys., 120, 3586-3597 (2004).

M. J. Bearpark, M. A. Robb, H. B. Schlegel: ¢z “A direct method for the location of the lowest energy point on a
potential surface crossing”. Chem. Phys. Lett., 223, 269 (1994).

B. G. Levine, J. D. Coe, T. J. Martinez: 7 “Optimizing Conical Intersections without Derivative Coupling Vectors:
Application to Multistate Multireference Second-Order Perturbation Theory (MS-CASPT2)”. . Phys. Chem. B,
112, 405-413 (2008).

M. Ruckenbauer, S. Mai, P. Marquetand, L. Gonzélez: i “Photoelectron spectra of 2-thiouracil, 4-thiouracil, and
2,4-dithiouracil”. . Chem. Phys., 144, 074 303 (2016).

F. Plasser, L. Gonzélez: @ “Communication: Unambiguous comparison of many-electron wavefunctions through
their overlaps”. J. Chem. Phys., 145, 021 103 (2016).

F. Plasser, S. Goméz, S. Mai, L. Gonzalez: iz “Highly efficient surface hopping dynamics using a linear vibronic
coupling model”. Phys. Chem. Chem. Phys., Advance Article, DOI:10.1039/C8CP05 662E (2018).

H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schiitz: & “Molpro: A general-purpose quantum chemistry
program package”. WIREs Comput. Mol. Sci., 2, 242-253 (2012).

H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, et al.: “MOLPRO, version 2012.1, a package of ab initio
programs”. www.molpro.net (2012).

G. Karlstréom, R. Lindh, P.-A. Malmgvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schim-
melpfennig, P. Neogrady, L. Seijo: @ “MOLCAS: a program package for computational chemistry”. Comput. Mater.
Sci., 28, 222 — 239 (2003).

F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-A. Malmgqvist, P. Neogrady, T. B. Pedersen, M. Pitoniak, M. Reiher,
B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, R. Lindh: &2 “MOLCAS 7: The Next Generation”. §. Comput.
Chem., 31, 224-247 (2010).

175

http://dx.doi.org/10.1021/acs.jctc.5b01148
http://dx.doi.org/10.1021/acs.jctc.5b01148
http://dx.doi.org/doi:10.1063/1.453761
http://dx.doi.org/10.1002/qua.25049
http://dx.doi.org/10.1016/j.jphotochem.2006.12.008
http://dx.doi.org/10.1016/j.jphotochem.2006.12.008
http://dx.doi.org/10.1016/j.jphotochem.2006.12.008
http://dx.doi.org/10.1021/ja00839a011
http://dx.doi.org/10.1007/BF01200485
http://dx.doi.org/10.1002/prot.340170408
http://dx.doi.org/10.1063/1.1641019
http://dx.doi.org/10.1063/1.1641019
http://dx.doi.org/10.1063/1.1641019
http://dx.doi.org/10.1016/0009-2614(94)00433-1
http://dx.doi.org/10.1016/0009-2614(94)00433-1
http://dx.doi.org/10.1021/jp0761618
http://dx.doi.org/10.1021/jp0761618
http://dx.doi.org/10.1063/1.4941948
http://dx.doi.org/10.1063/1.4941948
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1039/C8CP05662E
http://dx.doi.org/10.1039/C8CP05662E
http://dx.doi.org/10.1002/wcms.82
http://dx.doi.org/10.1002/wcms.82
http://dx.doi.org/10.1016/S0927-0256(03)00109-5
http://dx.doi.org/10.1002/jcc.21318

SHARC Manual Bibliography | Bibliography

[94]

[100]

[101]

[102]

[103]

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galvan, N. Ferré,
L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P.-A. Malmqvist,
T. Miller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro,
J. Segarra-Marti, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy,
O. Weingart, F. Zapata, R. Lindh: & “Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical
Calculations Across the Periodic Table”. J. Comput. Chem., 37, 506-541 (2015).

H. Lischka, T. Miller, P. G. Szalay, L. Shavitt, R. M. Pitzer, R. Shepard: 7 “Columbus — a program system for
advanced multireference theory calculations” WIREs Comput. Mol. Sci., 1, 191-199 (2011).

H. Lischka, R. Shepard, I. Shavitt, R. M. Pitzer, M. Dallos, T. Miiller, P. G. Szalay, F. B. Brown, R. Ahlrichs, H. J.
Boéhm, A. Chang, D. C. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Hochtl, S. Irle, G. Kedziora,
T. Kovar, V. Parasuk, M. J. M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schiiler, M. Seth, E. A. Stahlberg,
J.-G. Zhao, S. Yabushita, Z. Zhang, M. Barbatti, S. Matsika, M. Schuurmann, D. R. Yarkony, S. R. Brozell, E. V.
Beck, , J.-P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser, J. J. Szymczak: “COLUMBUS, an ab initio electronic
structure program, release 7.0” (2012).

S. Yabushita, Z. Zhang, R. M. Pitzer: & “Spin-Orbit Configuration Interaction Using the Graphical Unitary Group
Approach and Relativistic Core Potential and Spin-Orbit Operators”. . Phys. Chem. A, 103, 5791-5800 (1999).

S. Mai, T. Miiller, P. Marquetand, F. Plasser, H. Lischka, L. Gonzalez: ¢ “Perturbational Treatment of Spin-Orbit
Coupling for Generally Applicable High-Level Multi-Reference Methods”. J. Chem. Phys., 141, 074 105 (2014).

E.J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, D. Bashford, O. Baseggio, A. Bérces, F. M. Bickelhaupt, C. Bo,
P. M. Boerritger, L. Cavallo, C. Daul, D. P. Chong, D. V. Chulhai, L. Deng, R. M. Dickson, J. M. Dieterich, D. E.
Ellis, M. van Faassen, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. Goez, A. W. Gétz, S. Gusarov, F. E.
Harris, P. van den Hoek, Z. Hu, C. R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J. W. Kaminski, G. van Kessel,
C. Konig, F. Kootstra, A. Kovalenko, M. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj,
S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, C. A. Peeples,
P. H. T. Philipsen, D. Post, C. C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J. I. Rodriguez, P. Ros, R. Riiger,
P. R. T. Schipper, D. Schliins, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Sola,
S. M., M. Swart, D. Swerhone, G. te Velde, V. Tognetti, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang,
T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev: “ADF2019, SCM,
Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, https://www.scm.com”.

“TURBOMOLE V7.0, A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH” (2015).

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V.
Ortiz, J. Cioslowski, , D. J. Fox: “Gaussian 09, Revision A.1”. Gaussian, Inc.: Wallingford CT, 2009 (2009).

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A.
Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci,
H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi,
J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers,
K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin,
K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox: “Gaussian16 Revision A.03” (2016), gaussian Inc. Wallingford
CT.

F. Neese: 7 “Software update: the ORCA program system, version 4.0”. WIREs Comput. Mol. Sci., 8, e1327 (2017).

176

http://dx.doi.org/10.1002/jcc.24221
http://dx.doi.org/10.1002/jcc.24221
http://dx.doi.org/10.1002/wcms.25
http://dx.doi.org/10.1002/wcms.25
http://dx.doi.org/10.1021/jp9901242
http://dx.doi.org/10.1021/jp9901242
http://dx.doi.org/10.1063/1.4892060
http://dx.doi.org/10.1063/1.4892060
http://dx.doi.org/10.1002/wcms.81

SHARC Manual Bibliography | Bibliography

[104] T. Shiozaki: 7 “BAGEL: Brilliantly Advanced General Electronic-structure Library”. WIREs Comput. Mol. Sci., 8,
el1331 (2018).

[105] G. Granucci, M. Persico, A. Zoccante: 7 “Including quantum decoherence in surface hopping”. J. Chem. Phys.,
133, 134111 (2010).

[106] H. Koppel, W. Domcke, L. S. Cederbaum: “Multimode molecular dynamics beyond the Born-Oppenheimer
approximation”. Adv. Chem. Phys., 57, 59-246 (1984).

[107] M. Barbatti, G. Granucci, M. Ruckenbauer, F. Plasser, J. Pittner, M. Persico, H. Lischka: “NEWTON-X: a package
for Newtonian dynamics close to the crossing seam, version 1.2”. www.newtonx.org (2011).

[108] P. Marquetand: Vectorial properties and laser control of molecular dynamics. Ph.D. thesis, University of Wiirzburg
(2007), http://opus.bibliothek.uni-wuerzburg.de/volltexte/2007/2469/.

[109] L. Verlet: & “Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones
Molecules”. Phys. Rev., 159, 98-103 (1967).

177

http://dx.doi.org/10.1002/wcms.1331
http://dx.doi.org/10.1063/1.3489004
http://opus.bibliothek.uni-wuerzburg.de/volltexte/2007/2469/
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.159.98

List of Tables

2.1

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Environment variables for SHARC testjobs. L L L 25
Input keywords for sharc.x. L 36
Control keywords for SHARC interfaces. L L 53
Request keywords for SHARC interfaces. 53
Overview over capabilities of SHARC interfaces. L .. 57
Overview over files of SHARC interfaces. L 57
Keywords for the MOLPRO.resources inputfile.. 60
Keywords for the MOLACS.templatefile. 63
Keywords for the MOLCAS.resources file. 64
Keywords for the COLUMBUS.resources file. 67
Keywords for the ADF.templatefile. 72
Keywords for the ADF.resources file. L 74
Keywords for the RICC2.templatefile. 78
Keywords for the RICC2.resourcesfile. 79
Keywords for the GAUSSIAN.templatefile. 83
Keywords for the GAUSSIAN.resources file. 84
Keywords for the ORCA.templatefile. 86
Keywords for the ORCA.resources file. 87
Keywords for the BAGEL.templatefile. 89
Keywords for the BAGEL.resources file. 90
List of keywords given in the inputfile. L 94
Command-line options for script wigner.py. L L e 98
Command-line options for script amber_to_initconds.py., 100
Command-line options for script sharctraj_to_initconds.py. 101
Command-line options for script spectrum.py. 118
Command-line options for data_extractor.x. o 120
Content of the files written by data_extractor.x. 120
List of the settings for diagnostics.py. L e 124
Analysis modes for populations.py. 126
Analysis modes for transition.py. 128
Possible types of internal coordinates in geo.py. L o 135
Command-line options for geo.py. L 136
Command-line options for QMout_print.py. L 146

178

List of Figures

1.1

2.1

3.1
3.2
3.3

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

Jabtonski diagram showing the conceptual photophysical processes. 9
Directory tree containing a complete SHARC installation. 23
Input files for a SHARC dynamics simulation. L L L Lo L L 27
Files of a SHARC dynamics simulation after running. L L L L 28
Typical workflow for conducting excited-state dynamics simulations with Smarc. 29
Communication between sharc.x, the interfaces, and the quantum chemistry codes. 51
Example directory structure of the CoLumBUSs template directory 68
Workflow of the wavefunction overlap program. 92
Directory structure created by setup_init.py. 109
Directory structure created by setup_traj.py. 116
Color code for plots generated with the use of make_gnuscript.py. 123
Possible workflows in data_collector.py. e 140
Communication between ORca, orca_External, the interfaces, and the quantum chemistry codes. . . . 145
Forbidden and allowed features of the reaction network graphs. 155
Example reaction network graph. For explanation see text. 155
Types of laser envelopes implemented in laser.x. 159

179

	Title Page
	Contact
	Contents
	Introduction
	Capabilities
	New features in Sharc Version 2.0
	New features in Sharc Version 2.1

	References
	Authors
	Suggestions and Bug Reports
	Notation in this Manual

	Installation
	How To Obtain
	Terms of Use
	Installation
	WFoverlap Program
	Libraries
	Test Suite
	Additional Programs
	Quantum Chemistry Programs

	Execution
	Running a single trajectory
	Input files
	Running the dynamics code
	Output files

	Typical workflow for an ensemble of trajectories
	Initial condition generation
	Running the dynamics simulations
	Analysis of the dynamics results

	Auxilliary Programs and Scripts
	Setup
	Analysis
	Interfaces
	Others

	The Pysharc dynamics driver

	Input files
	Main input file
	General remarks
	Input keywords
	Detailed Description of the Keywords
	Example

	Geometry file
	Velocity file
	Coefficient file
	Laser file
	Atom mask file

	Output files
	Log file
	Listing file
	Data file
	Specification of the data file

	Data file in NetCDF format
	XYZ file

	Interfaces
	Interface Specifications
	QM.in Specification
	QM.out Specification
	Further Specifications
	Save Directory Specification

	Overview over Interfaces
	Example Directory

	MOLPRO Interface
	Template file: MOLPRO.template
	Resource file: MOLPRO.resources
	Error checking
	Things to keep in mind
	Molpro input generator: molpro_input.py

	MOLCAS Interface
	Template file: MOLCAS.template
	Resource file: MOLCAS.resources
	Template file generator: molcas_input.py
	QM/MM key file: MOLCAS.qmmm.key
	QM/MM connection table file: MOLCAS.qmmm.table

	COLUMBUS Interface
	Template input
	Resource file: COLUMBUS.resources
	Template setup

	Analytical PESs Interface
	Parametrization
	Template file: Analytical.template

	ADF Interface
	Template file: ADF.template
	Resource file: ADF.resources
	QM/MM force field file: ADF.qmmm.ff
	QM/MM connection table file: ADF.qmmm.table
	Input file generator: ADF_input.py
	Frequencies converter: ADF_freq.py

	RICC2 Interface
	Template file: RICC2.template
	Resource file: RICC2.resources
	QM/MM force field file
	QM/MM connection table file: RICC2.qmmm.table

	LVC Interface
	Input files
	Template File Setup: wigner.py, setup_LVCparam.py, and create_LVCparam.py

	Gaussian Interface
	Template file: GAUSSIAN.template
	Resource file: GAUSSIAN.resources

	Orca Interface
	Template file: ORCA.template
	Resource file: ORCA.resources
	QM/MM force field file
	QM/MM connection table file: ORCA.qmmm.table

	Bagel Interface
	Template file: BAGEL.template
	Resource file: BAGEL.resources

	The WFoverlap Program
	Installation
	Workflow
	Calling the program
	Input data
	Output

	Auxilliary Scripts
	Wigner Distribution Sampling: wigner.py
	Usage
	Normal mode types
	Non-default masses
	Sampling at finite temperatures
	Output

	Amber Trajectory Sampling: amber_to_initconds.py
	Usage
	Time Step
	Atom Types and Masses
	Output

	Sharc Trajectory Sampling: sharctraj_to_initconds.py
	Usage
	Random Picking of Time Step
	Output

	Setup of Initial Calculations: setup_init.py
	Usage
	Input
	Interface-specific input
	Input for Run Scripts
	Output

	Excitation Selection: excite.py
	Usage
	Input
	Matrix diagonalization
	Output
	Specification of the initconds.excited file format

	Setup of Trajectories: setup_traj.py
	Input
	Interface-specific input
	Output control
	Run script setup
	Output

	Laser field generation: laser.x
	Usage
	Input

	Calculation of Absorption Spectra: spectrum.py
	Input
	Output
	Error Analysis

	File transfer: retrieve.sh
	Data Extractor: data_extractor.x
	Usage
	Output

	Data Extractor for NetCDF: data_extractor_NetCDF.x
	Usage
	Output

	Data Converter for NetCDF: data_converter.x
	Usage
	Output

	Plotting the Extracted Data: make_gnuscript.py
	Ensemble Diagnostics Tool: diagnostics.py
	Usage
	Input

	Calculation of Ensemble Populations: populations.py
	Usage
	Output

	Calculation of Numbers of Hops: transition.py
	Usage

	Fitting population data to kinetic models: make_fit.py
	Usage
	Input
	Output

	Fitting population data to kinetic models: make_fitscript.py
	Usage
	Input
	Output

	Estimating Errors of Fits: bootstrap.py
	Usage
	Input
	Output

	Obtaining Special Geometries: crossing.py
	Usage
	Output

	Internal Coordinates Analysis: geo.py
	Input
	Options

	Essential Dynamics Analysis: trajana_essdyn.py
	Usage
	Input
	Output

	Normal Mode Analysis: trajana_nma.py
	Usage
	Input
	Output

	General Data Analysis: data_collector.py
	Usage
	Input
	Output

	Optimizations: orca_External and setup_orca_opt.py
	Usage
	Input
	Output
	Description of orca_External

	Single Point Calculations: setup_single_point.py
	Usage
	Input
	Output

	Format Data from QM.out Files: QMout_print.py
	Usage
	Output

	Diagonalization Helper: diagonalizer.x

	Methods and Algorithms
	Absorption Spectrum
	Active and inactive states
	Amdahl's Law
	Bootstrapping for Population Fits
	Computing electronic populations
	Damping
	Decoherence
	Energy-based decoherence
	Augmented FSSH decoherence

	Essential Dynamics Analysis
	Excitation Selection
	Excitation Selection with Diabatization

	Global fits and kinetic models
	Reaction networks
	Kinetic models
	Global fit

	Gradient transformation
	Dipole moment derivatives

	Internal coordinates definitions
	Kinetic energy adjustments
	Reflection for frustrated hops

	Laser fields
	Form of the laser field
	Envelope functions
	Field functions
	Chirped pulses
	Quadratic chirp without Fourier transform

	Laser interactions
	Surface Hopping with laser fields

	Linear Vibronic Coupling Models
	Obtaining LVC parameters from ab initio data

	Normal Mode Analysis
	Optimization of Crossing Points
	Phase tracking
	Phase tracking of the transformation matrix
	Tracking of the phase of the MCH wave functions

	Random initial velocities
	Representations
	Current state in MCH representation

	Sampling from Wigner Distribution
	Sampling at Non-zero Temperature

	Scaling
	Seeding of the RNG
	Selection of gradients and nonadiabatic couplings
	State ordering
	Surface Hopping
	Velocity Verlet
	Wavefunction propagation
	Propagation using nonadiabatic couplings
	Propagation using overlap matrices

	Bibliography
	List of Tables
	List of Figures

